+ All Categories
Home > Documents > Defecte in OxiziZnO

Defecte in OxiziZnO

Date post: 03-Jun-2018
Category:
Upload: grig31
View: 232 times
Download: 0 times
Share this document with a friend

of 47

Transcript
  • 8/11/2019 Defecte in OxiziZnO

    1/47

    FirstFirst--principles simulations of defectsprinciples simulations of defects

    Chris G. Van de WalleMaterials Department, UCSB

    A. Janotti, J. Lyons, J. Varley, J. Weber (UCSB)P. Rinke (FHI), M. Scheffler (UCSB, FHI Berlin)G. Kresse (U. Vienna)

    . reyso , . euge auer sse or NSF, DOE

    School on Computational Modeling of Materials

    December 2-3, 2010Antwerp, Belgium

  • 8/11/2019 Defecte in OxiziZnO

    2/47

    Why study defects?Why study defects? Defects Vacancy

    dislocations Point defects:

    Native defects Impurities

    Defects often determineInterstitial

    the properties of materials Doping and its limitations

    Device degradation Diffusion

    Mediated b oint defects

    Antisite

  • 8/11/2019 Defecte in OxiziZnO

    3/47

    Technological significanceTechnological significance Semiconductors

    c eve g er op ng eve s p-type doping of AlN would allow UV lasers

    Controllabl do e materials -t e andn-t e Oxides

    Photovoltaics

    CuInxGa1-xSe2 Hydrogen storage materials

    Kinetics of hydrogen release in NaAlH4 Embrittlement of structural metals

  • 8/11/2019 Defecte in OxiziZnO

    4/47

    Links to experimentLinks to experiment Secondary Ion Mass Spectrometry (SIMS) Impurity concentrations (to within factor of 2)

    os ron ann a on spec roscopy Most sensitive to negatively charged vacancy(-like) defects

    EXAFS (extended x-ray absorption fine structure) Microscopic structure, atomic relaxations

    Electron paramagnetic resonance + ENDOR Hyperfine parameters (wave functions, atomic positions)

    Vibrational spectroscopy (Raman, FTIR) Local vibrational modes; sensitive to atomic positions

    Deep level transient spectroscopy Electronic transition levels

    Total-energy differences, not Kohn-Sham levels Photoluminescence (PL), PL excitation

    Optical transition levels

  • 8/11/2019 Defecte in OxiziZnO

    5/47

    Defect calculations: geometryDefect calculations: geometry Greens functions

    mp emen a on cu Non-intuitive

    Surface effects

    Supercells "

    R. P. Messmer and G. D. Watkins, inRadiation Damage and Defects in Semiconductors(Inst. of Phys. London, 1972), No. 16, p. 255.

  • 8/11/2019 Defecte in OxiziZnO

    6/47

    Defect Formation EnergiesDefect Formation EnergiesExample: VO

    +VO +2

    oxide: VO oxide O2

  • 8/11/2019 Defecte in OxiziZnO

    7/47

    Defect Formation EnergiesDefect Formation EnergiesExample: VO

    Fe +VO +

    2

    oxide: VO oxide O2 reservoir

    e @ F(electronreservoir)

  • 8/11/2019 Defecte in OxiziZnO

    8/47

    FormalismFormalism Eform : formation energy

    Concentration of defects or impurities:C = Nsites exp [ Eform/kT]

    Example: oxygen vacancy in ZnO+ = + + +

    O: energy of oxygen in reservoir, i.e.,oxygen chemical potential

    EF: energy of electron in its reservoir, i.e., the Fermi level enera express onE form(Dq) = E tot(Dq) E tot(bulk)+ n i i + qE F

    n i: num er o a oms e ng exc ange o orm e e ec

  • 8/11/2019 Defecte in OxiziZnO

    9/47

    Formation energyFormation energy V in ZnO

    Zn-rich conditions:Zn=E tot(bulk Zn)

    O=E tot(O2)+ Hf (ZnO)

  • 8/11/2019 Defecte in OxiziZnO

    10/47

    Transition levelsTransition levels Char e-state

    transition levels+/0CB

    VB(+/0)(2+ /+)

    2+/0

  • 8/11/2019 Defecte in OxiziZnO

    11/47

    Issues...Issues... Band a roblem

    DFT (LDA, GGA) Affects formationenergies and

    transition levels Even for neutral chargestates, if defect-inducedKohn-Sham states are occupied with electrons

    DFT/LDA band gap

  • 8/11/2019 Defecte in OxiziZnO

    12/47

    BandBand--gap corrections: Empirical correctionsgap corrections: Empirical corrections Ad hoc corrections Scissors operator

    gap eve s ase on con uc on- vs. va ence- an c arac er

    Delta-function(-like) term added to potential, shiftss states N. E. Christensen, Phys. Rev. B30, 5753 (1984).

    D. Segev, A. Janotti, and C. G. VdW, Phys. Rev. B75, 035201 (2007). Issues

    Hard to control May have unintended consequences (indirectvs . direct gaps, )

    Extrapolations based on calculations that yielddifferent gaps

    eren p ane-wave cu o s Different exchange-correlation functionals

    . , . , . , . . , . Issue: different choices of parameter not only produce different gap,

    but also different levels of accuracy for description of defect

  • 8/11/2019 Defecte in OxiziZnO

    13/47

    BandBand--gap corrections: SIC and LDA+gap corrections: SIC and LDA+ UU Physically meaningful improvements Self-interaction corrections

    J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981). Difficult to implement in self-consistent calculations for solids Incorporate in pseudopotentials

    . , . , . ,Phys. Rev. B 52, 14316 (1995).

    n n +

    0.37Ec LDA+U approach

    0.34

    . 1.51Ev

    . . . ,Appl. Phys. Lett.87, 122102(2005).

    S. Lany and A. Zunger,

    7.16Zn3d-band

    .. . , .

    Issues: Determination of U .

    How to extrapolate to theexperimental gap?

  • 8/11/2019 Defecte in OxiziZnO

    14/47

    Oxygen vacancy in ZnOOxygen vacancy in ZnO

    orrec e

  • 8/11/2019 Defecte in OxiziZnO

    15/47

  • 8/11/2019 Defecte in OxiziZnO

    16/47

    BandBand--gap corrections: Beyond DFTgap corrections: Beyond DFT Quasiparticle calculations

    Combine DFT andG 0W0 : goo or s ruc ura proper es G 0W0: many-body perturbationtheory for defects: accurate

    electron affinities in solids P. Rinke, A. Janotti, M. Scheffler,

    and C. G. Van de Walle, Phys.Rev. Lett.102, 026402 (2009).

    Quantum Monte Carlo Richard Hennig

  • 8/11/2019 Defecte in OxiziZnO

    17/47

    DeepDeep vs.vs. shallow defectsshallow defects

    CB

    VBVB

    Note: dispersion Due to finite su ercell size Energetics taken care of by special-point sampling Make sure correct occupation of states

  • 8/11/2019 Defecte in OxiziZnO

    18/47

    DeepDeep vs.vs. shallow defectsshallow defects

    CB

    VBVB

    DeepLocalized wave function

    ShallowDefect-induced state is

    Level (usually) far from bandedges

    resonance in VB or CBNear VB or CB: only small

    perturbationEffective mass state

  • 8/11/2019 Defecte in OxiziZnO

    19/47

    Alignment of Fermi levelAlignment of Fermi level

    Charges are exchanged with E F, referenced to E vq = q orm tot tot

    Presence of defect in supercell shifts average electrostaticpotential with respect to bulk

    defect bulk

    V

  • 8/11/2019 Defecte in OxiziZnO

    20/47

    Supercell size effectsSupercell size effects Neutral defects:

    atomic relaxations are included, and overlap ofwave functions is small enough

    Charged defects: Inbalance in electronic and

    Coulomb divergence Neutralizing background

    G=0 term calculatedfor neutral system

  • 8/11/2019 Defecte in OxiziZnO

    21/47

    Supercell size effectsSupercell size effects Neutralization leads to unintended terms in

    Interactions with neutralizing background and

    Makov-Payne correctionE L = E 2/ L C 2/L3 + O L-5

    G. Makov and M.C. Payne, Phys. Rev. B51, 4014 (1995). Correct in vacuum

    Effect of solid: dielectric constant

  • 8/11/2019 Defecte in OxiziZnO

    22/47

    Supercell size effectsSupercell size effects Explicit studies as a function of supercell size have

    Fits to 1/L and 1/L3 terms In some cases, Makov-Payne correction satisfactory In other cases: Makov-Payne

    correction makes things

    significantly worse Example: V+ in diamond Shim, Lee, Lee, and Nieminen,

    Phys. Rev. B 71, 035206 (2005).

    With MP

    MP

  • 8/11/2019 Defecte in OxiziZnO

    23/47

    Supercell size effectsSupercell size effects Need rigorous analysis of electrostatic interactions

    C. Freysoldt, J. Neugebauer, and C. G. Van de Walle,Phys. Rev. Lett.102, 106402 (2009).

    Coefficient of 1/L3 (quadrupole) term

    Alignment term ows es ng w e erpoint charge correction(Makov-Payne) suffices or not Fails if defect state decays slowly; point-charge model

    overcorrects Prescri tion for addressin this roblem

  • 8/11/2019 Defecte in OxiziZnO

    24/47

    Native point defects in ZnONative point defects in ZnO VO, VZn dominate

    A. Janotti and C. G. Van de WalleZn-rich Appl. Phys. Lett.87, 122102 (2005).

    S. B. Zhanget al. , Phys. Rev. B 63,075205 (2001). F. Oba et al. Ph s. Rev. B 77

    245202 (2008).

    VO: deep donor Also hi h formation ener in

    n-type ZnO VZn: deep acceptor

    Cause of reen luminescence A. F. Kohan, G. Ceder,D. Morgan, C. G. Van de Walle,

    Phys. Rev. B 61, 15019 (2000)

  • 8/11/2019 Defecte in OxiziZnO

    25/47

    Native defectsNative defectsvsvs

    . impurities. impurities Native defects cannot explain n -type doping

    Impurities: donors?

  • 8/11/2019 Defecte in OxiziZnO

    26/47

    Interstitial Hydrogen in ZnOInterstitial Hydrogen in ZnO

    2

    3

    ( e

    V )

    0

    1

    +H

    a t i o n e n

    e r g

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    -1 F o r

    EF (eV)

    H+ is the only stable charge state hydrogen acts as shallow donor Unexpected! In other semiconductors hydrogen reduces the conductivity

    C. G. Van de Walle, Phys. Rev. Lett.85, 1012 (2000).y y u

    But: highly mobileM. G. Wardle, J. P. Goss and P. R. Briddon, Phys. Rev. Lett. 96, 205504 (2006).

    unstable at temperatures where n -type conductivity is known topersist (>500 oC)Also cannot explain dependence of conductivity on oxygen partial pressure

  • 8/11/2019 Defecte in OxiziZnO

    27/47

    Substitutional h dro en in ZnOSubstitutional h dro en in ZnO Forced to reconsider the role ofhydrogen...

    new physics/chemistry emerged! Substitutional hydrogen VO HO Formation energy:low

    Ionization energy: small;shallow donor

    i

    ons s en y exp a ns epen ence on -type conductivity on oxygen partialpressure Zn

    g [ X ] [n ] g [ X ] [n ][n ]

    HO [Hi]

    l o

    [V O]

    [HO][Hi][Hi]

    l o

    [V O][V O]

    [HO][HO]

    pO 21/2pO 21/2

  • 8/11/2019 Defecte in OxiziZnO

    28/47

    pp --type doping of ZnOtype doping of ZnO Nitrogen is often regarded as most suitable

    hole dopant Shallow acceptor in ZnSe

    Numerous reports of p -type ZnO crystals - , ,

    Reliability? Reproducibility?

    C.H. Park, S.B. Zhang, and S.-H. Wei, PRB 66, 073202 (2002).

  • 8/11/2019 Defecte in OxiziZnO

    29/47

    BandBand--gap corrections: Hybridgap corrections: Hybrid functionalsfunctionals Mixing of Hartree-Fock (exact exchange) and DFT

    A. D. Becke, J. Chem. Phys.98, 1372 (1993). unc ona s m x n ~ o exac exc ange PBE0 J. P. Perdew, K. Burke, and M. Ernzerhof,

    . . . , . J. P. Perdew, M. Ernzerhof, and K. Burke,

    J. Chem. Phys. 105, 9982 (1996).

    HSE Exact exchange only for short-range interactions J. Heyd, G. E. Scuseria and M. Enzernhof,

    J. Chem. Phys. 118 , 8207 (2003).

    a n very goo escr p on o many proper es Band gaps close to experiment

  • 8/11/2019 Defecte in OxiziZnO

    30/47

    HSE calculations forHSE calculations for ZnOZnO Hybrid functionals

    include a portion ofexact exchange,correct band gap . , . . ,

    and M. Ernzerhof, J. Chem.Phys. 118, 8207 (2003).

    =0.36 VASP code (ver. 5.1)

  • 8/11/2019 Defecte in OxiziZnO

    31/47

    Nitrogen acceptor inNitrogen acceptor in ZnOZnO Deep acceptor Lar e ionization ener : 1.3 eV Low formation energy undern-type

    conditions Localized wavefunction

    NOJ. L. Lyons, A. Janotti, and C. G. Van de

    Walle, Appl. Phys. Lett.95, 252105 (2009).x a on = .Planar bonds = 1.94

  • 8/11/2019 Defecte in OxiziZnO

    32/47

    Test case:Test case: NN SeSe inin ZnSeZnSe

    Similar semiconductor N known shallow

    Zn-rich(0/-)

    acceptor in ZnSe Effective p -type dopant NSe Results agrees well with

    experimental values Theor : E = 150 meV Exp.: EA = 110-130 meV

  • 8/11/2019 Defecte in OxiziZnO

    33/47

    NNOO acceptor: Experimentacceptor: Experiment

    coordinate diagram Absorption:2.4 eV 1.7 eV

    NO0 to CB 2.4 eV = 520 nm Zero honon line at2.1 eV

    Emission:electron falling from

    o O eve 1.7 eV = 730 nm

  • 8/11/2019 Defecte in OxiziZnO

    34/47

    NNOO acceptor: experimentacceptor: experiment

    Localization on N atom

    Directed towards axial zincneighbor

    W.E. Carlos, E.R. Glaser, and D.C., , . N. Y. Garces, N. C. Giles, L. E.

    Halliburton, G. Cantwell, D. B. Eason,D. C. Reynolds, and D. C. Look,

    Spin density of nitrogen state(Isosurface is 5% of maximum

    density)

    pp . ys. e . , .

    Why nitrogen cannot lead to p-type conductivity in ZnO, J. L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett.95, 252105 (2009).

  • 8/11/2019 Defecte in OxiziZnO

    35/47

    TiOTiO22 in GGAin GGA--PBEPBE

    Rutile

    - p s a esCBM - Ti d states

  • 8/11/2019 Defecte in OxiziZnO

    36/47

    Hybrid functional calculations for TiOHybrid functional calculations for TiO22

    HSE functional Heyd, Scuseria, & Ernzerhof, J. Chem. Phys.118 , 8207 (2003); erratum: J. Chem. Phys.124, 219906 (2006)

    H-F mixing parameter 0.20;screenin arameter = 0.2 -1 PAW, VASP 5.1

    72 atom-supercell -po n s: , , . , . , . ; es e or x x cutoff: tested for up to 400 eV

    A. Janotti, J. B. Varley, P. Rinke, N. Umezawa, G. Kresse, andC. G. Van de Walle, Phys. Rev. B 81, 085212 (2010).

    TiOTiO l il i

  • 8/11/2019 Defecte in OxiziZnO

    37/47

    TiOTiO22 -- structural propertiesstructural properties

    PBE versus H EPBE versus H E Rutile

  • 8/11/2019 Defecte in OxiziZnO

    38/47

    Band structure of TiOBand structure of TiO 22

    HSE can be tuned to reproduce the exp. band gap value

    Eff t f HSE l b dEff t f HSE l b d

  • 8/11/2019 Defecte in OxiziZnO

    39/47

    Effects of HSE on valence bandEffects of HSE on valence band

    versus conduction bandversus conduction band(determined from surface calculations)(determined from surface calculations)

    HSE lowers the VBM by 0.6 eV and raises the CBM by 0.7 eV

  • 8/11/2019 Defecte in OxiziZnO

    40/47

    SingleSingle--particle states ofparticle states of VVOO in TiOin TiO22

    unrelaxed vacancy induced single-particle states are in the gap

  • 8/11/2019 Defecte in OxiziZnO

    41/47

    SingleSingle--particle states ofparticle states of VVOO in TiOin TiO22re axe versus unre axe vacancyre axe versus unre axe vacancy

    GGA cannot describe relaxed vacancy in 0 and +1 charge statesoccupied states above the CBM

  • 8/11/2019 Defecte in OxiziZnO

    42/47

    SingleSingle--particle states ofparticle states of VVOO in TiOin TiO22 versus y r unc onaversus y r unc ona

    relaxed VO0

    and VO+

    can be described in HSE

    Formation energies ofFormation energies of

  • 8/11/2019 Defecte in OxiziZnO

    43/47

    Formation energies ofFormation energies ofVV in TiOin TiO22unrelaxed

    formation energy of +2 and +are lowered, consistent with thean a gnmen

    Fermi level (eV)

    Formation energies ofFormation energies of

  • 8/11/2019 Defecte in OxiziZnO

    44/47

    Formation energies ofFormation energies ofVV in TiOin TiO22unrelaxed

    formation energy of +2 and +are lowered, consistent with the

    relaxed

    an a gnmen

    relaxation energies for +2 aresimilar in PBE and HSE

    transition levels (+2/0) and (+/0)are near the CBM

    Fermi level (eV)

  • 8/11/2019 Defecte in OxiziZnO

    45/47

  • 8/11/2019 Defecte in OxiziZnO

    46/47

    Oxygen vacancy in TiOOxygen vacancy in TiO 22

    shallow donor - can cause conductivity

    low formation energy in O-poor conditions

  • 8/11/2019 Defecte in OxiziZnO

    47/47

    Summary and OutlookSummary and Outlook The field of defects in materials is active with

    direct applications for many technologicallyimportant systems Much broader than merely point defects in semiconductors

    been made on crucial issues: DFT band-gap errors

    Still need for deeper physicalunderstanding

    e erences verv ews J. Neugebauer and C. G. Van de Walle,J. Appl. Phys.95, 3851 (2004).


Recommended