+ All Categories
Home > Documents > Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction...

Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction...

Date post: 31-Jan-2018
Category:
Upload: dominh
View: 224 times
Download: 0 times
Share this document with a friend
37
Deactivation of oxychlorination catalysts K. R. Rout, Jun Zhu, Martina F. Baidoo, Endre Fenes, Gerard Ayuso Virgili, De Chen* 1 Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, NO- 7491, Norway.
Transcript
Page 1: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Deactivation of oxychlorination catalystsK. R. Rout, Jun Zhu, Martina F. Baidoo, Endre Fenes,

Gerard Ayuso Virgili, De Chen*

1Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, NO-

7491, Norway.

Page 2: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Outline

• Introduction• Deactivation of industrial catalysts• Transient and steady‐sate kinetic study• Predictive kinetic model for the catalyst oxidation state in the catalytic cycle 

• Kinetics guided catalyst design • Pellet and reactor modeling 

Page 3: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

VCM process on CuCl2 catalysts

Challenges:

• The catalyst lifetime: deactivation mechanism of catalyst deactivation

• Better understanding of reaction mechanism and kinetics of elementary steps

Page 4: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

ETHYLENE OXYCHLORINATION

I. Reduction of cupric chloride (ethylene chlorination)

II. Reoxidation of the cuprous chloride

III. Chlorination of cupper oxide

2 4 2 2 4 2 22 1 / 2C H HCl O C H Cl H O

CuCl2+CuO

Page 5: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Outline

• Introduction• Deactivation of industrial catalysts• Transient and steady‐sate kinetic study• Predictive kinetic model for the catalyst oxidation state in the catalytic cycle 

• Kinetics guided catalyst design • Pellet and reactor modeling 

Page 6: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Deactivation: Cu redistribution and lost

(a) (b)

CuCl2and CuCl

SARI_Xradia Versa 5 tomography, Carl Zeiss

Page 7: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Pore surfaceVolume Pore throat

Deactivation: Sintering

Porosity (%)

Connectivity rate of pores

(%)

Total no. of pores

Total no. of throats

Mean area of throats(μm2)

Average length of

throats(μm)

Average coordination

number

Tortuosity of throats channel

Used catal. 7.36 0.3 9234 11174 15.895 10.834 2.419 4.397

Micro CT scanning: low coordination number and low pore connectivity,

Page 8: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Deactivation: coke formation

Coke ring formed inside the catalyst pellets

Page 9: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Oxychlorination reaction in alaborator fixed-reactor

Partial pressure (kPa)Ethylene Oxygen HCl Ar

1.89 1.90 1.89 Other6.11 %wt Cu/γ-Al2O3, T = 483K

Deactivation??

Page 10: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

ETHYLENE OXYCHLORINATION

I. Reduction of cupric chloride (ethylene chlorination)

II. Reoxidation of the cuprous chloride

III. Chlorination of cupper oxide

2 4 2 2 4 2 22 1 / 2C H HCl O C H Cl H O

CuCl2+CuO Low melting pointHigh volatilization

Page 11: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

VCM project supported by inGap Objectives

• Development of in-situ method to monitor the gas phase and surface composition in transient and steady-state experiments

• Reaction mechanism and kineticsof each step• Kinetics of the catalytic cycle of ethylene

oxychlorination including catalyst composition• Pellet and reactor modeling

Page 12: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

Outline

• Introduction• Deactivation of industrial catalysts• Transient and steady‐sate kinetic study• Predictive kinetic model for the catalyst oxidation state in the catalytic cycle 

• Kinetics guided catalyst design • Pellet and reactor modeling 

Page 13: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

13

UV-Vis Spectroscopy

MS

pH meter

Ar

HCl

O2

C2H4

Fixed bed reactor with in-situ space-time resolved MS/UV-Vis spectroscopy

Page 14: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

14

Stratagy of kinetic study

Page 15: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

15

Ethylene conversion and removable Cl uptake

2CuCl2 +C2H4 = 2CuCl + C2H4Cl2CuCl2 CuCl + Cl

Maximum Cl uptake (removable): 1 mol/molCu

Page 16: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

16

min

max min

tF FNKMFF F

Synchronization of MS and UV-Vis data

Page 17: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

17

min

max min

tF FNKMFF F

Synchronization of MS and UV-Vis data

Page 18: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

18

Calibration concistency

Calibration concistent and reproducible

Page 19: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

19 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 20: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

20 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2CuClx

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 21: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

21 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2CuCl CuClx

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 22: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

22 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2CuCl CuClx

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 23: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

23 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2CuCl CuClx

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 24: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

24 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

CuCl2CuCl CuClx

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 25: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

25 Dynamic active sites 1

2 2 4 2 4 22 2kCuCl C H C H Cl CuCl

a b c

Matthew NeurockJ. Phys. Chem. B, Vol. 105, No. 8, 2001

Page 26: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

26 New kinetic model including the dynamic active sites

Jun Zhu

Partial pressure (kPa) Steady state EDC formation rate (mol/g h)

Predicted rate(mol/g h)Ethylene Oxygen HCl Ar Kinetic UV-vis3.78 3.81 1.89 Other 0.00121.89 1.9 1.89 Other 0.00080.9 1.9 1.89 Other 0.0005

T=503K, 5.9 %wt Cu/γ-Al2O3

Kinetic model based on individual kinetics (step I and II)

Note I:

So, is neglected to simplified the model

During steady-state:

Note II: Oxygen site coverage is also considered in r1

Page 27: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

27 II. Time and Space resolved UV-Vis spectroscopy study

a) Ethylene conversion and selectivity vs reaction time, b) CuII during reaction time c) KMF vs wave length at different reactor axis for reaction condition I d) CuII vs reactor axis. Steady-state reaction condition I: pC2H4=0.009 atm, pO2=0.0189 atm, pHCl=0.0189 atm Temperature=230 C, total pressure= 1 atm. Steady-state reaction condition II: pC2H4=0.009 atm, pO2=0.0045 atm, pHCl=0.0189 atm Temperature=230 C, total pressure= 1 atm.

2:1:4

2:4:4 (1:2:2)

2:1:4

2:4:4 (1:2:2)

Page 28: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

28

Steady-State kinetics

Partial pressure (kPa) Steady state EDC formation rate (mol/g h)

Predicted rate(mol/g h)Ethylene Oxygen HCl Ar Kinetic UV-vis3.78 3.81 1.89 Other 0.0012 0.00131.89 1.9 1.89 Other 0.0008 0.00070.9 1.9 1.89 Other 0.0005 0.0003

T=503K, 5.9 %wt Cu/γ-Al2O3

Reducible Cu2+

Page 29: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

29 II. Time and Space resolved UV-Vis spectroscopy study

Conclusion: • The initial decrease in conversion is a transient process achieving steady state• Most of Cu 2+ are reduced at the steady state and oxidation step needs to be

enhanced

2:1:4

2:4:4 (1:2:2)

2:1:4

2:4:4 (1:2:2)

Page 30: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

30

Outline

• Introduction• Deactivation of industrial catalysts• Transient and steady-sate kinetic study• Predictive kinetic model for the catalyst

oxidation state in the catalytic cycle • Kinetics guided catalyst design • Pellet and reactor modeling

Page 31: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

31

V. Pellet ModelMass balance of species

Diffusion flux

Boundary condition

At rp=0

rp=r1

rp=rs

Page 32: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

32 Profile of oxygen across the pellet at different reactor positions

Page 33: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

33

VI. Fixed bed reactor model

Pseudo-homogeneous Heterogeneous

Does not account explicitly for the presence of catalyst.It contains effectivenessfactor to account the masstransport phenomena.

Separate equations for the fluid phaseand the fluid inside the catalyst pores.

Conventional SimplifiedThis model accounts masstransfer phenomena byconsidering pellet equation.

Contain effectivenessfactor to account mass transport phenomena.

Account explicitly for theexternal heat- and massexchange to the solidphase.

Page 34: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

34

Results:Cross-sectional averaged

0 0.5 1 1.5 2 2.5 3 3.5 4440

460

480

500

520

540

560

580

Z [m]

Tem

pera

ture

[K]

SimulatedPlant Data

0 1 2 30.1

0.2

0.3

Z [m]

y C2H

4

0 1 2 3

0.350.4

0.45

Z [m]

y HC

l0 1 2 3

0

0.05

Z [m]

y O2

0 1 2 30

0.1

0.2

Z [m]y C

2H4C

l 2

0 1 2 30

0.1

0.2

Z [m]

y H2O

Page 35: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

35

Conclusions• The active sites are highly dynamic.• Kinetics of Redox reactions including changes in

gas phase compositions and catalyst compositions can be obtained from kinetics of individual steps.

• Space and time resolved UV-Vis spectroscopy is a powerful tool for kinetic studies of redox reactions.

• Multiscale approach is powerful not only for the simulation and optimization of industrial reactors, but also the rational catalyst design.

Page 36: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

36

Conference chairs: Prof. Hilde Venvik & Prof. Anders Holmen, NTNU Deadline for abstract submission: Oct. 15, 2015

Page 37: Deactivation of oxychlorination catalysts - Topsoe · PDF fileOutline • Introduction • Deactivation of industrial catalysts • Transient and steady‐sate kinetic study • Predictive

37

Thanks for your attention!

The supports from Norwegian Research Council and Statoil are highly acknowledged.


Recommended