+ All Categories
Home > Education > Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions, Part 1

Date post: 05-Dec-2014
Category:
Upload: pablo-antuna
View: 277 times
Download: 0 times
Share this document with a friend
Description:
In this presentation we calculate the derivative of sin(x). This is one of the basic formulas that is used to solve all the other trigonometric derivatives. For more lessons and videos: http://www.intuitive-calculus.com/derivatives-of-trigonometric-functions.html
46
Transcript
Page 1: Derivatives of Trigonometric Functions, Part 1
Page 2: Derivatives of Trigonometric Functions, Part 1
Page 3: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

1. f (x) = sin x

2. g(x) = cos x

Page 4: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 5: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 6: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

Page 7: Derivatives of Trigonometric Functions, Part 1

Derivatives of Trigonometric Functions

The derivative of any trigonometric function can be found once weknow the derivative of the two basic functions:

1. f (x) = sin x

2. g(x) = cos x

In this video we’re going to find the derivative of sin x .

Page 8: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 9: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

Page 10: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Page 11: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.

Page 12: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

Page 13: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x

Page 14: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Page 15: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Now we use the trig identity to expand sin(x + ∆x):

Page 16: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

First of all, there is a little trig identity we need to remember:

sin(a + b) = sin a cos b + sin b cos a

Let’s now consider the function f (x) = sin x and let’s find itsderivative.By definition:

f ′(x) = lim∆x→0

f (x + ∆x) − f (x)

∆x= lim

∆x→0

sin(x + ∆x) − sin x

∆x

Now we use the trig identity to expand sin(x + ∆x):

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

Page 17: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 18: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

Page 19: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

Page 20: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

Page 21: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

Page 22: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x+ cos x lim

∆x→0

sin ∆x

∆x

Page 23: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x+ cos x

�������*

1

lim∆x→0

sin ∆x

∆x

Page 24: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we need to solve this limit:

f ′(x) = lim∆x→0

sin x cos ∆x + sin ∆x cos x − sin x

∆x

We can factor in the numerator:

f ′(x) = lim∆x→0

sin x (cos ∆x − 1) + sin ∆x cos x

∆x

= sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x��

�����*

1

lim∆x→0

sin ∆x

∆x

Page 25: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 26: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

Page 27: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

Page 28: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x=

Page 29: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

Page 30: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x=

Page 31: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

1 − cos2 ∆x

∆x (1 + cos ∆x)

Page 32: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

Page 33: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= − lim∆x→0

sin ∆x

∆x. lim

∆x→0

sin ∆x

1 + cos ∆x

Page 34: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

sin ∆x

1 + cos ∆x

Page 35: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

����: 0

sin ∆x

1 + cos ∆x

Page 36: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x. lim

∆x→0

����: 0

sin ∆x

1 +����: 1

cos ∆x

Page 37: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x

Page 38: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −���

����*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x= 0

Page 39: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, we have that:

f ′(x) = sin x lim∆x→0

cos ∆x − 1

∆x︸ ︷︷ ︸We’ll show this is 0!

+ cos x

lim∆x→0

cos ∆x − 1

∆x= − lim

∆x→0

1 − cos ∆x

∆x=

= − lim∆x→0

1 − cos ∆x

∆x.1 + cos ∆x

1 + cos ∆x= − lim

∆x→0

�����

��: sin2 ∆x

1 − cos2 ∆x

∆x (1 + cos ∆x)

= −�������*1

lim∆x→0

sin ∆x

∆x.���

������:

0lim

∆x→0

sin ∆x

1 + cos ∆x= 0

Page 40: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

Page 41: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

Page 42: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Page 43: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

Page 44: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

d

dx(sin x) = cos x

Page 45: Derivatives of Trigonometric Functions, Part 1

The derivative of sin x

So, finally:

f ′(x) = cos x

Another way to put it:

d

dx(sin x) = cos x

Page 46: Derivatives of Trigonometric Functions, Part 1

Recommended