+ All Categories
Home > Documents > Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots,...

Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots,...

Date post: 07-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
73
Decoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble Sao Martinho de Porto (Portugal) Large scale diffraction, interferences shape their environmement
Transcript
Page 1: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Decoherence

in Solid State superconducting circuits, quantum dots, magnetic molecules,

quantum phase transitions 

B. Barbara

Institut Néel, CNRS, Grenoble

Sao Martinho

de Porto (Portugal)

Large scale

diffraction, interferences

shape

their

environmement

Page 2: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Single photons, electrons…

« Waves » of photons, electrons,…

Yes

!

Humm,  Yes

, No…

Yes

!

And Now…

1961 –

Jönsson

(single electrons double slit)1974 – Merli (one electron at the time)1989 –

Tonomura

(one electron at the time)

«

Decoherence

»

The roots of decoherence:

1970 – Zeh1987 –

Simonius

1980 –

Zurek…

Giulini, Schlosshauer1981 –

Leggett, Caldeira

(dissipation)1996 – Stamp, Prokof’ev

(spin‐bath)

Page 3: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

This first experimental

coherent

manipulation of flux qubits

follows

the line opened

by 

Nakamura

(NEC, Tsukuba), and the Saclay Quantronics

group (Devoret, Esteve)

ΔΦext

/Φ0

Read out

Energy

|↑⟩

±

|↓⟩

γ1 + γ -

γ2

= 2πφ/φ0

Δ

~ 3 GHz

Coherent

control of a superconducting

flux qubitI.  Chiorescu, Y.  Nakamura, J.P.M  Harmans, J.E.  Mooij,  Delft (2003)

Ib

Insensitive

to charge fluctuations

EJ

>> Ec

Page 4: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

read‐outtime

trigger mwpulse

squid switching

pulse

operation

0 10 20 30 40 50 60 70 80 90 100

40

60

80

40

60

80

40

60

80

0.0 0.5 1.0 1.5 2.00.0

0.1

0.2

0.3

0.4

0.5

0.6

pulse length (ns)

A = -12 dBm

A = -6 dBm

A = 0 dBm

Rab

i fre

quen

cy (G

Hz)

MW amplitude

10^(A/20) (a.u.)

switc

hing

pro

babi

lity

(%)

Relaxation  T1  

1 μs Rabi decay  TR

150 nsRamsey       TRm

20 nsSpin‐echo    T2 

30 ns

FLarmor

= 6.6 GHz

I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, 

Science, 299, 1869 (2003)

Rabi oscillations of the flux qubit

Many

oscillations (large ΩR

)

Free and driven

coherence

limited

by 1/f (noise)  >> 10 MHz  

(Difficult

to avoid

and to predict)

Read‐out fidelity

~ 50%

time

triggerIb pulse

π/2 π/2π

Spin‐echo

read‐out

Page 5: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

|g0>

|e0> |e1>

|g1>

|e2>

|g2>

...FL ωp

.

.

.

QUBIT, two‐level system SQUID, harmonic oscillator

microwave field

|e>

|g> 

|0>, |1>, ..., |N>

hωpl

hFL

Entanglement

betweenflux qubit

and measuring tool (SQUID)

Page 6: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Driven Rabi oscillations of the entangled system

π pulse:     |g0⟩ ⇒ |e0⟩

Microwave:  |e0⟩ ⇔ |g1⟩

0 5 1 0 1 5 2 0M W p u ls e le n g th (n s )

3 0

2 0

P SW (%

)

-1 0 d B m

-9 d B m

-8 d B m

-7 d B m

-6 d B m

-5 d B m

-4 d B m

-3 d B m

I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij

, Nature 451, 139 (2004).

|e0⟩|e1⟩

|g1⟩|g0⟩

π|10⟩+ |01⟩

«

Quantronium

»

= charge qubit

and flux read‐out (and inversely)

Oscillations between

entangled

states:Strong

decoherence

(TR

~ 3ns)  by  SQUID  relaxation

(level

broadening, T1

~ 6 ns)

Should

affect qubit

Rabi oscillations (g0         e0)    

Page 7: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

The quantronium: « a major roadblock

dissolved

?

»A.J. Leggett, Science, 3 May, 2002. 

D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, M. H. Devoret,  Science,

3 May, 2002.                      

TRm

500 ns,  T1

2

μs 

Immunity

Flux qubit: Ng

= 0.5

Charge qubit:

φ = 0

EJ

ECP neither island charge nor phase is a good quantum number

mw frequency

1 MHz

Better coherence (before TRm

20  500 ns)

Large oscillation frequencies  large Qφ

Still, 2nd

order decoherence,  “electrical”

1/f noise

Read‐out fidelity, still poor.

Difficult to do better  use of mw cavity

T2

decays

by 2 ordersof magnitude for  Ng

or δ

variations of 0.1

Page 8: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

The last step: the transmon.

Last steps: qubit

embedded

in a 1D microwave

cavityHigh degree

of control of e‐m environment,  High fidelity

read‐out…

low

power

CPB

Blais et al, PRA, 2004Walfraff

et al, nature, 2004…Mallet et al, nature Phys, 2009

TR

reaches

a few

μsFidelity

approaches

95%(even with single shots)Factor of merit

: limited

«

Transmon

»

EJ

>> ECinsensitive to charge noise, see also Nakamura,(1999)

Transmission line «

cavity»

In all cases, coherence

is

limited

by T1

and  T1  

cannot

exceed

a few microseconds… for multiple reasons…

(residual

charge and flux fluctuations, impurities, 

nuclear

spins, unscreened

collective excitation of 

Cooper pairs, unperfect

magnetic

shielding, wire

connections to room temperature

measurement

parts, 

Johnson‐Nyquist

noise …)

What

about spins ?

Magnetic

ions in matrices

Single  electron

spin in a quantum dot

Page 9: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Driven

oscillations of a single electron

spin in a quantum dot

F. Koppens, C. Buizert, K.J. Tielrooj, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kowenhoven, L. VandersypenNature, 17 Aug., 2006

Rabi oscillations (driven) and  Spin‐echo

(suppression of slow NS fluctuations) TR

TS‐E

1 μs

TS‐B

<< 

TInt

Average

over Distributed

frequencies

Destructive  additions, T2

*~h/σ

TR‐O

2 μs       TInt

20 s       TS‐B

ms  to  s

Nuclear

S‐B is

frozenduring

each

measurement

Distribution of  Larmor frequencies

TS‐B

>>  TReadOut

Singlet and triplet

states entangle

withnuclear

spin states (Δ ≈

σ)

Strong

N‐S decoherenceof 

Ramsey

oscillations(free precession decay)

TRm

30 ns

Coherence

limitations

Slow N‐S fluctuations affect free coherence

Fast

N‐S  fluctuations (BN‐S ~ Bmw

) affect spin 

manipulations  low fidelity

«

Disentangle

»

E‐N spinsSuppress

NS (graphen

, C‐nanotubes…)

Page 10: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Magnetic

ions in matrices

N‐V centers

in diamond,  3d (e.g. Mn), 4f (e.g. Er, Yb)Molecular

magnets

V15

:    15 spins 1/2, Hilbert space

dimension  D = 215

~ 106

Page 11: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Nature, 8 May

(2008).(see

also

: P. Stamp, News &

Views

, same

issue)

Rabi oscillations in V15

Entanglement

of15 spins 

with

photons

«

Driven

»

spin-bath

Stoch. fluctuations

Slope

α C  and S

Steep damping at short times

Inhomogeneous spread of

Zeeman splittings

DecoherencePairwise, nuclear

spins and spin‐lattice

couplingsQuantitative agreement with

the spin‐bath model 

« Electro‐Nuclear

Beating

»

Protons

51V, 75As, 14N

/0 ( ). Rt

z RM J t e τ−< >= Ω

22

)(42

1RN

BΩ++− ω

ΩR 

~ ωp

)/200exp(1 TT −∝

Similar

to Modulated

oscillations Single N-V centerSt

Barbara

Page 12: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

ΔmJ

= ±1

ΔmI

=0

ΔmI

= ±1

-7/2-5/2-3/2-1/21/23/25/27/2

7/25/23/21/2

-1/2-3/2-5/2-7/2

⎮φ+ , mI

>

⎮φ-

, m’I

>

Rare‐earth

qubits

(I=7/2 isotope) CF ground‐state + Hyperfine Interactions 167Er3+: CaWO4

I=7/2

H ⊥

c-axis

Measured

CW‐EPR spectrum

Experimental

dataSimulations

Eight

independent

electro‐nuclear

transitions

Nature nanotechnology

(2007)

Page 13: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Damping of oscillationsEffect of the microwave power

τR

= 0.2 μs

<< τ2

~ 7μs

hac

= 0.6 mT hac

=0.05mT

τR

= 4 μs

< τ2

~ 7μs

«

Natural

»spin‐bath

« Driven »spin‐bath

1/2T222/1./1 τβτ +Ω= RR

(0.05% Er:CaWO4

)

βN

= β/Sc

= 10‐20

cm3

Quantitative agreement with

the natural

spin‐bath model (T2

) Pairwise,  spin‐orbit

and spin‐lattice

couplings(Stamp,  Prokof’ev, Tupitsyn, Morello)

Need

more studies

with

the « driven spin bath

»

(TR

)

Page 14: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

H.

H. Ronnov, R. Parthasarathy, J. Jansen, G. Aeppli, T. Rosenbaum, D. McMorrow, Science, 15 April 2003

Quantum phase transition of a magnet

in a spin‐bath

Field

Ener

gy J

J Δ2Δ1

Hperp

LiHoF4

Electro‐nuclearentanglement

Another

suppression mechanism:

QPT quenched

by fast

field

sweepings

(period, entanglement

length)

Δ2

> Δ1

>

J

Coherent

at

the scale

of ξc

(Δ1

, Δ2

)  Critical

Quant. «

Para

».

Δ2

> J

>  Δ1

Coherent

(Δ2

) +

blocked

( Δ1 

)Intermediate

state (no percolation).single‐spins coherent

states, single‐flips.

>

Δ2

> Δ1

Q‐Fluc. nucl. only, spin‐wavesOrdered

ferro. state.       

the spin‐bath suppresses

the QPT

INS linewidh ξc ~ 1 interatomic distance.

Quantum spinodal

transitionUniverse

inflation,Topological

defects

(Zurek,…).

Page 15: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

THANK YOU 

FOR YOUR ATTENTION !

Page 16: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Conclusions

Superconducting

qubits:

Important progess

in coherence

times and fidelity

(95% for 

« single shot

»

measurements) due to wonderful

experimental

tricks and technical

prowesImportant developments

in nanosciences and nanotechnologies.Inner

decoherence

mechanisms

are still

present

and not well

identified. 

Decoherence

of single spins in QDs

is

better

identified: the nuclear

spin‐bath.Use of dots without

nuclear

spins, but S‐T transitions should

still

be

made possible.

As well

as with

ensembles of spins, the decoherence

of ensembles of SQs

or QDs

qubit(not yet

studied, one exp.), should

be

much

more drastic

and should

increase

with

the 

number

of qubits

(spin‐bath and driven

spin‐bath,  flux‐bath and charge‐bath).

The study

of decoherence

of ensembles of spins enables

in particular

the study

of driven

decoherence.

When

interactions between

ensembles of qubits

become

comparable to local quantum 

splittings, the nuclear

spin‐bath

broadens

the transition to the ordered

state suppressing

quantum criticality

and limiting

the lengthscale

of entanglement.

Page 17: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Effect of anisotropic hyperfine interaction

H||c

ΩR

(MH

z)

Rabi oscillations of the 8 +1 electro‐nuclear transitions  Er (0.001%):CaWO4

H tilted

by 11 °

Large anisotropy

of Rabi frequencies

Phys. Rev. Lett. 24 Nov

(2009)

Page 18: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

More recent

results

with

molecular

magnetsS. Takahashi

et al,

Santa Barbara  and  Tallahassee,    Phys. Rev. Lett. (2009)

Fe8

:  8  spins  5/2 , Hilbert space

dimension  D =68

~106

⎟⎠⎞

⎜⎝⎛ Δ

+⎟⎠⎞

⎜⎝⎛ Δ

+=

kTth

E

kTch

EC

TPhDipte

00

2

2

hT2

(T)

T1

(T) V15Fe8

Page 19: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

XZXRZN IBSSI +Ω+= ωRH)0( >>>Ω≥ BRNω

2RN Ω+

−ω

2RN Ω−

−ω

2RN Ω−ω

2RN Ω+ω

⟩−− ZX ,|

⟩−+ ZX ,|

⟩+− ZX ,|

⟩++ ZX ,| ⟩+++⟩−− ZXZX ,|,| 44 βα

⟩−++⟩+− ZXZX ,|,| 33 βα

⟩+−+⟩−+ ZXZX ,|,| 22 βα

⟩+++⟩−− ZXZX ,|,| 11 βα

22

)(42

1RN

BΩ++− ω

22

)(42

1RN

BΩ−+− ω

22

)(42

1RN

BΩ−++ ω

22

)(42

1RN

BΩ+++ ω

0=B 0≠B

Ener

gy

Page 20: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 21: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Damping of oscillationsEffect of the microwave power

τR

= 0.2 μs << τ2

~ 7μs

hac

= 0.6 mT hac

=0.05mT

τR

= 4 μs < τ2

~ 7μs

«

Natural

»spin‐bath

« Driven »spin‐bath

1/2T2

22/1./1 τβτ +Ω= RR

(0.05% Er:CaWO4

)

The damping

rate decreases

with

microwave

power

Decoherence: the spin‐bath(Stamp,  Prokof’ev, Tupitsyn, Morello)

Pairwise,  spin‐orbit

and spin‐lattice

couplingsQuantitative agreement with

«

natural

»

spin bath

Study of the spin‐bath  + microwaves is needed(also for superconducting qubits,

when  N > 1) 

Page 22: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

I = 0 isotopes0 50 100 150

H (mT) // b-axis

10

0

-10

GH

z

2/372.02/567.02/1104.02/1316.01 +−++−=φ

2/372.02/567.02/1104.02/1316.02 −++−+=φ

Nature nanotechnology, 1 Jan (2007) 

Rare‐earth

ions:  Er3+:CaWO4Two

isotopes:  I=0,  I=7/2

0 0 0 0 4 4 0 0 4 42 2 4 4 4 4 6 6 6 6( ) ( )CF J J JH B O B O B O B O B Oα β γ= + + + +

Page 23: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 24: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Damping of oscillationsEffect of the microwave power   (0.05% Er:CaWO4

)

The damping

rate decreases

with

microwave

power

Nature nanotechnology (2007)

hac

= 0.6 mT hac

=0.05mT

Stochastic

noise, Interferences

No‐interactions, reversible

decoherence

Ω/2π

~ ±17 MHz Halfwidth

~2 MHz

~ π/τR

τR

= 0.2 ms << τ2

~ 7ms

<Sz

> = S0

e-t/τR

sin(Ωt/2)

Page 25: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Tu me dis que le SQUID est arrêté

pendant la manipulation des qubits, mais tu le mets en m

Et Ib

commence à

augmenter après la variation adiabatique de flux ?

gmentation du Ib

(cad

la rampe montee

du pulse de lecture) genere

une variation NON-adia

gique, dans un point "non-magique" ou un peu faire tranquille leur lecture.

Mais de toutes les façons les fils sont tous supra et il y s des plasmons

dans les fils, n'est-ce

a le bruit electronique

Johnson-Nyquist. Le circuit contient des resistances

au dela

des fils s

erreur de mesure car the Ic

qu’on va mesurr

ne sera pas le réel (fidelite).s ce bruit (aussi lié

au piégeage de charges dans la barriere

(ce qui change la résistance dplus

: le bruit en question est d’origine thermique il est donc plutôt dans les fils haute TempSQUIDs

donnent du bruit en 1/f (mais en g fequences

< 1Hz)

Page 26: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

erait sans limites.

e first experimental

coherent

manipulation of flux qubits

.."

postdoc

sur le plan de construire le qubit

et la demonstration

du gap tunnel (incoherent).

J'ai pas compris l'explication avec la phase du squid. Moi, je le vois plus simple. Le squid

e

re du qubit. Le SQUID detecte

si ce moment magnetique

geant

est "up" ou "down". Comme

de up ou down), le cosine

varie.Je

suis tout à

fait d'accord avec ça! je ne sais plus ou.

tat antisymmetrique

/up> -

/down> est différent tandis que celui del'état

symmétrique

/up> t 0.

et

le

premier

nul

Mais

c'estr

bien

vrai

que

dans

les

dux

cas

le

moment

est

de

signe

opposé

Page 27: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

DH

= 215

2211TR

R

+Ω= βτ

ΩR ~ ω

P ~ 14 MHzΩR ~ ωp

~14 Mhz

Kelvin

)/200exp(1 TT −∝

T2

S=1/2 S=3/2

Rabi oscillations of a SMM vs mw‐field

and temperature

ΩRDecoherence:

‐ Other

molecule

spins

‐ Beating

between

1H spins at

ωpand V15

spin at

ΩR

Page 28: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

H.

H. Ronnov, R. Parthasarathy, J. Jansen, G. Aeppli, T. Rosenbaum, D. McMorrow, Science, 15 April 2003

Δ2

> Δ1

>

J

Q‐Fluct.

(Δ1

, Δ2

)              Q‐« Para »Δ2

>  J

> Δ1

Q‐Fluct.

(Δ2

) Q‐Dynamics 

, clustersJ 

>

Δ2

> Δ1

Q‐Fluct. (Nuclear

only), ordered

state.       

Quantum phase transition of a magnet

in a spin‐bath

Field

Ener

gy J

J Δ2Δ1

Hperp

Single flips !

LiHoF4

Page 29: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Q. Phase transitions:Decoherence

(by e.g. kT) kills

the superconding

PT

In SQUID reade-out : also

a QPT: le SQUID switches

from

super to normal,But the QPT is

not induced

by decoherence

beacuse

it

is

the probe whichdetects

the states of coherence. QPT is

a part of the measurement.

Spins systems

: OK to test the effect

of decoherence

in QPT:LiHoF4: Aeplli

dit que c’est le bain de spin qui empêche la divergence ferro

du système.Maisz

le coiplage

hyperfin est fort et les pins nucleau

ires font pat rtie

dud

d système: donner un cycle d’hystéresis

du système dilué

et dire que ça ne cham ge

pas si conce,ntré

Page 30: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

The damping

rate scales

with

the Rabi frequency

1/τ2

1/τR

= 1/τ2

g(ΩR

τ2

)

spin‐bathstochastic

noise,interferences

22/1./1 τβτ +Ω= RR

Assuming

that

each

spin experiences

a stochastic

field

oscillating

at

the frequency

ω(Shakhmuratov

et al, Phys. Rev. Lett., 1997)

Nature nanotechnology

(2007)

1/T2

Page 31: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

( )[ ] −≡ 6242

III6

IV1515 OHOAsVV

6 nm

These

molecules

are wrap

up with

a surfactant and dispersed

in aChloroform

solution

Collaboration Achim Müller, Univ. Bielefeld

S=1/2

Rabi oscillations of a molecular

magnet

Page 32: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

( )

( ) ∑∑∑∑===

<=

++×+−=3

1

3

131,13,12

3

1,0

iiB

iji

ijjiij

jiji

ji gAJH SHSISSDSS μ

Complex

Hamiltoninan

Tesla

Page 33: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Doublets

First Observation of Rabi Oscillationsin a Molecular

Magnet

(V15

)

Nature, 8 May

(2008).(see

also

: P. Stamp, News &

Views

, same

issue).

c = c0 ~ 0.7 mmole

/ l

Entanglement

of15 spins

with

photons

Page 34: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

DH

= 215

2211TR

R

+Ω= βτ

ΩR ~ ω

P ~ 14 MHzΩR ~ ωp

~14 Mhz

Kelvin

)/200exp(1 TT −∝

T2

S=1/2 S=3/2

Rabi oscillations of a SMM vs mw‐field

and temperature

ΩRDecoherence:

‐ Other

molecule

spins

‐ Beating

between

1H spins at

ωpand V15

spin at

ΩR

Page 35: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 36: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Magnetization

steps

and quantum relaxation

Quantum tunneling of SMMs

(Mn12‐ac

type)

H =  ‐DSz2  + BSz4… ‐

gμB

Sz

Hz

E(θ)

with

cosθ

= <Sz>/S,

<Sz

>= m

+  B(Sx2 + Sy2)…

E(θ)

θ

Page 37: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K1.6K1.9K2.4K

M/M

S

BL (T)

Hysteresis

loop

Resonant

tunneling  of  magnetization

(Mn12

‐ac, S=10)Quantum tunneling and classical hysteresis

Hn

= nD/gμB

~ nHA

/2SNature,  12 Sept (1996)

102

104

106

-2 -1 0τ

(sec

)H (T)

(sec

)

T(K)103

105

2 3

0 T0.44 T0.6 T0.88 T1.32 T1.76 T2.2 T2.64 T

H(T)

Page 38: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Fom

SMMs

to simple paramagnetic

ions (RE‐ions)

Molecules

of Mn12

ac                  Ho3+

ions in YLiF4

-1

-0,5

0

0,5

1

-3 -2 -1 0 1 2 3

1.5K1.6K1.9K2.4K

M/M

S

BL (T)

dH/dt=0.55 mT/s

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

μ0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/μ 0d

m/d

Hz (

1/T)

Steps

at

Bn

= 450.n  (mT)

Steps

at

Bn

= 23.n  (mT)

Nature

12 Sept (1996)                                               Phys. Rev. Lett. 17 July

(2001)       Phys. Rev. Lett. 19 Dec

(2003)

Page 39: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

-180,0

-179,5

-179,0

8,5

E (K

)50 mK0.3 T/s

120 160 200 240

0

4

8

-150 -75 0 75 150 225

0

20

40

60

-300 -200 -100 0 100 200 300-1,0

-0,5

0,0

0,5

1,0

-8 -6 -4 -2 0 2 4 6 8 10-180-120-60

060

120180240

n = 6n = 7

n = 8n = 9

b)

dH/dt<0

n=1

n=0

1/μ 0d

m/d

Hz (

1/T)

μ0Hz (mT)

a)

M/M

S

μ0Hz (mT)

integer n half integer n

linear fit μ0Hn = n x 23 mT

μ 0Hn (

mT)

n

50 mK

200 mK0.3 T/s

Fast measurements (τmeas

~ τbott

> τ1 >> τs

)

Simultaneous

tunneling of Ho3+

pairs (4-bodies tunnelling)

Detailed

studies

in ac-susceptibility.Accurate

fits

of many-body tunnel relaxationwith

spins-spins, spin-phonons, bottleneck, weak

CF disorder

(B.Malkin).

Additional

steps

at

intermediate

fields

PRB, 74, 184421 (2006

Page 40: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

X band spectrometer (9‐10GHz)

Continuous wave (CW)

Time resolved (TR) or pulsed

Temperature 2.5K to 300K

Bruker

Elexys

E580Copyright CEA-Grenoble

Ho: YLiF4 Er: CaWO4Coherent

quantum regimePulsed

EPR measurements

Rare‐earths

ions (Er)Single Molecule

Magnets

(V15

)

RF Excitation π/2 π

EPR sequence

used

Echo ∝

< Sz

> = f(t)

t

Page 41: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

1‐

«The 

spin‐orbit

qubits» in rare‐earth

ions (and any

other

system withlarge spin‐orbit

coupling).‐

The point symmetry

of the matrices influences deeply

the Rabi oscillations‐

New ways

to manipulate

quantum oscillations in e.g. QCs‐

Coherence

times reaching

the millisecond

at

4K.

2‐

The «Nanometer‐size spin qubits

» in Single Molecular

Magnets

(V15

)‐

Quantum oscillations are compatible with

complexity

(Huge

Hilbertspaces, complex

interactions)‐

Decoherence

by nuclear

spins. Especially

by protons (ΩR

< 20 MHz)-

Coherence

times must be

improved

(should

be

possible)Next

future:1‐

Detailed

studies

of decoherence

in both

types of systems2‐

From

3D to 2D and 0D systems

(films, single‐objects)

ConclusionDemonstration

of the existence of two

new types of spin qubits

2-

The «Nanometer-size spin qubits

»

in Single Molecular

Magnets

(V15)

250 G

From: M. Ruben, J. V. Barth et. al., INT Karlsruhe, TU Munich

Page 42: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Collaborations

Physics:

S. Gambarelli

(CEA‐Grenoble),

J.H. Shim

(CEA‐Grenoble), S. Bertaina

(L2MP‐

Marseille), B. Malkin

(Univ‐Kazan).

Chemistry:  A.M. Tkachuk

(Univ‐St. Petersbourg), T. Mitra

(Univ‐Bielefeld), 

A.Müller

(Univ‐Bielefeld).

Quantum coherence

of  SREs

and SMMs

Page 43: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Effect of anisotropic hyperfine interaction

H||c

ΩR

(MH

z)

Rabi oscillations of the 8 +1 electro‐nuclear transitions  of Er (0.001%):CaWO4

H tilted

by 11 °

Large anisotropy

of Rabi frequencies

An effect

of strong

spin-orbit

coupling « Spin-orbit qubits »

Phys. Rev. Lett. 24 Nov

(2009)

Page 44: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

M. Ruben, J. V. Barth et. al., INT Karlsruhe, TU Munich

100 μs expected

Entanglement

of photons with

complex

molecules

with

huge

Hilbert spacesSelf-organized

2D supra-molecular

depositions

become

possible

From: I. Chiorescu, Y. Nakamura, K. Hartmans, H. Mooij

et al,Delft University of Technology

CONCLUSION

Among

the immediate

projets: Rabi oscillations of a single molecule

Page 45: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

1-

Intoduction: A Brief

History

of Mesoscopic

Quantum Tunneling

1981

First evidence

of MQT in J -

J (R. Voss & R. Webb, IBM Yorktown-Heights)

1973 -1988 Rare-earths

with

«

narrow

domain

walls

»:

Dy3

Al2

, SmCo3.5

Cu1.5

80’s-90’s

Films, nanoparticles

ensembles: a-SmCo, a-TbFe, (TbCe)Fe2

,…

Theory: T. Egami

R. Schilling, J.L. van Hemmen, P. Stamp, E. Chudnovsky, L. Gunther, N. Prokof’ev, …

90’s Two

directions: 1) single particule

2) ensembles of identical nanoparticles

70’s: Search

for «

macroscopic

quantum tunnelling

»

phenomena(…

Schrödinger, Leggett)

Micro-SQUIDs

Single Molecules

Magnets

T-independent

relaxation

Page 46: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Quantum nano-magnetism

Mn(IV)S=3/2

Mn(III)S=2

Total Spin = 10

Mn12 acetate Mn12 acetate (very schematic)(very schematic)

T. Lis, Acta. Cryst. 1980

2-

Incoherent

quantum dynamics

of Mn12-ac, RE-ions

Page 47: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Single molecule magnets (Mn12

-ac) The molecules are regularly arranged in the crystalMacroscopic

quantum magnet

1 mm From

Kunio

Awaga, Nagoya university

Page 48: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

H = - DSz2

- BSz4

- gμB

Sz

Hz

spin down spin upΔ

|S,S-2> |S,-S+2>

Ground state tunneling

|S,S-1> |S,-S+1>

|S,S> |S,-S>

SZ

Ener

gyEn

ergy

(K)

Classical

barrier

and tunnelling

of a collective spin (S=10)

H ≠

0 H = 0

Resonances

«

under

the barrier

»

-1 -0.5 0 0.5 1-40

-30

-20

-10

0

Ener

gy (K

)

µ0 Hz (T)

²M = ±1hω

-10

-9

-8

-7

10

9

8

7

0

-

gμB

(S+

+ S-

)Hx

/2

+

E(S+2

+ S-2) -

C(S+4

+ S-4)…

Δ

magnetic

field

| S, -m >

| S, m-n >

1 P

1 -

P

| S, -m >

| S, m-n >

Landau-Zener

model

Low

Temperature

regimeHz

= 0

Thermally

activated

tunnellingħ

Δ

, vH

/ Δ

S+ Γ ∝

Δ2

(TSn/DS2)4S/n

Thermally

activated

reversal

Δ ∝

(TSn/DS2)2S/n, n ≤

2S

Probability:PLZ

= 1 –

exp[-π(Δ/ħ)2/γc] ~ Δ2/c

HA

Page 49: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

From quantum

relaxation to coherencein magnetic systems

nanoparticles, single-molecule

magnets, single-ions

B. BarbaraInstitut Néel, CNRS, Grenoble

Introduction

Incoherent

quantum dynamics

of Mn12

-ac, RE-ions

Coherent

quantum dynamics

of RE-ions«

The spin-orbit

qubits

»

Coherent

quantum dynamics

of the V15 SMMs«

Nanometer-size spin qubits

»

Conclusion

Page 50: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

-75 -50 -25 0 25 50 75-1.0

-0.5

0.0

0.5

1.0

T = 30 m Kv = 0.6 m T/s

H T=190 m TH T=170 m TH T=150 m TH T=130 m TH T=110 m TH T=90 m TH T=70 m T

H T=50 m T

H T=30 m T

H T=10 m TM

/MS

μ 0H z (m T)

dB/dt

~ 1 mT/s

Acceleration

of quantum dynamicsin a transverse

field

Ho 3+

ions in YLiF4

…. slow sweeping

field: τmeas

>> τbott

> τ1

Near

thermodynamical

equilibrium

at

the cryostat temperature…

Giraud et al, Phys. Rev. Lett. (2001)

Page 51: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

-75 -50 -25 0 25 50 75-1.0

-0.5

0.0

0.5

1.0

T = 30 m Kv = 0.6 m T/s

H T=190 m TH T=170 m TH T=150 m TH T=130 m TH T=110 m TH T=90 m TH T=70 m T

H T=50 m T

H T=30 m T

H T=10 m TM

/MS

μ 0H z (m T)

dB/dt

~ 1 mT/s

Acceleration

of quantum dynamicsin a transverse

field

Ho 3+

ions in YLiF4

…. slow sweeping

field: τmeas

>> τbott

> τ1

Near

thermodynamical

equilibrium

at

the cryostat temperature…

Giraud et al, Phys. Rev. Lett. (2001)

Page 52: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 53: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Ising

CF ground-state + hyperfine Interactions

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

μ0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/μ 0d

m/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5I = 7/2

E (K

)

μ0Hz (mT)

-7/2

7/2

7/2

5/2

3/2

-7/2

The ground-state doublet 2(2 x 7/2 + 1) = 16 states

-5/2

5/2

gJ

μB

Hn

= n.A/2 A = 38.6 mK

Avoided

Level

Crossings

between

|Ψ−, Iz

>

and |Ψ+, Iz’>

if ΔI= (Iz

-Iz’

)/2= odd

Giraud et al, Phys. Rev. Lett. (2001)

Co-Tunneling of electronic

and nuclear

momenta

0 0 0 0 4 4 0 0 4 42 2 4 4 4 4 6 6 6 6( ) ( )CF J J JH B O B O B O B O B Oα β γ= + + + +

2/)( +−−+ ++= IJIJAHH JCF

Page 54: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Mn(IV)S=3/2

Mn(III)S=2

Total Spin = 10

Mn12 acetate Mn12 acetate (very schematic)(very schematic)

-1

0

1

-100 0 100

M

HHA

Page 55: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Interferences

1920 –

Davisson and Germer

(electron bounces off a chunk of nickel)

1961 –

Jönsson

(single electrons double slit)

1974 – Merli (one electron at the time)

1989 –

Tonomura

(one electron at the time)

Decoherence

1970 – Zeh

1980 – Zurek… Giulini, Schlosshauer

…..1981 –

Leggett, Caldeira

(quantum dissipation and quant  class transition)1996 – Stamp, Prof’ev

(spin‐bath)

….

Page 56: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

T2

= 1ms, 4K

Coherence

times T2

vs T

Page 57: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Coherent multilevel manipulations in Gd:CaWO4

1

2

3

ν1

ν2

ν1 ν2 ν2

τ2 ≈

1ms at

4K

10 μs at

80 K

2 close transtions: 1st excite and 2nd probe

Page 58: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Quantum relaxation

Basic interpretationHD

= -DSz2 … - gμB

Sz

Hz

HND

= B(Sx2

+ Sy2)…

E(θ) with

θ

= Cos-1(m/S) ; m = <Sz

>

Page 59: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Varie avec

An example of E-N Rabi oscillationsEr(0.001%):CaWO4 (H=0.522

T

// c, h=0.15 mT

// b, T=3.5 K)

Ω/2π

~ ±17 MHz (halfwidth

~2 MHz

~ π/τR

)

The phase of the wave function

is preserved at the timescales of μs

21 )()()( Φ+Φ=Ψ tbtat

S. Bertaina

et al Nature nanotechnology, Jan. 2007

τR

= 0.2 μs << τ2

~ 7μs

Page 60: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 61: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Cross-over from

exponential

to square-root relaxation

(Predicted

by Prokofiev and Stamp, PRL 80, 5794, 1998)

0

0.2

0.4

0.6

0.8

1

10 2 10 4 10 6 10 8

2.0 K2.1 K2.2 K2.3 K2.4 K2.5 K2.6 K2.7 K2.8 KM

/Ms

t (s)

t1/2 (s1/2)

0.96

0.98

0 100 200 300

M/Ms

2.0 K

1.7 K

1.5 K

1.8 K

1.9 K

t/τ(T)

L. Thomas, A. Caneschi

and B. BarbaraJ. Low

Temp. Phys. (1998) and Phys. Rev. Lett. (1999).

Page 62: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

-6 -4 -2 0 2 4 6-200

-150

-100

-50

0

50

100

150

-9 -6 -3 0 3 6 9-240

-200

-160

-120

-80

-40b)a) E (K)

<Jz>

E (K)

μ0Hz (T)

B20 = 0.606 K, B40 = -3.253 mK, B44 =-

42.92 mK, B60 =-8.41mK, B64 =-

817.3mK

Sh. Gifeisman

et al, Opt. Spect. (USSR) 44, 68 (1978); N.I. Agladze

et al, PRL, 66, 477 (1991)

Barrier

short-cutsEnergy

barrier( ~

10 K)

Strong

mixing

CF levels

and energy

barrier

of Ho3+

in LiYF4

:Ho 0 0 0 0 4 4 0 0 4 42 2 4 4 4 4 6 6 6 6( ) ( )CF J J JH B O B O B O B O B Oα β γ= + + + +

Page 63: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Experimental

evidence

of anisotropic

Rabi frequencyMeasurements

and fits

(diagonalisation of the the

C‐F electro‐nuclear

Hamiltonian

Microwave ac field hμ Angle θ

of the static

field

H

The Rabi frequency

changes in accordance with

the local symmetry

An effect

of strong

spin‐orbit

coupling « Spin‐orbit qubits »

Rabi frequency: hJgh BJR 2,1

rμ=Ω )()( 212,1 HJHJ

rrrrϕϕ=where21 ϕϕμ μμ Jhgh BJR =Ω

Phys. Rev. Lett. 6 Feb

(2009)

Page 64: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 65: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble
Page 66: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Mesoscopic

physics

of domain

walls

in single crystals

NanoparticleCluster

20 nm3 nm1 nm 2 nm

Magnetic

ProteinSingle Molecule

2001 1993 -1996 1986 -

1995 1973 -

1986

For a short historical

review, see:

K. Ziemelis, Nature, «

Milestones

on Spin

», S19, March 2008(Produced

by Nature Physics)

Mesoscopic

physics

of domain

walls

in single crystalsRare-earth

ions

Page 67: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Calculation

of anisotropic

Rabi frequencies

Local frame

Rotating

frame approximation

B02=231cm‐1, B04=‐

90cm‐1, B44=852 cm‐1, B06=‐

0.6cm‐1, B46=396cm‐1

A

= ‐

4.15 10‐3 cm‐1

IJ mImJSL ,,,, ⊗

Space

product

hhHJHg mwBJR 2/)()( 21 φφμ=Ω

HJgJIAHH BJJCF μ−+=

)cos(.)( thJgHtH mwBJ ωμ−=

Truncation

to lowest

CF doublet

Time‐independent

Hamiltonian

(anisotropic

g‐factor: gc

~ 1.25    ga‐b

~ 8.38)

Im,2/1 Im,2/1−

Page 68: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Rotating

frame energy

spectrumIm,2/1The different

states and form

avoided

L.C.

with

splitting

=

ΩR

Im,2/1−

Bertaina

et al, Phys. Rev. Lett. (2009)

Page 69: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Analytical

calculations

in the LFA

Coll. Boris Malkin, Kazan university

'

2 2|| ||

' ' '

{ ( )

1 ( )[ sin cos ]}.2 ( ) ( )

B eff z

i t i tz x y y

eff eff

H g BS

g g g ge e h S h S g h S

g gω ω

μ θ

θ θθ θ

⊥ ⊥−⊥

= +

−+ + +

2 2 2 2 1/ 2||( ) ( cos sin )effg g gθ θ θ⊥= +

2|| 2 1/ 2( ) [ ]

2 ( )B

R yeff

hgg hg

μθθ

⊥⎛ ⎞

Ω = +⎜ ⎟⎜ ⎟⎝ ⎠h

I=0   isotope

I≠0  isotope

2||( ) 2 1/ 2( ) [ [1 ( )] ]

2 ( )m B

R m yeff

hgg hg

μθ θθ

⊥⎛ ⎞

Ω = − Δ +⎜ ⎟⎜ ⎟⎝ ⎠h

2 2 2 2 2||

(2)

( ) (sin ) (cos )( )

( ) ( )mJ eff m eff

g gmAg g g

θ θθ

θ ω θ⊥−

Δ =h

Page 70: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

CF ground‐state + hyperfine  Interactions

-80 -40 0 40 80 120-1,0

-0,5

0,0

0,5

1,0

200 mK 150 mK 50 mK

M/M

S

μ0Hz (mT)

-20 0 20 40 60 800

100

200

300

n=0n=3

n=1

n=-1

n=2

dH/dt > 0

1/μ 0d

m/d

Hz (

1/T)

-200 -150 -100 -50 0 50 100 150 200

-180,0

-179,5

-179,0

-178,5I = 7/2

E (K

)

μ0Hz (mT)

-7/2

7/2

7/2

5/2

3/2

-7/2

The ground‐state doublet                 2(2 x 7/2  +  1) = 16 states

-5/2

5/2

gJ

μB

Hn

= n.A/2 A = 38.6 mK

Avoided

Level

Crossings

between

|Ψ−, Iz

>

and |Ψ+, Iz’>

if ΔI= (Iz

-Iz’

)/2= odd

Phys. Rev. Lett.  (2001, 2003)

Co‐Tunneling of electronic

and nuclear

momenta

0 0 0 0 4 4 0 0 4 42 2 4 4 4 4 6 6 6 6( ) ( )CF J J JH B O B O B O B O B Oα β γ= + + + +

2/)( +−−+ ++= IJIJAHH JCF

Page 71: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Single molecule magnets (Mn12

‐ac)The molecules are regularly arranged in the crystalMacroscopic

quantum magnet

From

Kunio

Awaga, Nagoya university

1 mm

Page 72: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Unit cell

~ 1 nmTypical

structure of a single molecule

magnet

Superparamagnet

Diplar

interactions, uniaxial

anisotropy

Thermal relaxation above

the barrier

Quantum relaxation across

the barrier

Page 73: Decoherence in Solid StateDecoherence in Solid State superconducting circuits, quantum dots, magnetic molecules, quantum phase transitions B. Barbara Institut Néel, CNRS, Grenoble

Driven

oscillations of a single electron

spin in a quantum dot

F. Koppens, C. Buizert, K.J. Tielrooj, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kowenhoven, L. VandersypenNature, 17 Aug., 2006

Distribution of  ΩR

limited

by inhomogeneouslevel

broadening

ε.Addition of ΩR0

<  ΩR

<  (ΩR0

+ ε2)1/2 

Broad distribution of Larmor 

frequencies

Destructive  additions, T2*

~h/σ

Spin‐echo(also

affectd

by NS)TS‐E

1 μs

Rabi oscillations(driven oscillations)

TR

1 μs

TS‐B

<< 

TInt

Average

over  distributedRamsey

frequencies

Ramsey

oscillations(free precession decay)

TRm

30 ns

TR‐O

2 μs       TInt

20 s       TS‐B

ms  to  s

Strong

S‐B decoherenceNuclear

S‐B is

frozen

duringeach

measurement

TS‐B

>>  TReadOut

Suppresses

fast

NS

fluctuations

Singlet / triplet states entangle

withnuclear

spin states (Δ ≈

σ)

Increase

coherence

?

« disentangle » E‐N spins

Coherence

limitations ?

Bmw

~ BN‐S   N‐S affects spin manipulations

Low

fidelity


Recommended