+ All Categories
Home > Documents > Dataprocessingandnetworksoptimization PartII:Optimization...

Dataprocessingandnetworksoptimization PartII:Optimization...

Date post: 13-Mar-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
58
Data processing and networks optimization Part II: Optimization (Basics) Pierre Borgnat 1 , Jean-Christophe Pesquet 2 , Nelly Pustelnik 1 1 ENS Lyon – Laboratoire de Physique – CNRS UMR 5672 [email protected], [email protected] 2 LIGM – Univ. Paris-Est – CNRS UMR 8049 [email protected]
Transcript
Page 1: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

Data processing and networks optimization

Part II: Optimization (Basics)

Pierre Borgnat1, Jean-Christophe Pesquet2, Nelly Pustelnik1

1 ENS Lyon – Laboratoire de Physique – CNRS UMR [email protected], [email protected]

2 LIGM – Univ. Paris-Est – CNRS UMR [email protected]

Page 2: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

2/29

Hilbert spaces

A (real) Hilbert space H is a complete real vector space endowed with an

inner product 〈· | ·〉. The associated norm is

(∀x ∈ H) ‖x‖ =√

〈x | x〉.

◮ Particular case: H = RN (Euclidean space with dimension N).

Page 3: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

2/29

Hilbert spaces

A (real) Hilbert space H is a complete real vector space endowed with an

inner product 〈· | ·〉. The associated norm is

(∀x ∈ H) ‖x‖ =√

〈x | x〉.

◮ Particular case: H = RN (Euclidean space with dimension N).

2H is the power set of H, i.e. the family of all subsets of H.

Page 4: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

3/29

Hilbert spaces

Let H and G be two Hilbert spaces.A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup‖x‖H≤1

‖Lx‖G < +∞

Page 5: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

3/29

Hilbert spaces

Let H and G be two Hilbert spaces.A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup‖x‖≤1

‖Lx‖ < +∞

Page 6: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

3/29

Hilbert spaces

Let H and G be two Hilbert spaces.A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup‖x‖≤1

‖Lx‖ < +∞

◮ In finite dimension, every linear operator is bounded.

Page 7: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

3/29

Hilbert spaces

Let H and G be two Hilbert spaces.A linear operator L : H → G is bounded (or continuous) if

‖L‖ = sup‖x‖≤1

‖Lx‖ < +∞

◮ In finite dimension, every linear operator is bounded.

B(H,G): Banach space of bounded linear operators from H to G.

Page 8: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

4/29

Hilbert spaces

Let H and G be two Hilbert spaces.Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H × G) 〈y | Lx〉G = 〈L∗y | x〉H .

Page 9: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

4/29

Hilbert spaces

Let H and G be two Hilbert spaces.Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈y | Lx〉 = 〈L∗y | x〉 .

Page 10: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

4/29

Hilbert spaces

Let H and G be two Hilbert spaces.Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

Page 11: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

4/29

Hilbert spaces

Let H and G be two Hilbert spaces.Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

Example:

If L : H → Hn : x 7→ (x , . . . , x)

then L∗ : Hn → H : y = (y1, . . . , yn) 7→n∑

i=1

yi

Proof:

〈Lx | y〉 = 〈(x , . . . , x) | (y1, . . . , yn)〉 =n∑

i=1

〈x | yi 〉 =

⟨x |

n∑

i=1

yi

Page 12: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

4/29

Hilbert spaces

Let H and G be two Hilbert spaces.Let L ∈ B(H,G). Its adjoint L∗ is the operator in B(G,H) defined as

(∀(x , y) ∈ H× G) 〈Lx | y〉 = 〈x | L∗y〉 .

◮ We have ‖L∗‖ = ‖L‖.

◮ If L is bijective (i.e. an isomorphism ) then L−1 ∈ B(G,H) and

(L−1)∗ = (L∗)−1.

◮ If H = RN and G = R

M then L∗ = L⊤.

Page 13: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

5/29

Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

x

f (x)

δ

Page 14: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

5/29

Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ

Page 15: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

5/29

Functional analysis: definitions

Let f : H → ]−∞,+∞] where H is a Hilbert space.

◮ The domain of f is dom f = {x ∈ H | f (x) < +∞}.

◮ The function f is proper if dom f 6= ∅.

Domains of the functions ?

x

f (x)

dom f = R

(proper)

x

f (x)

δ

dom f =]0, δ](proper)

Page 16: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

6/29

Functional analysis: definitions

Let C ⊂ H.The indicator function of C is

(∀x ∈ H) ιC (x) =

{0 if x ∈ C

+∞ otherwise.

Example : C = [δ1, δ2]f (x) = ι[δ1,δ2](x)

δ1 xδ2

Page 17: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

7/29

Convergence in Hilbert spaces

Let H be a Hilbert space.Let (xn)n∈N be a sequence in H and x ∈ H.

◮ (xn)n∈N converges strongly to x if

limn→+∞

‖xn − x‖ = 0.

It is denoted by xn → x .◮ (xn)n∈N converges weakly to x if

(∀y ∈ H) limn→+∞

〈y | xn − x〉 = 0.

It is denoted by xn ⇀ x .

Remark: xn → x ⇒ xn ⇀ x .In a finite dimensional Hilbert space, strong and weak convergences areequivalent.

Page 18: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

7/29

Convergence in Hilbert spaces

Let S be a subset of a Hilbert space H.

◮ S is bounded if it is included in a ball.

◮ S is closed if the limit of every converging sequence of elements ofS belongs to S .

◮ S is compact if, from every sequence (xn)n∈N of H, one can extract

a subsequence (xnk )k∈N which converges to a point of S .

◮ If S is compact, then it is closed and bounded.◮ The converse property holds, when H is finite dimensional.

Page 19: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

8/29

Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf{ξk

∣∣ k ≥ n}∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup{ξk

∣∣ k ≥ n}

[−∞,+∞].

Page 20: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

8/29

Limits inf and sup

Let (ξn)n∈N be a sequence of elements in [−∞,+∞].

Its infimum limit is lim inf ξn = limn→+∞ inf{ξk

∣∣ k ≥ n}∈ [−∞,+∞]

and its supremum limit is lim sup ξn = limn→+∞ sup{ξk

∣∣ k ≥ n}

[−∞,+∞].

◮ lim sup ξn = − lim inf(−ξn)

◮ limn→+∞ ξn = ξ ∈ [−∞,+∞] if and only if lim inf ξn = lim sup ξn = ξ.

Page 21: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

9/29

Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f ={(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ}

Page 22: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

9/29

Epigraph

Let f : H → ]−∞,+∞]. The epigraph of f is

epi f ={(x , ζ) ∈ dom f × R

∣∣ f (x) ≤ ζ}

x

f (x) = |x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif

Page 23: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].

f is a lower semi-continuous (l.s.c.) function at x ∈ H if, for every se-quence (xn)n∈N of H,

xn → x ⇒ lim inf f (xn) ≥ f (x).

Page 24: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)

Page 25: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

f (x)

xx

f (x)

Page 26: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)

Page 27: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)

Page 28: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

10/29

Lower semi-continuity

Let f : H → ]−∞,+∞].f is a lower semi-continuous function on H if and only if epi f is closed

◮ l.s.c. functions ?

x

f (x)

x

f (x)

Page 29: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

11/29

Lower semi-continuity

◮ Every continuous function on H is l.s.c.

◮ Every finite sum of l.s.c. functions is l.s.c.

◮ Let (fi )i∈I be a family of l.s.c functions.supi∈I fi is l.s.c.

Page 30: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

12/29

Minimizers

Let S be a nonempty set of a Hilbert space H.Let f : S → ]−∞,+∞] be a proper function and let x ∈ S .

◮ x is a local minimizer of f if there exists an open neigborhood O ofx such that

(∀x ∈ O ∩ S) f (x) ≤ f (x).

◮ x is a (global) minimizer of f if

(∀x ∈ S) f (x) ≤ f (x).

Page 31: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

12/29

Minimizers

Let S be a nonempty set of a Hilbert space H.Let f : S → ]−∞,+∞] be a proper function and let x ∈ S .

◮ x is a strict local minimizer of f if there exists an open neigborhoodO of x such that

(∀x ∈ (O ∩ S) \ {x}) f (x) < f (x).

◮ x is a strict (global) minimizer of f if

(∀x ∈ S \ {x}) f (x) < f (x).

Page 32: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

13/29

Existence of a minimizer

Weierstrass theorem

Let S be a nonempty compact set of a Hilbert space H.Let f : S → ]−∞,+∞] be a proper l.s.c function such that dom f ∩S 6= ∅.Then, there exists x ∈ S such that

f (x) = infx∈S

f (x).

Page 33: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

14/29

Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].f is coercive if lim‖x‖→+∞ f (x) = +∞.

Page 34: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

14/29

Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].f is coercive if lim‖x‖→+∞ f (x) = +∞.

Coercive functions ?

x

f (x)

+∞

x

f (x)

+∞

x

f (x)

+∞

Page 35: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

14/29

Existence of a minimizer

Let H be a Hilbert space. Let f : H → ]−∞,+∞].f is coercive if lim‖x‖→+∞ f (x) = +∞.

Coercive functions ?

x

f (x)

+∞

x

f (x)

+∞

x

f (x)

+∞

Page 36: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

15/29

Existence of a minimizer

Theorem

Let H be a finite dimensional Hilbert space.Let f : H → ]−∞,+∞] be a proper l.s.c. coercive function.Then, the set of minimizers of f is a nonempty compact set.

Page 37: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

16/29

Convex set

C ⊂ H is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C

Convex sets ?

C CC

Page 38: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

16/29

Convex set

C ⊂ H is a convex set if

(∀(x , y) ∈ C 2)(∀α ∈]0, 1[) αx + (1− α)y ∈ C

Convex sets ?

C CC

Page 39: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

17/29

Minimizers over convex sets

Let H be a Hilbert space and let f : H → ]−∞,+∞] be a proper function.

f is Gateaux differentiable at x ∈ dom f if there exists ∇f (x) ∈ H suchthat

(∀y ∈ H) 〈∇f (x) | y〉 = limα→0α6=0

f (x + αy)− f (x)

α.

Theorem

Let C be a nonempty convex subset of a Hilbert space H. Let f : C →]−∞,+∞] be Gateaux differentiable at x ∈ C . If x is a local minimizer off , then

(∀y ∈ C ) 〈∇f (x) | y − x〉 ≥ 0.

If C is a vector space or x ∈ int (C ), then the condition reduces to

∇f (x) = 0.

Page 40: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

18/29

Convex function: definitions

f : H → ]−∞,+∞] is a convex function if

(∀(x , y) ∈ H2

)(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Page 41: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

18/29

Convex function: definitions

f : H → ]−∞,+∞] is a convex function if

(∀(x , y) ∈ H2

)(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Convex functions ?

x

f (x) = |x |

x

f (x) =√|x |

+∞ otherwise)

xδ−δ

f (x) = ι[−δ,δ](x)

(0 if x ∈ [−δ, δ]

Page 42: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

18/29

Convex function: definitions

f : H → ]−∞,+∞] is a convex function if

(∀(x , y) ∈ H2

)(∀α ∈]0, 1[)

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)

Convex functions ?

x

f (x) = |x |

x

f (x) =√|x |

+∞ otherwise)

xδ−δ

f (x) = ι[−δ,δ](x)

(0 if x ∈ [−δ, δ]

Page 43: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

19/29

Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

Page 44: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

19/29

Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

x

f (x) = |x |

epif

x

f (x) =√|x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif

Page 45: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

19/29

Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

x

f (x) = |x |

epif

x

f (x) =√|x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif

Page 46: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

19/29

Convex functions: definition

f : H → ]−∞,+∞] is convex ⇔ its epigraph is convex.

x

f (x) = |x |

epif

x

f (x) =√|x |

epif

xδ−δ

f (x) = ι[−δ,δ](x)

epif

◮ If f : H → ]−∞,+∞] is convex, then dom f is convex.

◮ f : H → [−∞,+∞[ is concave if −f is convex.

Page 47: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

20/29

Convex functions: properties

◮ Every finite sum of convex functions is convex.

◮ Let (fi )i∈I be a family of convex functions. supi∈I fi is convex.

◮ Γ0(H) : class of convex, l.s.c., and proper functions from H to

]−∞,+∞].

◮ ιC ∈ Γ0(H) ⇔ C is a nonempty closed convex set.Proof: epiιC = C × [0,+∞[.

Page 48: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

21/29

Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).

Page 49: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

21/29

Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).

Strictly convex functions ?

x

f (x)

x

f (x)

x

f (x)

Page 50: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

21/29

Strictly convex functions

Let H be a Hilbert space. Let f : H → ]−∞,+∞].

f is strictly convex if

(∀x ∈ dom f )(∀y ∈ dom f )(∀α ∈]0, 1[)

x 6= y ⇒ f (αx + (1− α)y) < αf (x) + (1− α)f (y).

Strictly convex functions ?

x

f (x)

x

f (x)

x

f (x)

Page 51: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

22/29

Characterization of twice differentiable convex functions

Let H be a Hilbert space.Let f : H → ]−∞,+∞] be a twice (Frechet) differentiable function on itsdomain. Assume that dom f is a convex set.

◮ f is convex if and only if, for every x ∈ dom f ,

(∀z ∈ H)⟨z | ∇2f (x)z

⟩≥ 0.

◮ If, for every x ∈ dom f ,

(∀z ∈ H \ {0})⟨z | ∇2f (x)z

⟩> 0,

then f is strictly convex.

Page 52: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

23/29

Minimizers of a convex function

Theorem

Let H be a Hilbert space. Let f : H → ]−∞,+∞] be a proper convexfunction such that µ = inf f > −∞.

{x ∈ H

∣∣ f (x) = µ}is convex.

◮ Every local minimizer of f is a global minimizer.

◮ If f is strictly convex, then there exists at most one minimizer.

Page 53: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

24/29

Existence and uniqueness of a minimizer

Theorem

Let H be a Hilbert space and C a closed convex subset of H. Let f ∈ Γ0(H)such that dom f ∩ C 6= ∅.If f is coercive or C is bounded, then there exists x ∈ C such that

f (x) = infx∈C

f (x).

If, moreover, f is strictly convex, this minimizer x is unique.

Page 54: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

25/29

Exercise 1

Provide an example of a function f : R → R and a nonempty set C ⊂ R

such that

◮ f is nonconvex

◮ C is convex

◮ f + ιC is convex.

Page 55: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

26/29

Exercise 2

1. Let f : H → ]−∞,+∞] be a convex function.

Prove that for every ζ ∈ R, the lower level set

lev≤ζ f ={x ∈ H

∣∣ f (x) ≤ ζ}

is convex.

2. Show that the converse is false by providing an example of anonconvex function the lower level sets of which are all convex.

Page 56: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

27/29

Exercise 3

Let A ∈ RM×N and z ∈ R

M . Let f : RN → R : x 7→ ‖Ax − z‖ and letg : RN → R : x 7→ ‖Ax − z‖2.

1. Prove that f and g are convex.

2. Give a necessary and sufficient condition on A for g to be strictlyconvex.

3. Can f be strictly convex ?

4. Find the minimizers of g .

5. What are the minimizers of f ?

Page 57: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

28/29

Exercise 4

Let y ∈ R. Show that

f : R → R : x 7→ log(1 + exp(−yx))

is convex. When is it strictly convex ?

Page 58: Dataprocessingandnetworksoptimization PartII:Optimization ...perso.ens-lyon.fr/nelly.pustelnik/Cours_M2/pdf/cours_M2_systemCompl... · 2/29 Hilbert spaces A (real) Hilbert space H

29/29

Exercise 5

Let H be a Hilbert space and let f : H → ]−∞,+∞] be a convexfunction. Let g be the perspective function of f defined as

(∀(x , t) ∈ H× R) g(x , t) =

{t f (x/t) if t > 0

+∞ otherwise.

1. How is the epigraph of g related to the epigraph of f ?

2. Deduce that g is a convex function.

3. As a consequence of this result, show that the Kullback-Leiblerdivergence defined as(∀x = (x(i))1≤i≤N ∈ R

N)(∀y = (y (i))1≤i≤N ∈ R

N)

h(x , y) =

{∑N

i=1 x(i) ln(x(i)/y (i)) if (x , y) ∈ ( ]0,+∞[N)2

+∞ otherwise,

is convex.


Recommended