+ All Categories
Home > Documents > DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport...

DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport...

Date post: 14-Jan-2016
Category:
Upload: lee-green
View: 217 times
Download: 1 times
Share this document with a friend
Popular Tags:
32
DC-squid for measurements on a Josephson persistent- current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir. C.H. van der Wal Prof. dr. ir. J.E. Mooij
Transcript
Page 1: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

DC-squid for measurements on aJosephson persistent-current qubit

Applied PhysicsQuantum Transport Group

Alexander ter HaarMay 2000

Supervisors:Ir. C.H. van der WalProf. dr. ir. J.E. Mooij

Page 2: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Introduction

3 m

Page 3: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Introduction

Superconductor

Superconductor

Insulator

1 m

Page 4: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Introduction Quantum mechanics

State of the system: Left OR Right

Classical mechanics:

Quantum mechanics:

State of the system: Left AND Right

Page 5: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

|||||0|1>

|0

|1

Introduction

Two level system:

Two level systems

Two currents in opposite directioncreating an opposite magnetic flux:

E1

E0

3 m

Page 6: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Cou

nts

-1.0 -0.5 0.0 0.5 1.00

50

100

150

Introduction

I sw

(nA

)Flux (0)

The squid as a magnetometer

100 120 140 160 1800

1000

2000

2000

100 120 140 160 180Isw (nA)

0

I bias

(n

A)

V (V)0 400

0

100

Switching point

Page 7: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Motivation

• Study dynamical behavior of a quantum mechanical 2-level system using a dc-squid.

• Use dynamics of this quantum 2-level system for quantum computing.

Page 8: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Introduction

Factorize large numbers into integers.

Page 9: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Goal of this research

Understand the dc-squid as a device for Understand the dc-squid as a device for measuring the small magnetic flux measuring the small magnetic flux signal of a quantum system.signal of a quantum system.

Page 10: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Outline

•Introduction to Josephson junction structures•Analysis of the dc-squid

•Measurements on a single junction•Measurements on the dc-squid

•Application of the dc-squid•The qubit system•Measurements on the qubit system

Page 11: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Josephson junction structures

E

Ibias = 0

0<Ibias < Ic

Ibias = Ic

Ibias

Introduction

m Cx

I bias

(n

A)

V (V)0 400

0

100

Switching point

C

Page 12: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Josephson junction structures

Statistical escape mechanisms from the zero voltage state:

• Hopping over the barrier• Quantum tunneling through the barrier

Escape mechanisms

100 120 140 160 1800

1000

2000

Isw (nA)100 120 140 160 180

2000

Cou

nts

0E

Page 13: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Josephson junction structures

Tunneling from higher levels within the potential well.

Escape mechanisms

E

Page 14: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the single junction

0

2000

0

2000

0

2000

0

2000

40 50 60 700

2000

T=30mK

T=40mK

T=60mK

T=80mK

T=120mK

40 60Isw (nA)

Cou

nts

We can use the histograms to calculate the escape rates from the zero voltage state.

Page 15: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the single junction

Isw (nA)

Cou

nts

40 50 60 70103

104

105

0

1000

2000

(1

/s)

Page 16: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the single junction

(1

/s)

103

104

105

106

103

104

105

106

103

104

105

106

103

104

105

106

50 60 70

103

104

105

106

Isw (nA)50 60 70

T=30mK

T=40mK

T=60mK

T=80mK

T=120mK

106

104

106

104

106

104

106

104

106

104

Page 17: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

The dc-squid

f

Ibias

introduction

bias = 0.5 ( cir = 0.5 ( f

C

Icir

100 m

Page 18: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

The dc-squid The internal degree of freedom

E

cirbias

EL

Eind J

2

022cos( )

Page 19: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

The dc-squid Quantum fluctuations

Quantum fluctuations in the flux through the squid loop:

Qubit signal:prod 0.001 0

<

Page 20: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

0

100

0 1000

4

Measurements on the dc-squid Comparing<

I sw>

(n

A)

(

nA)

T (mK)

Interpolated datafor the squid.Single Junction.

Page 21: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

0

2000

0

2000

0

2000

0

2000

0

2000

0 10 20 30 400

2000

C

ount

s

T = 20 mK

T = 40 mK

T = 80 mK

T = 160 mK

T = 640 mK

T = 320 mK

Iswitch (nA)

Measurements on the dc-squid

Histograms of the small test squid versus temperature

The test squid

Page 22: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the dc-squid The dc-squid

100 120 140 160 180 200102

103

104

105

106

0

1000

2000

3000

C= 2pF

C= 0.2pF

C=0.02pF

100 150 200

106

105

104

103

102

3000

2000

1000

T=30 mK

(1

/s)

Iswitch (nA)

Page 23: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the dc-squid Comparing

Conclusions:

• Quantum fluctuations in the internal degree of freedom play an important role in widening the histograms.

• Quantum fluctuations in the internal degree of freedom are much larger than the qubit signal.

Page 24: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

The qubit system

I cir

(I

c )

fqubit (

fqubit (

E

(E

J)f

3 m

0.48 0.50 0.521.5

2.0

E

0.48 0.50 0.52

-0.5

0.0

0.5

Page 25: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the qubit system

-1.0 -0.5 0.0 0.5 1.00

50

100

150

I sw

(nA

)

fsquid<

I sw>

(n

A)

0.48 0.50 0.52

90

100

110

fqubit

Page 26: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

0.48 0.50 0.52-1.0

-0.5

0.0

0.5

<I sw

>-

line

ar tr

end

(nA

)

Measurements on the qubit system

fqubit

Page 27: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the qubit system

0.496 0.500 0.504

-0.5

0.0

0.5

<I sw

>-

line

ar tr

end

(nA

)

fqubit

Page 28: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the qubit system

0.498 0.500 0.502

<I sw

>-

linea

r tr

end

(0.

4 nA

/div

isio

n)

9.711 GHz 8.650 GHz

6.985 GHz

5.895 GHz

4.344 GHz

3.208 GHz

2.013 GHz

1.437 GHz

1.120 GHz

0.850 GHz

0.498 0.5 0.502fqubit

Page 29: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Measurements on the qubit system

0 1x10-3 2x10-3 3x10-30

2

4

6

8

10

0

2

0 5x10-4

f

Fre

quen

cy (

Ghz

)

0.48 0.50 0.521.5

2.0

fqubit (

E

(E

J)

Page 30: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Conclusions

• Quantum fluctuations in the internal degree of freedom of the dc-squid play an important role in widening the histograms of the dc-squid.

• Spectroscopy measurements show the existence of an energy gap at a frustration of half a flux quantum indicating the two energy levels repel at that point.

dc-squid measurements

Page 31: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Questions

?

Page 32: DC-squid for measurements on a Josephson persistent-current qubit Applied Physics Quantum Transport Group Alexander ter Haar May 2000 Supervisors: Ir.

Outline


Recommended