+ All Categories
Home > Documents > Deep Learning for Multiscale Molecular Modeling

Deep Learning for Multiscale Molecular Modeling

Date post: 07-Jan-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
42
Deep Learning for Multiscale Molecular Modeling Linfeng Zhang Princeton University June 19 2019, MoD-PMI2019, NIFS Joint work with Han Wang, Roberto Car, Weinan E Linfeng Zhang (PU) DL for MMM June 2019 1 / 42
Transcript
Page 1: Deep Learning for Multiscale Molecular Modeling

Deep Learning for Multiscale Molecular Modeling

Linfeng Zhang

Princeton University

June 19 2019, MoD-PMI2019, NIFS

Joint work with Han Wang, Roberto Car, Weinan E

Linfeng Zhang (PU) DL for MMM June 2019 1 / 42

Page 2: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 2 / 42

Page 3: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 3 / 42

Page 4: Deep Learning for Multiscale Molecular Modeling

Where deep learning could help?

d0,0 d1,0

d2,0

x0 d0,1 d1,1

d2,1 F(x)

x1 d0,2 d1,2

d2,2

d0,3 d1,3

x d0 d1 d2 F(x)L0 L1 L2 Lout

dp = Lp(dp−1) = φ(W p · dp−1 + bp

)Composition of analytical and nonlinear functions; Approximator for High-D functions.

Linfeng Zhang (PU) DL for MMM June 2019 4 / 42

Page 5: Deep Learning for Multiscale Molecular Modeling

Multi-scale Molecular Modeling

A few examples:

ab initio molecular dynamics (MD):quantum mechanics (QM) to MD, potential energy surface (PES);

Coarse-grained (CG) MD:atoms to CG “particles”, free energy surface (FES)/CG potential;

enhanced sampling/phase transition:atoms to fewer collective variables (CVs), FES.

Linfeng Zhang (PU) DL for MMM June 2019 5 / 42

Page 6: Deep Learning for Multiscale Molecular Modeling

Accuracy v.s. efficiency dilemma

PES as an example:

E = E(r1, ..., ri, ..., rN ).

First principle: accurate but very expensive.

For example KS-DFT, ∼ 102 atoms:

E = 〈Ψ0|HKSe |Ψ0〉,

Empirical potentials: fast but limited accuracy.For example Lennard-Jones potential

E =1

2

∑i 6=j

Vij , Vij = 4ε[(σ

rij)12 − (

σ

rij)6].

Lennard-Jones, J. E. (1924), Proc. R. Soc. Lond. A, 106 (738): 463477

Linfeng Zhang (PU) DL for MMM June 2019 6 / 42

Page 7: Deep Learning for Multiscale Molecular Modeling

Two important aspects

Deep learning could help for a classical of problems in multi-scalemolecular modeling.

minw

1

‖D‖∑i∈D

l(fw, f)

deep learning model fw;

dataset D;

definition of l and optimization algorithm.

Linfeng Zhang (PU) DL for MMM June 2019 7 / 42

Page 8: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 8 / 42

Page 9: Deep Learning for Multiscale Molecular Modeling

Requirement for a reliable PES model

accuracy (e.g. uniform);

efficiency (e.g. linear scaling);

physical constraint (e.g. extensivity, symmetry);

no human intervention/ end-to-end.

Linfeng Zhang (PU) DL for MMM June 2019 9 / 42

Page 10: Deep Learning for Multiscale Molecular Modeling

Typical construction

E =∑i

Ei, Ei = Es(i)(ri, rjj∈N (i)), N (i) = j : rij = |rij | ≤ rc

Ei(ri, rjj∈N (i)) represented by fully connected NNs with symmetrizedinputs.Behler, J., Parrinello, M. (2007). Phys. Rev. Lett., 98(14), 146401.

Linfeng Zhang (PU) DL for MMM June 2019 10 / 42

Page 11: Deep Learning for Multiscale Molecular Modeling

Descriptors: Local coordinates

ez

ey

ex

z

x

y

ij

ij

ij

ij

atom i

atom j

R

or

Han, et.al., CiCP, 23, 629 (2018). Zhang, et.al., PRL, 120, 143001 (2018)

Linfeng Zhang (PU) DL for MMM June 2019 11 / 42

Page 12: Deep Learning for Multiscale Molecular Modeling

Descriptors: a smooth descriptor by DNN

Key: complete and adaptive.

Translation and Rotation: (Ri(Ri)T ): Ωijk = rji · rki,

Permutation: ((Gi1)TRi):∑

j∈N (i) g(rji)rji,

Finally, we propose: Di = (Gi1)TRi(Ri)TGi2.

Zhang, et.al., NeurIPS 2018Linfeng Zhang (PU) DL for MMM June 2019 12 / 42

Page 13: Deep Learning for Multiscale Molecular Modeling

Various systems with the same principle

Zhang, et.al., NeurIPS 2018

Linfeng Zhang (PU) DL for MMM June 2019 13 / 42

Page 14: Deep Learning for Multiscale Molecular Modeling

Different thermodynamic conditionsThe path integral water structures (ambient cond.)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6

RD

F g

(r)

r [Å]

DeePMD O−ODeePMD O−HDeePMD H−H

DFT O−ODFT O−HDFT H−H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5 1 1.5 2 2.5 3

P(ψ

)

ψ [rad]

DeePMDDFT

Ice in different thermodynamic states

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6

RD

F g

(r)

r [Å]

DeePMD O−ODeePMD O−HDeePMD H−H

DFT O−ODFT O−HDFT H−H

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6

RD

F g

(r)

r [Å]

DeePMD O−ODeePMD O−HDeePMD H−H

DFT O−ODFT O−HDFT H−H

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1 2 3 4 5 6

RD

F g

(r)

r [Å]

DeePMD O−ODeePMD O−HDeePMD H−H

DFT O−ODFT O−HDFT H−H

PI-ice, P=1.0 bar, T=273 K; ice P=1.0 bar,T=330 K; ice P=2.13 bar,T=238 K;

Zhang et.al. Phys.Rev.Lett 120 143001 (2018)

Linfeng Zhang (PU) DL for MMM June 2019 14 / 42

Page 15: Deep Learning for Multiscale Molecular Modeling

Extension to coarse-graining

z

y

x

k

j

ii(a)

i(b)

Zhang et.al. J. Chem. Phys., 149, 034101 (2018)

0.0

1.0

2.0

3.0

g(r

)

AIMDDeePMDDeePCG

DeePCG (large sys.)

-0.10

-0.05

0.00

0.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g(r

) -

gA

IMD(r

)

r [nm]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

P(θ

)

rc = 0.27 nm

AIMDDeePMDDeePCG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

P(θ

)

θ / π

rc = 0.456 nm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

rc = 0.37 nm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

θ / π

rc = 0.60 nm

Linfeng Zhang (PU) DL for MMM June 2019 15 / 42

Page 16: Deep Learning for Multiscale Molecular Modeling

Extension to electronic information

Linfeng Zhang (PU) DL for MMM June 2019 16 / 42

Page 17: Deep Learning for Multiscale Molecular Modeling

Extension to electronic information

Linfeng Zhang (PU) DL for MMM June 2019 17 / 42

Page 18: Deep Learning for Multiscale Molecular Modeling

Extension to nonadiabatic excited state dynamics

Chen, Wen-Kai, et al. J. P. C. Lett. 9.23 (2018): 6702-6708.

Linfeng Zhang (PU) DL for MMM June 2019 18 / 42

Page 19: Deep Learning for Multiscale Molecular Modeling

Combined with metadynamics

L. Bonati and M. Parrinello, Phys. Rev. Lett. 121, 265701

Linfeng Zhang (PU) DL for MMM June 2019 19 / 42

Page 20: Deep Learning for Multiscale Molecular Modeling

Extension to T-dependent free energy

(in preparation)Linfeng Zhang (PU) DL for MMM June 2019 20 / 42

Page 21: Deep Learning for Multiscale Molecular Modeling

Extension to T-dependent free energy

Left: Radial distribution functions (RDFs); Right: Rankine-Hugoniotcurve.

0 1 2 3 40

1

( c )

( b )

g (r)

A I M D N = 3 2 D P M D N = 3 2 D P M D N = 2 5 6

( a ) 4 . 5 g / c m 3 , 2 e V

0 1 2 3 40

1

6 . 0 g / c m 3 , 1 1 e V

0 1 2 30

1

8 . 1 g / c m 3 , 2 0 0 e V ( d )

g(r)

r ( Å )0 1 2 3 40

1

7 . 5 g / c m 3 , 1 0 0 0 e V

r ( Å )3 4 5 6 7 81 0 0

1 0 1

1 0 2

1 0 3

1 0 4

Pressu

re (M

bar)

D e n s i t y ( g / c m 3 )

F P M D D P M D C a u b l e N e l l i s R a g a n I I I

(in preparation)

Linfeng Zhang (PU) DL for MMM June 2019 21 / 42

Page 22: Deep Learning for Multiscale Molecular Modeling

Deep Potential: MD scalability

10-2

10-1

100

101

102

103

104

105

101

102

103

104

105

106

CP

U c

ore

tim

e p

er

ste

p [s]

Number of molecules

Linear ScalingC

ubic

Sca

ling

DeePMD

DFT: PBE0+TS

DFT

DeePMD

Linfeng Zhang (PU) DL for MMM June 2019 22 / 42

Page 23: Deep Learning for Multiscale Molecular Modeling

Open source software DeePMD-kit

TensorFlow: efficient network operators

LAMMPS, i-PI; MPI/GPU support.

Free download from https://github.com/deepmodeling/deepmd-kitComp.Phys.Comm., 0010-4655 (2018).

Linfeng Zhang (PU) DL for MMM June 2019 23 / 42

Page 24: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 24 / 42

Page 25: Deep Learning for Multiscale Molecular Modeling

Two important aspects, revisited

minw

1

‖D‖∑i∈D

l(fw, f)

deep learning model fw;

dataset D;

definition of l and optimization algorithm.

Linfeng Zhang (PU) DL for MMM June 2019 25 / 42

Page 26: Deep Learning for Multiscale Molecular Modeling

Active learning: the DP-GEN scheme

Training/Fitting:model/representation.

Exploration:sampler and error indicator;DPMD and model deviation

ε = maxi

√〈‖fi − 〈fi〉‖2〉

Labeling:ab initio calculator.

Example: Al-Mg alloy0.0044 % explored confs. arelabeled

Zhang et.al. Phys. Rev. Mat. 3, 023804

Linfeng Zhang (PU) DL for MMM June 2019 26 / 42

Page 27: Deep Learning for Multiscale Molecular Modeling

DP-GEN: test of Al

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2 3 4 5 6 7 8 9 10 11 12 13 14

r [Å]

Exp. 943K

DP 943K

MEAM 943K

4 5 6 7

0.6

0.8

1.0

1.2

0

2

4

6

8

10

12

Γ X K Γ L

ν (

TH

z)

q

EXP

DP

MEAM 0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Surf

ace form

ation e

nerg

y b

y D

P/M

EA

M [J/m

2]

Surface formation energy by DFT [J/m2]

DP: FCC Al

DP: HCP Mg

MEAM: FCC Al

MEAM: HCP Mg

Linfeng Zhang (PU) DL for MMM June 2019 27 / 42

Page 28: Deep Learning for Multiscale Molecular Modeling

DP-GEN: tests based on Materials Project

Linfeng Zhang (PU) DL for MMM June 2019 28 / 42

Page 29: Deep Learning for Multiscale Molecular Modeling

DP-GEN: tests based on Materials Project

Linfeng Zhang (PU) DL for MMM June 2019 29 / 42

Page 30: Deep Learning for Multiscale Molecular Modeling

Irradiation damage simulation

Linfeng Zhang (PU) DL for MMM June 2019 30 / 42

Page 31: Deep Learning for Multiscale Molecular Modeling

DP-GEN for waterP

ressu

re

Temperature

1 Pa

10 Pa

100 Pa

1 kPa

10 kPa

100 kPa

1 MPa

10 MPa

100 MPa

1 GPa

10 GPa

100 GPa

1 TPa

10 µbar

100 µbar

1 mbar

10 mbar

100 mbar

1 bar

10 bar

100 bar

1 kbar

10 kbar

100 kbar

1 Mbar

10 Mbar0K 50K 100K 150K 200K 250K 300K 350K 400K 450K 500K 550K 600K 650K

-250 °C -200 °C -150 °C -100 °C -50 °C 0 °C 50 °C 100 °C 150 °C 200 °C 250 °C 300 °C 350 °C

Freezing point at 1 atm273.15 K, 101.325 kPa

Boiling point at 1 atm373.15 K, 101.325 kPa

Critical point647 K, 22.064 MPa

Solid/Liquid/Vapour triple point273.16 K, 611.657 Pa

251.165 K, 209.9 MPa256.164 K, 350.1 MPa

272.99 K, 632.4 MPa

355.00 K, 2.216 GPa

238.5 K, 212.9 MPa

248.85 K, 344.3 MPa

218 K, 620 MPa

278 K, 2.1 GPa

100 K, 62 GPa

Solid

Ic Ih

XI(hexagonal)

X

VII

VI

VIII

XVIX

XI(ortho-

rhombic)

II V

III Liquid

Vapour

SI

Ionic. Liq.

2500K

0K 200K 400K 600K

1Pa

1KPa

1MPa

1GPa

T

P

Reference model: DFT at the classical SCAN level;

Starting configurations: relaxed Ice I-XV at T = 0 K and equilibratedliquid at T = 330 K;

Range of thermodynamic conditions: red dashed box;

number of MD snapshots: DPMD exploration: 1.4 billion, DFTcalculation: 32 thousand (∼0.002% of the former).Typical AIMD trajectory: 100 thousand snapshots (50-100 ps).

number of DP-GEN iterations: 100.Linfeng Zhang (PU) DL for MMM June 2019 31 / 42

Page 32: Deep Learning for Multiscale Molecular Modeling

Thermodynamic integration (TI) for the phasediagram

Special issues: size effect; proton disorder, etc.

Linfeng Zhang (PU) DL for MMM June 2019 32 / 42

Page 33: Deep Learning for Multiscale Molecular Modeling

Water phase diagram modeled by DP+SCAN

Linfeng Zhang (PU) DL for MMM June 2019 33 / 42

Page 34: Deep Learning for Multiscale Molecular Modeling

High-pressure phases modeled by DP+SCAN

Linfeng Zhang (PU) DL for MMM June 2019 34 / 42

Page 35: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 35 / 42

Page 36: Deep Learning for Multiscale Molecular Modeling

Free energy and deep neural networks

Exploring configuration space, phase transition, ...

I high dimensionality of the collective variable space;

I high energy barriers and complex energy landscape.

Metadynamics PNAS 99(20):1256212566, 2002):

Temperature accelerated (Chem. Phys. Lett., 426(1):168175, 2006.)

curse of dimensionality.

Linfeng Zhang (PU) DL for MMM June 2019 36 / 42

Page 37: Deep Learning for Multiscale Molecular Modeling

Reinforced dynamics

Potential energy Free energy

Method DP-GEN Reinforced dynamics

Model Deep potential ResNet

Sampler Deep potential MD Biased MD

Label Electronic struct. Restrained MD

Linfeng Zhang (PU) DL for MMM June 2019 37 / 42

Page 38: Deep Learning for Multiscale Molecular Modeling

Reinforced dynamics

reinforcement learning: state, action, best policy, reward;

reinforced dynamics (RiD): atomic system, biased potential, FES,model deviation.

ε2(s) =⟨‖F(s)−F(s)‖2

⟩, fi(r) = −∇riU(r)+σ(ε(s(r)))∇riA(s(r)),

Zhang, et.al. J.Chem.Phys 148, 124113 (2018).

Linfeng Zhang (PU) DL for MMM June 2019 38 / 42

Page 39: Deep Learning for Multiscale Molecular Modeling

Reinforced dynamics

Left: Tripeptide: brute-force simulation (∼50 µs) v.s. RiD (10 nsbiased + 190 ns restrained):

Right: higher dimensional FES: ala-10 and 20 CVs.

Linfeng Zhang (PU) DL for MMM June 2019 39 / 42

Page 40: Deep Learning for Multiscale Molecular Modeling

Outline

1 Introduction

2 Deep Potential

3 Deep Potential Generator (DP-GEN)

4 Free energy and Reinforced Dynamics

5 Conclusions

Linfeng Zhang (PU) DL for MMM June 2019 40 / 42

Page 41: Deep Learning for Multiscale Molecular Modeling

Conclusions

Model construction and data exploration for PES and FES;

Useful models: Deep Potential, DP-GEN, reinforced dynamics;check https://github.com/deepmodeling/deepmd-kit

Fundamental problems: quantum many-body problem, DFT,dynamics.

Linfeng Zhang (PU) DL for MMM June 2019 41 / 42

Page 42: Deep Learning for Multiscale Molecular Modeling

AcknowledgementsAdvisors

Roberto Car, Weinan E

Collaborators

Han Wang, De-Ye Lin (IAPCM)

Jiequn Han, Yixiao Chen, Hsin-Yu Ko, Marcos Andrade (Princeton),

Wissam A Saidi (Univ. of Pittsburgh), Xifan Wu (Temple)

Mohan Chen, Yuzhi Zhang (Peking Univ.)

Fundings and computational resources

Tiger@Princeton, BIBDR, & NERSC;

ONR grant N00014-13-1-0338, DOE grants DE-SC0008626 andDE-SC0009248, and NSFC grants U1430237 and 91530322;

Computational Chemical Science Center: Chemistry in Solution andat Interfaces (DE-SC0019394).

Linfeng Zhang (PU) DL for MMM June 2019 42 / 42


Recommended