+ All Categories
Home > Documents > Deep Excavation Design

Deep Excavation Design

Date post: 07-Jul-2018
Category:
Upload: mike
View: 232 times
Download: 0 times
Share this document with a friend

of 119

Transcript
  • 8/18/2019 Deep Excavation Design

    1/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  1

     

    DEEPEXCAV

    A SOFTWARE FOR ANALYSIS AND DESIGN OF RETAINING WALLS

    THEORY MANUAL

  • 8/18/2019 Deep Excavation Design

    2/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  2

    1 I 4

    2 G A M 4

    3 G 4

    4 UD A 5

    5 A P C L E P 5

    5.1 A P L E P C

    A

    6

    5.2 A P L E P PARATIE 7

    5.3 P P E 10

    5.4 C E P O 115.4.1 A & P P L G 11

    5.4.2 P 1969 E P E 13

    5.4.3 FHWA A E P 14

    5.4.4 FHWA R A E P D

    S M C

    16

    5.4.5 FHWA L S S P 16

    5.4.6 M FHWA 19

    5.4.7 V E S C FHWA A 23

    5.4.8 C T P D 26

    5.4.9 T S R P D 26

    6 E 7 28

    6.1 S P E 7 ( DM08) 29

    6.2 A

    EC7 .

    31

    6.3 D W P & N W P

    A (C L E

    A)

    33

    6.4 S 34

    6.5 L L S 35

    6.6 S S 38

    6.7 O 3D 387 A E EC7 41

    8 G A C C 60

    9 G S F 67

    9.1 I 67

    9.1.1 I 67

    9.1.2 C W ( ) 68

    9.1.3 W

    .

    69

    9.1.4 W (

    )

    69

    9.2 C P & B S I 709.3 G 73

  • 8/18/2019 Deep Excavation Design

    3/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  3

    10 H PE.L' .  75

    11 W T S C C 76

    12 S P O 80

    12.1 S 81

    12.2 D R 82

    12.3 S T O 85

    12.3.1 S 85

    12.3.2 MO 86

    12.3.3 R S 87

    12.3.4 U 88

    12.3.5 W A 8912.3.6 W M 90

    12.4 W B 90

    12.5 W I S E 91

    12.6 V E 92

    13 V 10

    97

    14 V 20 102

    15 V 30 107

    A A APPENDIX: V P P C

    C

    111

    A B APPENDIX: S P I F G N

    S P

    115

  • 8/18/2019 Deep Excavation Design

    4/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  4

     

    1. I

    T DXP ,

    , . T E 7

    .

    2. G A M

    T DXP

    (.. PARATIE

    ). A :

    ) C

    ) P

    ) C CP A: 1 C

    . O , P

    .

    3. G

    T :

    ) H:  A P . I P,

    100

    .

    ) :  A P . T 1D

    . I P , P

    .

    ) F F : A P . W

    2D . I PARATIE,

    UTAB . T

    .

    ) :  A P . W

    . I PARATIE, UTAB

    .

  • 8/18/2019 Deep Excavation Design

    5/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  5

    I AAIE,

    .

    4. D A

    C ( ). W

    U

    D.

    I , U. H,

    D/ A . T

    D/U A O:

    ) D: A . I ,

       φ  

    . F , PARATIE

    (φ     φ  )    .

    ) :  A . I ,

    U S S   φ 

    . F , PARATIE

    U S S

    (φ     φ  ),

      .

    ) : O

    (S ) ) . A

    .

    I AAIE,

    .

    5. A C L E

    T A P

    (P C). A

    PARATIE U D D

    R S. S 5.1 5.2

  • 8/18/2019 Deep Excavation Design

    6/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  6

    / C P . H,

    T 1 .

    1: A E A L E C

     

    M   

       

     

    R Y N1  N

    1  N Y N

    1  N

    1  N

    C Y Y Y N Y Y Y Y

    CK T N Y Y Y N

    CK T N Y Y Y NL N Y Y Y Y

    N:

    1. R C

    .

    2. S .

    5.1 A L E C A

    I

    . O ,

    . I

    . I

    . H

    . I

    /

    .

    T

    (..

    , , .).

    A K/K . T

    .

  • 8/18/2019 Deep Excavation Design

    7/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  7

    5.2 A L E AAIE

    P 7.0 . H,

    P 7.0 K/K ,

    K/K ( ,

    ). I , P

    K/K . T

    , .

    I SW K/K ( φ     φ  )

    . T PARATIE K/K (T B ).

    T

    . O,

    , K/K

    S D D. I K K

    F 1.

  • 8/18/2019 Deep Excavation Design

    8/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  8

    Options 1 2 3

    Default Ka, Kp = Rankine

    (RECOMMENDED)

    Default engine Ka/Kp (Butee) for zero

    wall friction and horizontal ground gives

    same numbers as Rankine

    User defined Ka/Kp

    that can include slope

    and wall friction (NOT

    RECOMMENDED)

    Default KaBase, KpBase defined for each soil type

    (Performed for each stage)

    1. Default Option (YES) 2. No

    SW automatically determines slope angle, wall friction, and other effects KaBase

    Options: A. Enable Kp changes for seismic effects (Default = Yes) KpBase

    B. Enable Ka/Kp changes for slope angle (Default = Yes)

    C. Enable wall friction adjustments (Default = Yes)

    For each stage then Options 1.1 and 1.2 are available:

    Ka=  Kabase x Ka(selected method, slope angle, wall friction)

    Ka Rankine (i.e. ground slope =0, wall friction = 0)

    Kp=  Kpbase x Kp(selected method, slope angle, wall friction, EQ)

    Kp Rankine (i.e. ground slope =0, wall friction = 0)

    Ka= Ka(selected method, slope angle, wall friction)

    Kp=  Kp(selected method, slope angle, wall friction, EQ)

    IMPORTANT LIMITATIONS

    A) Ka/Kp for irregular surfaces is not computed and is treated as horizontal.

    B) Seismic thrusts are not included in the default Ka calculations.

    Sub option 1.2: Use Actual Ka/Kp as determined from Stage Methods and Equations

    (see Table 1)

    3. Examine material changes. The latest Material change property will always override the above equations.

    Soil Type Dialog/Base Ka-Kp

    Enable automatic readjustment of Ka/Kp for slope angle, wall friction etc?

    Sub option 1.1: Prorate base Ka/Kp for slope and other effects (Default)

     

    * . H,

    ) , ) % , )

    .

    F 1: K/K

  • 8/18/2019 Deep Excavation Design

    9/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  9

  • 8/18/2019 Deep Excavation Design

    10/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  10

     

    5.3 E

    T

    .

    ) R : T

    . T

    .

    ) C : T ,

    , . T D

    P G E, 3

     E, . 430 :

    W α= S ( )

    = S =

    = ( )

    = , + ( )

    θ= W (0 )

    ) L: A :

  • 8/18/2019 Deep Excavation Design

    11/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  11

     

    W

    A

    ) CK (T): R P .

    5.4 C E

    5.4.1 A & L G

    O . T

    DX (. 10 )

    . DX . F

    , DX R, C, CK

    , ( ).

    F , DX

    . P :

    ) , , )

    . T

    . W

    C

    .

    T . H,

    ( )

    . T,

    ( ). H,

    .

    I . T

    .

  • 8/18/2019 Deep Excavation Design

    12/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  12

    S

    .

    Figure 2.1: Active force wedge search solution according to Coulomb.  

    Figure 2.2: Passive force wedge search solution according to Coulomb. 

  • 8/18/2019 Deep Excavation Design

    13/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  13

    5.4.2 1969 E E

    A P (1969)

    :

    γ    

    F 2.3: A E , 1969

    F ( ) DX . A D. P,

    ( ) . F

    , DX "S" "S "

    "S C" . N K DX . T

    K ( ),

    .

  • 8/18/2019 Deep Excavation Design

    14/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  14

    5.4.3 FHA A E

    T DX FHWA

    (F H A). T FHWA

    .

    F 2.4: FHA

  • 8/18/2019 Deep Excavation Design

    15/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  15

     

    TOTAL LOAD (N// ) = 3H2  6H

    2 (H )

    F 2.5: FHA.

    I 2.4 2.5, :

    . F : = 2 L / (H +H/3)

    . F : = 2 L /2 H 2(H1 + H+1)/3)

  • 8/18/2019 Deep Excavation Design

    16/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  16

     

    5.4.4 FHA A E D M C

    T (.. N>4)

    .

    P

    .

    F ( ), TP

    2.5

    . F

    :

    W

    . W N   6, 0.4.

    O, 1.0 (P, 1969). U T P =0.4

    N>6 .

    I , H .

    A N>6

    1.0. I ,

    (P).

    T N>4 N

  • 8/18/2019 Deep Excavation Design

    17/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  17

    T

    . A

    . T

    . T :

    E

    . F

    .

    T , 1.3. A

    .

    D

    F 2.4.

    W ,

    .

    T T P (1967)

    . O

    . F N>6,

    ,

    , . I

    , H (1971) K 

    (

    FHWA N>6):

    W =1 H (1971). T :

  • 8/18/2019 Deep Excavation Design

    18/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  18

     

    F 2.6: H

    F 2.7 K  H /H . F

    S = S. T 4

  • 8/18/2019 Deep Excavation Design

    19/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  19

     

    F 2.7: C

    (FHA 2004).

    F :

    , .

    FHA, ,

    D. ,

    .

    B , ,

    FHA .

    5.4.6 M FHA

  • 8/18/2019 Deep Excavation Design

    20/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  20

    O

    . U,

    . H,

    . H,

    .

    I ,

    . T

    . I ,

    . K (2010)

    , ,

    . T ,

    .

    I

    , , ,

    . A, , ,

    50%

    ( F 2.8). A ,

    .

    I ,

    . T

    . I ,

    .

    T

    FHWA P .

  • 8/18/2019 Deep Excavation Design

    21/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  21

     

    F 2.8: M FHA ( ).

  • 8/18/2019 Deep Excavation Design

    22/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  22

     Figure 2.9: Proposed modifications to stiff clay and FHWA apparent lateral earth

    pressure diagrams (Konstantakos 2010).

  • 8/18/2019 Deep Excavation Design

    23/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  23

     

    5.4.7 E C FHA A

    A 10 2

    . T 2, 5, 8 .

    A :

    C 1: F 0 10 , S = 50 P γ= 20 N/3 

    C 2: F 10 S = 30 P γ= 20 N/3 

    T =10 (

    , .. )

    F 2.10: FHA

    T :

    σ=20 N/3  10 =200 P

    T :

    FS= 5.7 30 P/ 200 P = 0.855 ( F. 2.10)

    T H K (=1):

  • 8/18/2019 Deep Excavation Design

    24/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  24

     

    T : P = 0.5 K σ H = 647 N/

    T :

    = 2 L /2 H 2(H1 + H+1)/3) = 2 647 N/ /2 10 2 (2 +2)/3= 74.65 P

    T 74.3 P

    .

    T 3 74,3P = 222.9 N/ (

    ). W

    . I

    , 195 . I 100

    200 .

    N 30 .

    F 2.11: FHA

  • 8/18/2019 Deep Excavation Design

    25/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  25

    I , : P = 0.65 K σ H = 432.9 N/

    T :

    = 2 L /2 H 2(H1 + H+1)/3) = 2 432.9 N/ /2 10 2 (2 +2)/3= 49.95 P

    T .

    N, .

    S: F 0 5 , φ = 30  γ= 20 N/3 

    C 1: F 5 10 , S = 50 P γ= 20 N/3 

    C 2: F 10 S = 30 P γ= 20 N/3 

    I , N=6.67. A H

    . T .

    F 0 5 S 1 :

    F = 0.5 20 N/3  5 (30 ) 5 = 144.5 N/

    T C 1 : 5 50 P = 250 N/

    T : 250 N/ + 144.5 N/ = 395.5 N/

    T :

    S.= 395.5 N/ / 10 = 39.55 P

    T H K (=1):

  • 8/18/2019 Deep Excavation Design

    26/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  26

     

    T : P = 0.5 K σ H = 849 N/

    T :

    = 2 L /2 H 2(H1 + H+1)/3) = 2 647 N/ /2 10 2 (2 +2)/3= 98 P

    T 99.2 P.

    F 2.12: FHA

    5.4.8 C D

    W

    . T 1.1 1.4

    . T

    .

    5.4.9 D

  • 8/18/2019 Deep Excavation Design

    27/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  27

    V , US,

    . T

    M1 M2 .

    M1 M2 . U

    . T

    .

    F 2.10: .

  • 8/18/2019 Deep Excavation Design

    28/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  28

    5.4.10

    6. E 7

    I US S

    R A E . E 7 (

    , EC7) D

    A (DA1, DA2, DA3) . I E 7

    M ,

    A , R

    . H, A2 + M2 + R2

    A, M, R. A

    . H,

    . I , EC7

    6.1:

    D A 1, C 1: A1 + M1 + R1

    D A 1, C 2: A2 + M2 + R1

    D A 2: A1* + M1 + R2

    D A 3: A1* + A2

    + + M2 + R3

    A1*

    = F , A2+=

    EQK ( EC8): M2 + R1

    (T I DM08 DA11, DA12, EQK ).

    I P ( 7 ),

    L H. T L H

    D S. E D S

    B D S. W ,

    B D S S C O (.,

    E 7, DM08 ).

    I E 7, :

    ) STR: S /

    ) GEO: G

    ) HYD: H

    ) UPL: U ( )

    ) EQU: E ( ?)

    T STR, GEO, HYD E 7 . U, E 7

  • 8/18/2019 Deep Excavation Design

    29/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  29

    . I

    ( P), E 7

    . H,

    . S

    6.1 / .

    6.1 E 7 ( DM08)

    T 2

    EC72008. A DM08. T 4

    / (.. C 1 M1, C

    2 M2).

    2.1: L E 7

  • 8/18/2019 Deep Excavation Design

    30/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  30

     

     

     

      γ    .3.2 1.00 1.25 1.25

    '   γ    1.00 1.25 1.25

      γ    1.00 1.40 1.4

     

    ()    γ     .3.1 1.50 1.30 1

     

    ()    γ 

    .3.

    130  1.35 1.00 1

     

    ()     γ     .3.1 0.00 0.00 1

     

    ()   γ 

    .3.

    130 1.00 1.00 1

      

      0.00 0.00 1

     

        γ 

    .3.3.4  1.10 1.10 1 1.1 1.1

     

        γ 

    .12.

    134  1.10 1.10 1 1.1 1.1

     

    ..     γ 

    .3.3.5 1.00 1.40 1 1

    (

      γ    .3.1 1.35 1.00 1

    (

    )

      γ  .3.

    130  1.00 1.00

     

        γ    .5 1.35

     

        γ 

    .17.

    136  0.90

      γ    .4 1.10

      γ  .15.

    136   0.90

     

        γ  .3 1.35 1.00 1

    1.00 1.00 1 1 1

    .4 .

    130

     

    2.2: L DM 2008

  • 8/18/2019 Deep Excavation Design

    31/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  31

     

     

      *

    γ    .3.2 1.00 1.25 1.25

    ' γ    1.00 1.25 1.25

    γ    1.00 1.40 1.4

     

    ()  γ     .3.1 1.50 1.30 1

     

    ()  γ 

    .3.

    130  1.30 1.00 1

      ()

      γ     .3.1 0.00 0.00 1

     

    () γ 

    .3.

    130 1.00 1.00 1

      

      0.00 0.00 1

     

      γ 

    .3.3.4  1.10 1.10 1.10 1.1

     

      γ 

    .12.

    134  1.20 1.20 1.20 1.2

     

    ..   γ 

    .3.3.5 1.00 1.40 1

    ( γ    .3.1 1.30 1.00 1

    (

    )

    γ  .3.

    130  1.00 1.00

     

      γ    .5 1.35

     

      γ 

    .17.

    136  0.90

    γ    .4 1.10

    γ  .15.

    136  0.90

     

      γ  .3 1.30 1.00 1

    1.00 1.00 1

    .4 .

    130

     

     

    6.2 A EC7 .

  • 8/18/2019 Deep Excavation Design

    32/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  32

    F 3

    . I ,

    .

    (, , )

    "

    &

    5.1 5.2

    .

    11 1

    . , ,

    , ,

        

        

        

    . .

    . .

     

    ( 1 7, 0)

      /

    . . .

     

    F 3: C K  K  .

  • 8/18/2019 Deep Excavation Design

    33/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  33

     

    6.3 D & A

    (C L E A)

    T EC7

    . I , .

    1 (D):

    I , . S,

    F_WDR

    . T . H,

    :

    W = (WW) F_WDR

    2: ( .)

    I , . S,

    F_WDR

    . T

    . H, :

    W= W F_WDR W F_WRES

  • 8/18/2019 Deep Excavation Design

    34/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  34

     

    6.4

    T . S

    PARATIE, ,

    P E. T 3 .

    3: A

    S T

    P/

    T

    (P/T)

    E

    P

    E

    E

    C

    A

    C A

    C

    S L P & T N Y

    T .

    C H

    V .

    L P & T N Y S

    W L L P & T N Y S

    S S

    SP & T Y Y S

    W S

    P & T Y Y S

    A S

    SP & T N Y

    F (3D) P N Y

    B (3D) P N Y

    3D P L P & T N Y

    V (3D) T N Y

    A L (3D) P & T N Y

    T .

    V D .

    M/R Y N

    W EC7 ( DM08) , :

    ) I AAIE : I D

    E ,

    I L (F 4.1),

    . . 

    ) U P F_LP

    1.0.

  • 8/18/2019 Deep Excavation Design

    35/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  35

    ) U T F_LV

    0.

    T . S

    . I ,

    . M

    . H,

    . W P'

    P .

    F 4.1: S P F 4.2: E

    6.5 L L

    L : ) P, ) P. I

    , ,

    . F ,

    . T =2

    . H, =1.5

    .

    F ( ,

    ),

  • 8/18/2019 Deep Excavation Design

    36/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  36

    . T L/S F 4.2 . I

    , .

    F : W   

    , B P D, 1974, E 2.7

    H S

  • 8/18/2019 Deep Excavation Design

    37/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  37

     

    F ,    ,

    B (T, 1954).

    F : T M P

    D, 1974, E 2.10 . 27

    =(1)/

    H S

    F : T C

    P D E 2.9

    H S

  • 8/18/2019 Deep Excavation Design

    38/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  38

     

    F : T M

    E 2.11 . 27, P & D

    H S

    6.6

    S

    . H, . S

    .

    T

    . T 50

    . O ,

    .

    6.7 3D

    T 3 . I ,

    / 3D .

    F 3D , :

    ) B . I

    .

    ) B 3D .

  • 8/18/2019 Deep Excavation Design

    39/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  39

    F : T B .

    R

    .

    T :

    T :

    W :

    T, :

    F : T M

    P D, 1974 2.4., 2.4.

  • 8/18/2019 Deep Excavation Design

    40/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  40

     

    6.8 L

    W EC7,

    . I ,

    . H,

    ,

    . I ,

    1. U

    1 1.5

    ( . ).

    W ,

    .

  • 8/18/2019 Deep Excavation Design

    41/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  41

     

    7. A E EC7

    A EC7

    . T

    :

    R ( ) E. +200

    M ( ) E. +191

    W E. +195

    W E. +191

    W γ= 10N/3 

    S : γ= 20N/3, γ= 19N/

    3, = 3 P, φ= 32 ,

    E : E= 15000 P, E = 45000 P,  = 1 , =0

    K =3.225 (R), K= 0.307 (R)

    U T = 150 P

    U FS G= 1.5

    T D: E E. +197,

    H = 2

    A = 30

    P = 400 N (.. 200N/)

    S P: 4 /1.375 ,T A  = 5.94

    S F  = 1862 MP

    F L  = 9

    F D D  = 0.15

    W D: S S AZ36, F = 355 MP

    W . E. +200

    W 18

  • 8/18/2019 Deep Excavation Design

    42/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  42

    M I I = 82795.6 4/

    S M S = 3600 3/

    S: V

    P 5P E. +200 ( )

    P 0P E. +195

    T F 4.1 4.4. F

    :

    R

    C : A (F )

    F : A 1.3, 0 P

    25% H., A .

    F .

    W : S

    F 5.1: I ( 0, D )

    F 5.2: 1, E. +196.5 ( )

  • 8/18/2019 Deep Excavation Design

    43/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  43

     

    F 5.3: 2, E. +197

    F 5.4: 3, E. +191

    T

    F 5.

  • 8/18/2019 Deep Excavation Design

    44/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  44

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 m

    Apparent Eart h Pressure Factor: 1.3 ( times ac ti ve)

    Eurocode Safety factors 1 1 1SOIL

    UNIT

    WEIGHT

    DRY UNIT

    WEIGHT

    WATER UNIT

    WEIGHT

    WATER

    TABLE

    ELEV.   φ Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m

    32 0.307 3.255 3 195 22 0.1818

    20 19 10 195 32.00 0.307 3.255 3.000

    ELEV.

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    Acive

    LATERAL

    SOIL STRESS

    Apparent

    Earth

    Pressures

    TOTAL

    LATERAL

    STRESS

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    LATERAL

    SOIL

    STRESS

    TOTAL

    LATERAL

    STRESS NET

    (m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0.00

    199.43 10.82 0.00 10.82 0.00 -7.93 -7.93 -7.93

    197.75 42.75 0.00 42.75 -9.81 -31.33 -31.33 -31.33

    195 95 0 95 -25.86 -31.33 -31.33 -31.33

    191 175 -32.7 142.3 -40.39 -31.33 -64.06 -64.06

    191 175 -32.7 142.3 -40.39 -40.39 -73.12 0 0 0 10.82 10.82429 -62.3

    182 355 -106.4 248.64 -73.07 -73.07 -179.43 180 106.4 73.64 250.48 356.84 177.4

    Total active earth force above subgrade:

    ΔFxFrom El. 200.00 to El. 199.43 0.0 kN/m

    From El. 199.43 to El. 197.75 8.2 kN/m

    From El. 197.75 to El. 195.00 49.1 kN/m

    From El. 195.00 to El. 191.00 132.5 kN/m

    Sum= 189.8 kN/m

    Factored Forc 246.7

    Max. Apparent Earth Pressure= 31.3 kPa

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    Modified for calculation/Strength Reductions

    Hydraulic

    travel length

    Hydraulic loss

    gradient i

    WATER

    TABLE

    ELEV.

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -200 -100 0 100 200 300 400

       E   L   E   V   A   T   I   O   N   (  m   )

    LATERAL STRESS (kPa)

    LEFT LAT SOIL

    LEFT WATER

    LEFT TOTAL

    RIGHT LAT SOILRIGHT WATER

    RIGHT TOTAL

    NET

     

    F 6: C

  • 8/18/2019 Deep Excavation Design

    45/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  45

    A F 6 , 31.3 P

    31.4 P (F 7.1). A

    ( ).

    F 7.1: A

  • 8/18/2019 Deep Excavation Design

    46/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  46

     F 7.2:

    F 7.3:

  • 8/18/2019 Deep Excavation Design

    47/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  47

     F 7.4: ()

    F 7.5: ( )

  • 8/18/2019 Deep Excavation Design

    48/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  48

     

    F 7.6: (

    ).

    F 7.7: ( )

  • 8/18/2019 Deep Excavation Design

    49/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  49

     

    N, EC7 DA3 . H, EC7

    . T .

    F 8.1: G EC7 DA3 A

    T :FS((φ)) = 1.25

    FS() = 1.25

    FS(S) = 1.5 ( )

    FS(A ) = 1.3

    FS(A)= 1.1

    FS(W D)= 1.0

    FS(D_E)= 1.0

    N , DA3

    F 8.2. A F 8.3 8.4 ,

    F 8.2.

  • 8/18/2019 Deep Excavation Design

    50/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  50

     

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 m

    Apparent Eart h P ressure Fac tor: 1. 3 ( times ac ti ve)

    Eurocode Safety factors 1.25 1 1.25

    SOIL

    UNIT

    WEIGHT

    DRY UNIT

    WEIGHT

    WATER UNIT

    WEIGHT

    WATER

    TABLE

    ELEV.   φ Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m

    32 0.307 3.255 3 195 22 0.1818 1 1 1

    20 19 10 195 26.56 0.382 2.618 2.400

    ELEV.

    TOTAL

    VERTICAL

    STRESS

    UNFACTORED

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    Acive

    LATERAL

    SOIL STRESS

    Apparent

    Earth

    Pressures

    TOTAL

    LATERAL

    STRESS

    (factored

    earth)

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    LATERAL

    SOIL

    STRESS

    TOTAL

    LATERAL

    STRESS

    Net water

    pressure

    (factored) NET(m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0 0.00

    199.59 7.77 0.00 7.77 0.00 -7.37 -7.37 0 -7.37

    197.75 42.75 0.00 42.75 -13.37 -40.60 -40.60 0 -40.60

    195 95 0 95 -33.33 -40.60 -40.60 0 -40.60

    191 175 -32.7 142.3 -51.39 -40.60 -73.33 -32.73 -73.3

    191 175 -32.7 142.3 -51.39 -51.39 -84.11 0 0 0 7.77 7.765837 -32.73 -76.3

    182 355 -106.4 248.64 -92.02 -92.02 -198.39 180 106.4 73.64 200.51 306.88 0.00 108.5

    Total active earth force above subgrade:

    ΔFx

    From El. 200.00 to El. 199.59 0.0 kN/m

    From El. 199.59 to El. 197.75 12.3 kN/m

    From El. 197.75 to El. 195.00 64.2 kN/m

    From El. 195.00 to El. 191.00 169.4 kN/m

    Sum= 245.9 kN/m

    Factored Forc 319.7

    Max . Apparent Eart h P ressure= 40. 60 kPa

    Modified for calculation/St rength Reductions

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    WATER

    TABLE

    ELEV.

    Hydraulic

    travel length

    Hydraulic loss

    gradient i

    Safety

    factor on

    net water

    pressures

    Safety

    factor on

    earth

    pressures

    Safety

    factor on

    Passive

    Resistance

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -300 -200 -100 0 100 200 300 400

       E   L   E   V   A   T   I   O   N   (  m   )

    LATERAL STRESS (kPa)

    LEFT LAT SOIL

    LEFT WATER

    LEFT TOTAL

    RIGHT LAT SOIL

    RIGHT WATER

    RIGHT TOTALNET Water

    Net

     F 8.2: C DA3 A

  • 8/18/2019 Deep Excavation Design

    51/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  51

     

    F 8.2: A DA3 A (40.7

    )

    F 8.3: F DA3 A (7.5 = 5 1.5)

  • 8/18/2019 Deep Excavation Design

    52/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  52

     

    F 8.4: F DA3 A

    32.73 = 32.73 1.0 , 32.7 F 6.3

    32.7

    F 8.5: DA3 A

  • 8/18/2019 Deep Excavation Design

    53/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  53

     

    N DA11 .

    Top triangular pressure height= 0.25 Hexc = 2.25 m Hexc= 9 m

    A pparent E art h P res sure Fac tor: 1. 3 ( ti mes ac tive)

    Eurocode Safety factors 1 1 1

    SOIL

    UNIT

    WEIGHT

    DRY UNIT

    WEIGHT

    WATER UNIT

    WEIGHT

    WATER

    TABLE

    ELEV.   φ Ka Kp c'

    (kPa) (kPa) (kPa) (m) (deg) (kPa) (m) m m/m

    32 0.307 3.255 3 195 22 0.1818 1.35 1.35 1

    20 19 10 195 32.00 0.307 3.255 3.000

    ELEV.

    TOTAL

    VERTICAL

    STRESS

    UNFACTORED

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    Acive

    LATERAL

    SOIL STRESS

    Apparent

    Earth

    Pressures

    TOTAL

    LATERAL

    STRESS

    (factored

    earth)

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    LATERAL

    SOIL

    STRESS

    TOTAL

    LATERAL

    STRESS

    Net water

    pressure

    (factored) NET(m) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa) (kPa)

    200 0 0 0 0 0.00 0.00 0 0.00

    199.43 10.82 0.00 10.82 0.00 -7.93 -10.71 0 -10.71

    197.75 42.75 0.00 42.75 -9.81 -31.33 -42.30 0 -42.30

    195 95 0 95 -25.86 -31.33 -42.30 0 -42.30

    191 175 -32.7 142.3 -40.39 -31.33 -75.02 -44.18 -86.5

    191 175 -32.7 142.3 -40.39 -40.39 -87.25 0 0 0 10.82 10.82429 -44.18 -87.9

    182 355 -106.4 248.64 -73.07 -73.07 -205.01 180 106.4 73.64 250.48 356.84 0.00 151.8

    Total active earth force above subgrade:

    ΔFx

    From El. 200.00 to El. 199.43 0.0 kN/m

    From El. 199.43 to El. 197.75 8.2 kN/m

    From El. 197.75 to El. 195.00 49.1 kN/m

    From El. 195.00 to El. 191.00 132.5 kN/m

    Sum= 189.8 kN/m

    Factored Forc 246.7

    Max . A pparent Eart h P res sure= 31. 33 k Pa

    Safety

    factor on

    earth

    pressures

    Safety

    factor on

    Passive

    Resistance

    WATER

    TABLE

    ELEV.

    Hydraulic

    travel length

    Hydraulic loss

    gradient i

    Modified for calculation/Strength Reductions

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES (PASSIVE)

    Safety

    factor on

    net water

    pressures

    180

    182

    184

    186

    188

    190

    192

    194

    196

    198

    200

    202

    -300 -200 -100 0 100 200 300 400

       E   L   E   V   A   T   I   O   N   (  m   )

    LATERAL STRESS (kPa)

    LEFT LAT SOIL

    LEFT WATER

    LEFT TOTAL

    RIGHT LAT SOIL

    RIGHT WATER

    RIGHT TOTAL

    NET Water

    Net

     F 8.6: C DA11 A

  • 8/18/2019 Deep Excavation Design

    54/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  54

     

    F 8.7: A DA11 A (42.4

    )

    F 8.8: F DA11 A

    44.18 = 32.73 1.35 , 32.7 F 6.3

    44.18

    I , .

  • 8/18/2019 Deep Excavation Design

    55/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  55

    F

    9.1: .

    F 9.2: DA3 .

  • 8/18/2019 Deep Excavation Design

    56/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  56

     F 9.3: DA3 ( )

    F 9.4: DA11 .

    IMA F DA11:

    I P W U E U 1, , ,

    . I ,

    E U (1.35 DA11), ,

    1.5/1.35=1.111 1.35/1.35=1. W

    , , 1.35. T

    .

  • 8/18/2019 Deep Excavation Design

    57/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  57

     

    T STR & GEO C DA11:

    γ    = 1.1 ( )

    γ    = 1 (S )

    FS G = 1.0 U ,

    1.35 .

    F L  = 9

    F D D  = 0.15

    U S   = 150 P

    T :

    R.= L  π D  / (γ  )

    R.= 578.33 N

    T ( ) :

    R.= L  π D  / (γ   γ   FS G) = 578.33 N 

    T U S :

    R.= A.  F/  ( γ   )

    N 1/ γ    = φ EC = 0.87

    R.= 0.87 A.  F 

    R.= 0.87 5.94 2  1862 MP = 961.8 N

    T :

  • 8/18/2019 Deep Excavation Design

    58/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  58

     

    F 9.6: I /

    T GEO C DA12:

    γ    = 1.1 ( )

    γ    = 1.4 (S )FS G = 1.0 I M2 1.0

    ( FS=2.0).

    F L  = 9

    F D D  = 0.15U S   = 150 P

    T :

    R.= L  π D  / (γ   γ   FS G)

    R.= 578.33 N

    T ( ) :

    R.= L  π D  / (γ   γ   FS G) = 413.1 N 

  • 8/18/2019 Deep Excavation Design

    59/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  59

     

    F 9.7: I / DA12

  • 8/18/2019 Deep Excavation Design

    60/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  60

     

    8. G A C C

    A , . T

    EC

    ( ). T

    () . H,

    (

    , ( ), ). T (

    ) :

    ) U :

    R.= L  π D  / (γ  )

    ) T ( ) :

    R.= L  π D  / (γ   γ   FS G)

    W:

      = U S ( )

    L = F

    D  = F (0.09 0.15 )

    FS G = 1.0 2.0 .

    FS G= 1.0 M2 .

    γ    = 1 1.2 R

    γ    = 1 1.4 (S , )

    N γ    γ    1, E DM08

    .

    ) T S :

    P.= φ.  (A T) F 

    φ . = M 0.9

    P.= φ  (A T) F 

    φ  = M 0.6 0.9

  • 8/18/2019 Deep Excavation Design

    61/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  61

    T

    . φ.

    . φ

    . W E φ φ..

    N φ= 1/ γ  

    I P ,

    (W )

    STR GEO . A

    A T T . H, .

    F 10.1 . T

    , , (D).

  • 8/18/2019 Deep Excavation Design

    62/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  62

    F 10.1: M (E )

    T

    . T

    . A ,

    . W P ,

    ELPL . I, P

    . T

    . A :

    ) S . F

    , DX

    . F , .

    F,

    . E

    . T .

    H, :

     =F1 0.5 (σ+ σ) (φ) + F2 α ( S)

    I S  φ=0. F

    φ .

    W:

    F1 = F ( 1)

    F2 = C ( 1)

    α = A ( =1),

    S. I :

    α = V 1 = 0.8 S = C2

    α = L S C1 C2.

  • 8/18/2019 Deep Excavation Design

    63/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  63

     

    ) U ( ) .

    F 10.2: A

    ) U .

     = G

  • 8/18/2019 Deep Excavation Design

    64/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  64

     

    F 10.3: G ( )

    ) U

    .

     = S (B T)

    I , B (F. 10.5.1,

    10.5.2) .

  • 8/18/2019 Deep Excavation Design

    65/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  65

     F 10.4: B (>

    ).

    ) W E

    ( )

    S. H, M2

    U S FS_ . T,

    E 7 NTC , FS_G

    M1 .

    W ,

    /

    M .

  • 8/18/2019 Deep Excavation Design

    66/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  66

     F 10.5.1: E A95 B.

    F 10.5.2: E FHA

    F .

  • 8/18/2019 Deep Excavation Design

    67/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  67

     

    9. G F9.1 E ( )

    9.1.1 I

    S . DX

    1.0

    . T

    , , . T

    :

    1) P R S F (C A):

    2) R S F (C A):

    3) L (C A):

    4) M (PARATIE)

    T

    ( ).

    5) Z (PARATIE)

    T P .

    W PARATIE ,

    (E 9.1,

    9.2, 9.3). S, PARATIE ,

    E. 9.4. I

    PARATIE .

  • 8/18/2019 Deep Excavation Design

    68/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  68

    N 9.1 9.2 (.. )

    .

    9.1.2 C ( )

    F , "" ""

    . T

    1.0 . T

    .

    N , . I .

    I  

    FS= 1.0 . I ,

    ( ). T

    , (FS=

    D / ).

    F 11.1: F E M

  • 8/18/2019 Deep Excavation Design

    69/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  69

    9.1.3 .

    F

    . F ,

    . H, . T

    :

    FS= R M / O M

    F 11.2: F E M  

    9.1.4 ( )

    F

    (E. 9.1 9.2):

    FS= R M / O M

    O / .

    F ,

    :

    ) I B ,

    . T

    :

  • 8/18/2019 Deep Excavation Design

    70/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  70

     

    ) I ,

    (..

    ). T :

    D = +

    9.2 C & B I

    C (C . ., 1989)

    . C

    (E) (I)

    (γ ) . T

    : )

    ( 9 12 )

    7 17 , ) 2 3, )

    , )

    .

    I

    . I

    ,

    , , ,

    , , . F,

    C . . [1989]

    .

    R, J [1998]. T

    , , . T : I) G (

    , , ), II) S P ( ,

    , OCR ), III)

    S S ( , ).

    J [1998] : ) U

    ; ) ( ); ) . S

    . W

  • 8/18/2019 Deep Excavation Design

    71/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  71

    . S

    .

    F 11.3: C . .

    4.1: L ( T, 1943).

    N  __

    FS=    F D(¨ 

      2 / 2) B

    2  

    γ      

    ¨  2 B

  • 8/18/2019 Deep Excavation Design

    72/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  72

     =

     =

    B = B

    D = D

    N = 5.4

    S DX

    . N S

    .

  • 8/18/2019 Deep Excavation Design

    73/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  73

     

    9.3 G B W . T

    ,

    , . W

    :

    ) C A 

    ) B A 

    T

    . B A  A 

    .

    W ( ), DX

    . I , DX

    . T

    . T

    .

    I ,

    ( ).

    F 11.4: D : ,

    ( B 2003).

  • 8/18/2019 Deep Excavation Design

    74/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  74

    4.2:

    .

  • 8/18/2019 Deep Excavation Design

    75/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  75

     

    10. H

    A , P E

    . T

    P :

    A G:

    A A: I

    I , /

    . T

    E 7 DM08

    . T , ,

    , , .

    . T

    M G (M )

    A B: (M)

    F ,

    (

    ). H,

    . F , 15

    1,35 :

    N H = 1.35 15 = 20.25

    I , 5.25 . F , M (

    3 )

    2.25 , .

    T,

    .

    A C: A

    I , (

    ) . W

  • 8/18/2019 Deep Excavation Design

    76/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  76

     

    11. C C

    T .

    T

    (.. ). T

    .

    5.1: A C &

    (E E)

    W S

    H

    T I

    W S

    P O

    W S

    P

    C

    R

    C

    L

    S

    (

    )  

    S

    T I/ .

    : O

    . I , . T

  • 8/18/2019 Deep Excavation Design

    77/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  77

    . O, (

    ) .

    5.2: A C, &

    (E E)

    W S

    H

    D= B

    D

    T I

    C 25%

    .

    W S

    P O

    D= P

    D

    W S

    P

    C

    D= P

    D

    R

    CD=W

    E

    I= I/4

    α=

     

    S

    (

    )

    D=W

     

    T P W  S

    S E

    .

  • 8/18/2019 Deep Excavation Design

    78/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  78

     

  • 8/18/2019 Deep Excavation Design

    79/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  79

    5.3: A C, D C

    (E E)

    A

    R

    C

    SPTC W (S P

    T C) 

    O

    O . U

    ,

    :

    E C :

    T

    . I

     .

    T I T 5.1 5.3

    S. T:

    T  

    I S . H, ,

    .

    T .

  • 8/18/2019 Deep Excavation Design

    80/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  80

     

    12.

    E

    . T

    . I,

    . T

    :

    ) T

    ) T .

    ) I

    U (.. )

    . H,

    . I (.. P )

    . T P

    .

    F, , . W

    . T . I

    :

    ) D , .

    ) S ( ). F

    ).

    ) F , (R ).

    ) S .

    ) O .

    ) S ( ).

    ) O .

  • 8/18/2019 Deep Excavation Design

    81/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  81

     

    F 12.1:

    12.1

    T

    ( ) ,

    , , . T

    :

    W: A = M

    A = B

    S = S ( 1 2)

    S = T (, , )

    1 1.4

  • 8/18/2019 Deep Excavation Design

    82/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  82

    I  = I ( ). 1 ,

    .

    S (.. I)

    ( 12.5).

    12.2 D

    F (.. )

    R:

    ) W ,

    R E 8 S (2004).

    F 12.2: 2004

    ) RE : R E (1979)

    . T :

    O

  • 8/18/2019 Deep Excavation Design

    83/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  83

     

    W: δ  = P

      = M

    α = M ( /2)

    .

    α  = H ( /2)

    K (1996)  /α 

    S  /α 

    R 0.05

    D 0.15

    ) LW :

    L W

    .

    ) I (NTC 2008) :

    T I 20087

    ah = k h·g = α·β ·aMAX  (NTC 2008 eq. 7.11.9)

    amax = S ·ag = S S· S T·ag (NTC 2008 eq. 7.11.10)

    The software program then determines the design acceleration with:

  • 8/18/2019 Deep Excavation Design

    84/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  84

     

    The α and β parameters are determined with the aid of the following design charts where:

    H = Excavation height (automatically determined during analysis)

    us  = design permanent wall displacement (defined by user)

    F 12.3: αααα according to Italian building code NTC 2008

    F 12.4: ββββ according to Italian building code NTC 2008

  • 8/18/2019 Deep Excavation Design

    85/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  85

    12.3

    12.3.1

    I

    ( )

    B. T .

    W:

    B  = M ( 0.75, .. H S C)

    σ = T

    = W , , (

    )

  • 8/18/2019 Deep Excavation Design

    86/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  86

     

    12.3.2 M

    O (1926) M M (1929)

    MO (MO)

    . T MO

    C ( ) .

    T MO

    .

    W α= S ( )

    = S = D

    I = (EC. E. E.13)

    P = (EC. E. E.16)

    α = ( )

    α = , + ( )

    θ= W (0 )

    F :

  • 8/18/2019 Deep Excavation Design

    87/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  87

     

    T S & W (1970)

    0.6H

    ( ). T

    :

    12.3.3

    T RS (1994) MO

    . F :

    W :

    W: σΖ = (1 α) γ   U  ( )

    σΖ0 = γ   U  ( )

    τ  = α γ  

  • 8/18/2019 Deep Excavation Design

    88/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  88

    T :

    T :

    T

    MO . I , .

    I . T

    RS

    .

    12.3.4

    I .

  • 8/18/2019 Deep Excavation Design

    89/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  89

     

    12.3.5 A

    I

    :

    W γ  = A ( 12.4):

    ) D

    ) T ,

    ) T

    .

    T :

    I .

    T .

    W P

    (..

    ). T ( )

    . D P .

  • 8/18/2019 Deep Excavation Design

    90/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  90

     

    12.3.6 M

    T A W M

    .

    12.4 B

    F W

    (W, 1931)

    :

    F

    . I ( ) ,

    .

    D ,

    . W

    ( , ). T

    :

    ) A . W ,

    .

    ) A . W ,

    .

    ) A E 8 . S

    5 104

    /

    .

    I

    (K, 2009):

  • 8/18/2019 Deep Excavation Design

    91/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  91

     : T W .

    I ,

    W . 

    12.5 I E 

    T ( )

    . T

  • 8/18/2019 Deep Excavation Design

    92/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  92

     

    12.6 E 

    L 10 , .

    T

    :

    R ( ) E. +0

    M ( ) E. 10

    W E. 0

    W E. 0

    W γ= 10N/3 

    H = 0.25

    V = 0.125 ()

    W δ= 11

    S : γ= 21.55N/3, γ= 18.55N/

    3, = 0 P, φ= 32 ,

    P K= 0.001 /

    E : E= 15000 P, E = 45000 P,  = 1 , =0

    K =3.225 (R), K= 0.307 (R)

    N C 11 :

    K =3.301, K= 0.278

    A: C

    MO .

  • 8/18/2019 Deep Excavation Design

    93/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  93

    θ atanγ d Ax⋅

    γ t γ w−( ) 1 Ay−( )⋅

    := for pervious soil

    β 0= β 0deg= θ 24.649deg=

    According to Mononobe Okabe if B < FR - THETA test1 φ θ−:= test1 7.351deg=

    KAEsin ψ φ+ θ−( )( )

    2

    cos θ( ) sin ψ ( )( )2

    ⋅ sin ψ θ− δ1−( )⋅ 1sin δ1 φ+( ) sin φ β− θ−( )⋅

    sin ψ θ− δ1−( ) sin ψ β+( )⋅ 

     

     

     

    0.5

    +

    2

    :=

    KAE 0.756=

    In the horizontal direction KAE.h KAE cosπ

    2ψ − δ1+

      

      

    ⋅:= KAE.h 0.742=

     

    T :

    σ= γ   U = 21.55 10 10 10 = 115.5 N/2 

    T :

    F.SEQ= (K.  (1) K.) σ H/2 = 214.4 N/

    T :

    = 8.57 P

    T :

  • 8/18/2019 Deep Excavation Design

    94/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  94

     

    8.57 P + 2 21.875 P= 52.33 P

    T :

  • 8/18/2019 Deep Excavation Design

    95/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  95

     

    F 12.5: M , A, A

    ( ).

    B:  N . I ,

    :

    θ atanγ t Ax⋅

    γ t γ w−( ) 1 Ay−( )⋅

    := for impervious soil

    β 0= β 0deg= θ 28.061deg=

    According to Mononobe Okabe if B < FR - THETA test1 φ θ−:= test1 3.939deg=

    KAEsin ψ φ+ θ−( )( )

    2

    cos θ( ) sin ψ ( )( )2

    ⋅ sin ψ θ− δ1−( )⋅ 1sin δ1 φ+( ) sin φ β− θ−( )⋅

    sin ψ θ− δ1−( ) sin ψ β+( )⋅ 

     

     

     

    0.5

    +

    2

    :=

    KAE 0.936=

    In the horizontal direction KAE.h KAE cosπ

    2ψ − δ1+

      

      

    ⋅:= KAE.h 0.919=

     

    T :

    F.SEQ= (K.  (1) K.) σ H/2 = 303.8 N/

  • 8/18/2019 Deep Excavation Design

    96/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  96

     

    = 12.15 P

    12.15 P + 21.875 P= 34.02 P

    T , (

    ):

    F 12.6: M , B, .

    C: C B=0.75

    . I , :

    σ= γ   U = 18.55 10 0= 185.5 N/2 

    T , , :

  • 8/18/2019 Deep Excavation Design

    97/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  97

     

    F 12.7: M , C, .

    I

    13. 10

    T , ,

    10 . P :

    L S E. = 0 FT R S E.= 10 FT G. W E= 10 FT

    S γ = 120 F A=30 W γ = 62.4

    A = 0.333 P =3

  • 8/18/2019 Deep Excavation Design

    98/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  98

     

    F 13.1: C

  • 8/18/2019 Deep Excavation Design

    99/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  99

     

  • 8/18/2019 Deep Excavation Design

    100/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  100

     

    F 13.2: 10 .

    T DEEP F 13.2. DEEP

    FS. 1 EL. 24.5 . O FS. 1 E. 24.76

    . DX . T

    (.. )

    .

    T :

    FS =40/ (10 (24.5)) = 2.758

  • 8/18/2019 Deep Excavation Design

    101/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  101

    T

    . DX 4.136

    FS=2.213. T

    DX.

    T E. 10 E. 50 :

    σ10= γ   U = 0.120 10 0= 1.2

    σ50= σ10 + (γ−γ ) = 1.2 + (0.1200.0624) 40 = 3.504

    H,

    . H, .

    D = 0.333 1.20 10/2 + 0.333 (1.2 + 3.504 ) 40 /2 = 33.35 /

    R = 3 (0.1200.0624) 40 40/2 = 138.24 /

    T :

    FS= 138.24/ 33.35 = 4.145 4.136

    DX 22.4 .

    T

    .

  • 8/18/2019 Deep Excavation Design

    102/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  102

    14. 20

    U 14.1, 20

    E. 10 (10 ). T

    1.0, ,

    . L F 1.

    F 14.1: L 20 .

  • 8/18/2019 Deep Excavation Design

    103/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  103

     

  • 8/18/2019 Deep Excavation Design

    104/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  104

     

    F 14.2: D 20 10 .

    A F 2, DEEP FS=1.0 E. 35.75

    EL. 35.9 . T,

    DX.

    T :

    FS.= 30 / (20 (35.75)= 1.904

    DX

    R = 10.48 ( ).

    U

    . A F

    14.3, 45.9 / DX

    44.6 /. T, DX .

  • 8/18/2019 Deep Excavation Design

    105/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  105

     

    F 14.3: C M 20 .

    F . T

    . DX 1.915

    1.915. T DX

    .

  • 8/18/2019 Deep Excavation Design

    106/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  106

     

    1.915

  • 8/18/2019 Deep Excavation Design

    107/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  107

    15. 30

    T 30 , 10 , 20 . A

    (14.1 14.2). F 15.1 30 . DX

    F 15.1.

    SOIL UNIT

    WEIGHT

    WATER UNIT

    WEIGHT

    WATER

    TABLE

    ELEV. Ka Kp

    WATER

    TABLE ELEV.

    (kcf) (kcf) (FT) (FT)

    0.12 0.0624 -10 0.333 3 -30

    ELEV.

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    LATERAL

    SOIL

    STRESS

    TOTAL

    LATERAL

    STRESS

    TOTAL

    VERTICAL

    STRESS

    WATER

    PRESSURE

    EFFECTIVE

    VERTICAL

    STRESS

    LATERAL

    SOIL

    STRESS

    TOTAL

    LATERAL

    STRESS NET(FT) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf) (ksf)

    0 0 0 0 0 0 0

    -10 1.2 0 1.2 -0.4 -0.4 -0.4

    -20 2.4 -0.624 1.776 -0.592 -1.216 -1.216

    -30 3.6 -1.248 2.352 -0.784 -2.032 0 0 0 0 0 -2.032

    -43.22 5.186 -2.073 3.113 -1.038 -3.111 1.586 0.825 0.761 2.284 3.109 -0.001

    -50 6 -2.496 3.504 -1.168 -3.664 2.4 1.248 1.152 3.456 4.704 1.04

    LEFT EXCAVATION SIDE PRESSURES RIGHT SIDE PRESSURES

    -60

    -50

    -40

    -30

    -20

    -10

    0

    -5 -4 -3 -2 -1 0 1 2 3 4 5 6

       E   L   E   V   A   T   I   O   N   (   F

       T   )

    LATERAL ST RESS (KSF)

    LEFT LAT SOIL

    LEFT WATER

    LEFT TOTAL

    RIGHT LAT SOIL

    RIGHT WATERRIGHT TOTAL

    NET

     

    F 15.1: L 30  

  • 8/18/2019 Deep Excavation Design

    108/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  108

     

    F 15.2: L 30 D.

    F 15.3: 30 E

  • 8/18/2019 Deep Excavation Design

    109/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  109

     

    T

    E 43.22 . R

    F 15.3. T 72.5 / E. 20 65.0

    . DX 72.6 / E. 20 65.0 /

    . S DEEP 1.24 / 32.01/

    (E. 20). T, DX

    .

    F 15.4: , , DEE 30

    .

    N .

    Reaction at pin support at El -43.22 ftFB 9.000kip:=

    Note that the pressure at El -43.22 is zero. Now calculate the net passive resistance to the

    bottom of the wall.

    σBOT 0.944ksf :=

    Therefore, the next passive resisting force below El. -43.22 is

    RNET 50ft 43.22ft−( )σBOT 1⋅ ft

    2⋅:= RNET 3.2kip=

    Passive force safety factor FSPASRNET

    FB:= FSPAS 0.356=

     

    DeepXcav calculates 0.36 which verifies the hand calculated safety factor.

  • 8/18/2019 Deep Excavation Design

    110/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  110

    u30 1.248ksf :=

    Moment for water from El. -20 to El. -30ft

    M1w10 ft⋅ u20⋅ 10⋅ ft⋅

    2

    u30 u20−( ) 10⋅ ft⋅

    2

    10 ft⋅ 2⋅

    3⋅+

    1⋅ ft:= M1w 52kip ft⋅=

    Below El. -30 the net water pressure has a rectangular distribution

    unet u30:= unet 1.248ksf = and the moment contribution is

    M2w unet 20⋅ ft 10ft20ft

    2+ 

       

    ⋅ 1⋅ ft:= M2w 499.2kip ft⋅=

    The driving moment is then: MDR

    MDRs

    M1w

    + M2w

    +:=

    Resisting moment comes from a triangular pressure distribution pressure at bottom 3.456 ksf

    onky due to soil contribution as water moment is added as a net moment on the driving side

    FR 3.456ksf 20⋅ ft 1⋅ft

    2:= MR FR 10ft 20ft

    2

    3⋅+ 

       

    ⋅:= MR 806.4kip ft⋅=

    Now we can calculate the rotational safety factor FSROTMR

    MDR:= FSROT 0.814=

    Now calculate rotational safety factor about lowest support. In this method, driving and resisting

    moments below the lowest support are calculated. The safety factor is then calculated at the

    ratio of resistring to driving moments. Note that moments above the lowest support are ignored.

    Soil pressure at El- 20 σDRs20 0.592ksf :=

    σDRsbot 1.168ksf :=Soil pressure at bottom of left wall side El- 50ft

    From the rectangular portion of the driving soil pressures

    FDRrectS 30ft 1⋅ ft σDRs20( )⋅:= FDRrectS 17.76kip=

    MDRrectS FDRrectS 30⋅ft

    2:= MDRrectS 266.4kip ft⋅=

    From the triangular portion of the driving pressures

    FDRtriS σDRsbot σDRs20−( ) 30⋅ ft 1⋅ft

    2:= FDRtriS 8.64kip=

    MDRtriS FDRtriS 30⋅ ft2

    3⋅:= MDRtriS 172.8kip ft⋅=

    And total driving moment due

    to soil pressures on left sideMDRs MDRrectS MDRtriS+:= MDRs 439.2kip ft⋅=

    Now calculate the net driving moment due to water below El. -20ft

    u20 0.624ksf :=

     

    A F 15.4 , DX .

  • 8/18/2019 Deep Excavation Design

    111/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  111

     

    A. AEDI: C C

    KP1cos φ θ+ β−( )( )

    2

    cos θ( )( )

    2

    cos β( )( )

    2

    ⋅ cos δ1 θ− β+( )⋅ 1sin δ1 φ+( ) sin φ α+ β−( )⋅

    cos δ1 θ− β+( ) cos α θ−( )⋅ 

     

     

     

    0.5

    2

    :=

    KP KP1 1 Ay−( )⋅:= KP 15.976=

    KPH KP cos δ1 θ−( )⋅:= KPH 15.734=

    3. Calculate Kp according to Lancellotta 2007, note equation does not account for wall inclination

    Θ2 asinsin δ1( )

    sin φ( ) 

     

     

     asin

    sin α β−( )

    sin φ( ) 

     

     

     + δ1+ α β−( )+ 2 β⋅+:= Θ2 1.029=

    Θ2 58.981deg=γ 1 1 Ay−( )

    2Ax

    2+

    0.5

    := γ 1 1.013=

    KPE cos δ1( )cos δ1( ) sin φ( )( )

    2sin δ1( )( )

    2−

    0.5

    +

    cos α β−( ) sin φ( )( )2

    sin α β−( )( )2

    0.5

    eΘ2 tan φ( )⋅

    ⋅:= KPE 10.401=

    KPH.Lancellotta KPE γ 1⋅ cos α β−( )⋅:= KPH.Lancellotta 10.477=

    KP.Lancellotta

    KPH.Lancellotta

    cos δ1( ):= KP.Lancellotta 10.639=

    1. Calculate Kp according to various equations, define basic parameters

    Soil friction angle φ 40deg:=

    Slope angle α 15deg:= Note that positive slope angle is upwards

    δ1 10deg:=Wall friction

    Wall inclination θ 0deg:= Note vertical face angle theta is 0

    Seismic accelerations

    Ax 0.16:= Ay 0:=

    β atanAx

    1 Ay−

      

      

    := β 0.159= β 9.09deg=

    2. Calculate Kp according to Coulomb, DAS pg. 430, Principles of Geotechnical Engineering

     

  • 8/18/2019 Deep Excavation Design

    112/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  112

    I , .

    T K ) F S D P

    , ) K E

    .

  • 8/18/2019 Deep Excavation Design

    113/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  113

  • 8/18/2019 Deep Excavation Design

    114/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  114

     

  • 8/18/2019 Deep Excavation Design

    115/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  115

     

    B. AEDI: I F G

    **

    * AAIE AALI F DEIG ECI:EC7, 2007: DA1, C 2: A2 + 2 + 1

    *1: D G C

    0.2

    200

    *2. ADD GEEAL ALL & DIEI

    L 0 182 200

    *3.1 DEFIE FACE F LEF ALL

    0L L 182 200 1 0

    0 L 182 200 2 180

    *4: DEFIE IL LAE ELEAI & EGH

    * BIG B 1

    *DAA F LAE: 1, IL E= 1, F

    L L1 200

    19 10 10

    3 32 0.307 3.255

    0.47 0.5 1

    15000 3 0 1 100 0.5

    0.03048

    E

    *5.1: DEFIE CAL AEIAL

    *A GEEAL AEIAL

    * GEEAL CCEE AEIAL CEED CIE I IH FCE/LEGH2

    *C : 0 = 3 C, E= 21541.9

    CC03 21541900

    *C : 1 = 4 C, E= 24874.5

    CC14 24874500

    *C : 2 = 5 C, E= 27810.5

    CC25 27810500

    * GEEAL EEL EBE AEIAL CEED CIE I IH FCE/LEGH2

    * : 0 = F510, E= 206000

    EEL0 206000000

    * : 1 = A50, E= 200100

    EEL1 200100000

    * GEEAL EBA AEIAL CEED CIE I IH FCE/LEGH2, ED F ACH

    * : 0 = G 60, E= 200100

    EB0G 200100000

    * : 1 = G 75, E= 200100

    EB1G 200100000

    * : 2 = G 80, E= 200100

    EB2G 200100000

    * : 3 = G 150, E= 200100

    EB3G 200100000

    * : 4 = 270 , E= 200100

    EB4 200100000

    * E DEFIED AEIAL CEED CIE I IH FCE/LEGH2, ED F ACH

    * : 0 = 0, E= 1

    E0 1000

    * ED GEEAL AEIAL

    * 5.2 D

    A 100000000000

    * 6.1 LEF ALL CAL EIE

    *C I.

  • 8/18/2019 Deep Excavation Design

    116/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  116

      * E= 206000 , I= 82795.6 4/ 1 = 82795.6 4

    * I= E I CEI / (E CEL ) =>

    * I= 206000 82795.6 4/ 1 = 82795.6 4 1E08/ (206000 1 1)= 0.00083 (4/)

    * E I/L

    * = (12 I/L)(1/3) = (12 0.00083)(1/3) = 0.21498 ()

    BEA LBEA L 182 200 EEL0 0.214979 00 00

    *7.1: GEEAE F LEF ALL

    *C : /L= (A/CA) / (F L + F L / 100 =>

    * /L= (5.942/100002 /2) /2 (7 + 50 9 /100 = 2.58261E05

    IE L0 L 197 EB4 2.58261E05 200 30 0 0

    *8.1: ADD ALL LAD & ECIBED CDII F LEF ALL

    DE 0 L 195

    * ED F DE ADDII

    * 9.A 1 . 0

    * 9.A 1 . 1

    * 9.A 1 . 2

    * 9.A 1 . 3

    * : 3, 0 1 E. 200, = 0, = 5, = 0

    * 2 E. 195, = 0, = 0, = 0

    * A : E , . L LF=1.3

    ***** ED 0

    ****************************************************************

    * 10: GEEAE ALL E/AGE

    *****************************************************************

    *A DAA F AGE: 0 : 0

    0 : 0

    *10.: DECIBE K, K C D F, C C

    * LAE 1 0

    * C : EC7, 2007, C:DA1, C. 2: A2 + 2 + 1*FF = 1.25, F'= 1.25, FDE= 1, F= 0.9, FE= 1

    *FL = 1.3, FL= 1, F = 0, FA= 1.1, FA= 1.1

    * KH= KHB FDE K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KDH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 3.255 /1 2.618/3.255 = 2.618

    * ED LAE 1 : 0

    * I 10. .

    *ED 10.

    *10: A GEEAE IL E CHAGE CAD F AGE

    * E 7

    * .

    L1 26.56 L

    L1 26.56 L L1 2.4 L

    L1 2.4 L

    L1 0.381719868280688 L

    L1 0.381719868280688 L

    L1 2.61784906429131 L

    L1 2.61784906429131 L

    *10: ED GEEAIG CHAGE F AGE.

    * DAA F LEF ALL

    L

    *10.1 G 0

    200 200

    195 0 3830

    *11: ADD LEF ALL

  • 8/18/2019 Deep Excavation Design

    117/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  117

      *13.1: ADD LEF ALL CHAGE F LAD DIECL LADIG HE ALL

    *13.2.1: ADD LEF ALL CHAGE CALCLAED IDE F AAIE EGIE

    *13.3: ADD ALL CHAGE HA AE DIECL HE LEF ALL

    *13.3: ED ADDIG ALL CHAGE LEF ALL

    * ED DAA F LEF ALL

    *19.1 EAIE IF AE EED F LEF ALL

    * 19: ED EAL

    *20: ADD LAEAL LIE LAD LACED DIECL ALL

    EDE

    *ED DAA F AGE 0 AE: 0

    ***************************************************************

    *****************************************************************

    *A DAA F AGE: 1 : 1

    1 : 1

    *10.: DECIBE K, K C D F, C C

    * LAE 1 1

    * C : EC7, 2007, C:DA1, C. 2: A2 + 2 + 1

    *FF = 1.25, F'= 1.25, FDE= 1, F= 0.9, FE= 1

    *FL = 1.3, FL= 1, F = 0, FA= 1.1, FA= 1.1

    * KH= KHB FDE K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KDH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 3.255 /1 2.618/3.255 = 2.618

    * KDH= KHB FD K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KH = 3.255 /1 2.618/3.255 = 2.618

    * '= / (F FDE) = 3/(1.25 1) = 2.4* 'D= / (F F) = 3/(1.25 1) = 2.4

    * ED LAE 1 : 1

    * I 10. .

    *ED 10.

    * DAA F LEF ALL

    L

    *10.1 G 1

    200 196.5

    195 0 3830

    *11: ADD LEF ALL

    *13.1: ADD LEF ALL CHAGE F LAD DIECL LADIG HE ALL*13.2.1: ADD LEF ALL CHAGE CALCLAED IDE F AAIE EGIE

    *13.3: ADD ALL CHAGE HA AE DIECL HE LEF ALL

    *13.3: ED ADDIG ALL CHAGE LEF ALL

    * ED DAA F LEF ALL

    *19.1 EAIE IF AE EED F LEF ALL

    * 19: ED EAL

    *20: ADD LAEAL LIE LAD LACED DIECL ALL

    EDE

    *ED DAA F AGE 1 AE: 1

    ***************************************************************

    *****************************************************************

    *A DAA F AGE: 2 : 2

  • 8/18/2019 Deep Excavation Design

    118/119

     

    D C.A.S. , I D E LLC, U.S.A.

    W GS S H  118

    2 : 2

    *10.: DECIBE K, K C D F, C C

    * LAE 1 2

    * C : EC7, 2007, C:DA1, C. 2: A2 + 2 + 1

    *FF = 1.25, F'= 1.25, FDE= 1, F= 0.9, FE= 1

    *FL = 1.3, FL= 1, F = 0, FA= 1.1, FA= 1.1

    * KH= KHB FDE K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KDH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 3.255 /1 2.618/3.255 = 2.618

    * KDH= KHB FD K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KH = 3.255 /1 2.618/3.255 = 2.618

    * DAA F LEF ALL

    L

    *10.1 G 2

    200 196.5

    195 0 3830

    *11: ADD LEF ALL

    ADD L0

    *13.1: ADD LEF ALL CHAGE F LAD DIECL LADIG HE ALL

    *13.2.1: ADD LEF ALL CHAGE CALCLAED IDE F AAIE EGIE

    *13.3: ADD ALL CHAGE HA AE DIECL HE LEF ALL

    *13.3: ED ADDIG ALL CHAGE LEF ALL

    * ED DAA F LEF ALL

    *19.1 EAIE IF AE EED F LEF ALL

    * 19: ED EAL

    *20: ADD LAEAL LIE LAD LACED DIECL ALL

    EDE

    *ED DAA F AGE 2 AE: 2

    ***************************************************************

    *****************************************************************

    *A DAA F AGE: 3 : 3

    3 : 3

    *10.: DECIBE K, K C D F, C C

    * LAE 1 3

    * C : EC7, 2007, C:DA1, C. 2: A2 + 2 + 1

    *FF = 1.25, F'= 1.25, FDE= 1, F= 0.9, FE= 1*FL = 1.3, FL= 1, F = 0, FA= 1.1, FA= 1.1

    * KH= KHB FDE K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KDH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 3.255 /1 2.618/3.255 = 2.618

    * KDH= KHB FD K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KDH = 0.307 1 0.382/0.307 = 0.382

    * KH= KHB /F K( F= 26.56, DF= 0, A= 0) / K( F= 32, DF= 0, A= 0)=>

    * KH = 3.255 /1 2.618/3.255 = 2.618

    * DAA F LEF ALL

    L

    *10.1 G 3

    200 191

    195 4

    *11: ADD LEF ALL

  • 8/18/2019 Deep Excavation Design

    119/119

     

    D C.A.S. , I D E LLC, U.S.A.

     

    *13.1: ADD LEF ALL CHAGE F LAD DIECL LADIG HE ALL

    *13.2.1: ADD LEF ALL CHAGE CALCLAED IDE F AAIE EGIE

    *13.3: ADD ALL CHAGE HA AE DIECL HE LEF ALL

    * : 3, 0 1 E. 200, = 0, = 5, = 0

    * 2 E. 195, = 0, = 0, = 0

    * A : E , . L LF=1.3

    ***** ED 0

    L 195 0 200 6.5

    *13.3: ED ADDIG ALL CHAGE LEF ALL

    * ED DAA F LEF ALL

    *19.1 EAIE IF AE EED F LEF ALL

    * 19: ED EAL

    *20: ADD LAEAL LIE LAD LACED DIECL ALL

    EDE

    *ED DAA F AGE 3 AE: 3

    ***************************************************************

    *

    *


Recommended