+ All Categories
Home > Documents > Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for...

Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for...

Date post: 26-Mar-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
23
Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1 , John W. Wilson 2 , and Francis A. Cucinotta 3 1 Division of Space Life Sciences, Universities Space Research Association, Houston, TX 77058 2 Distinguished Research Associates, NASA Langley Research Center, Hampton, VA 23681 3 Space Radiation Program, NASA Johnson Space Center, Houston, TX 77058 NCRP 2011 Annual Meeting Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions March 7-8, 2011 https://ntrs.nasa.gov/search.jsp?R=20110007210 2020-04-04T23:18:21+00:00Z
Transcript
Page 1: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Description of Transport Codes for Space Radiation Shielding

Myung-Hee Y. Kim1, John W. Wilson2, and Francis A. Cucinotta3

1Division of Space Life Sciences, Universities Space Research Association, Houston, TX 770582Distinguished Research Associates, NASA Langley Research Center, Hampton, VA 23681

3Space Radiation Program, NASA Johnson Space Center, Houston, TX 77058

NCRP 2011 Annual Meeting

Scientific and Policy Challenges of Particle Radiations in Medical Therapy and Space Missions

March 7-8, 2011

https://ntrs.nasa.gov/search.jsp?R=20110007210 2020-04-04T23:18:21+00:00Z

Page 2: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Introduction• Radiation transport codes, when combined with Risk

Projection models, are main tool for shielding study and design.

• Approaches to assess the accuracy of Transport Codes:– Ground-based studies with defined beams and material

layouts– Inter-comparison of transport code results for matched

boundary conditions– Comparisons to flight measurements

• NASA’s HZETRN/QMSFRG code has a very high degree of congruence for each of these criteria.

Page 3: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Components of Space Radiation Shield DesignEnvironmental Models- Trapped Radiations- Solar Energetic Particles- Galactic Cosmic Rays- Laboratory Ion Beams

Shield Transmission Characteristics- Boltzmann Transport Equation/Monte Carlo Techniques- Atomic Interactions- Nuclear Interactions

Body Tissue Transmission Characteristics- Boltzmann Transport Equation/Monte Carlo Techniques- Atomic Interactions- Nuclear Interactions

Physical Dosimetry Models- Energy Absorption

Events in Specific Sites

Shield GeometryModel

Astronaut GeometryModel

Detector and Device Response -Spectrometers- Dosimeters- TEPC- Single Event

Upsets- Latchup- Displacement

Damage

Shield MaterialsNuclear Database

Body TissueNuclearDatabase

External Environment

Internal Environment

Biological Risk Models- Cellular and Tissue

Responses

Cellular and Tissue Response- Acute Symptom- Cancer- CNS- Heart disease

Page 4: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Approximate Composition

N101.7O33.1Al36

Density: 0.00194 g/cm3

Thickness: 1.2166 g/cm2

N: 2.09 1022 atoms/g

O: 6.81 1021 atoms/g

Al: 7.41 1021 atoms/g

Booster Window0.10287 g/cm2

IC20.08288 g/cm2 IC1

0.08288 g/cm2Ion Chamber/SWIC (RW302)

0.09827 g/cm2

Binary Filter0 ~ 24.225 g/cm2

0.05379 ~ 0.08604 g/cm2

Air0.4257 g/cm2

Air0.12281 g/cm20.01471 g/cm2

IC30.08288 g/cm2

Air0.03482 g/cm2

0.08274 g/cm2

BiologicalTarget

beam

NSRL for Biophysics Applications

Page 5: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

5

Page 6: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Fragmentation Cross Sections: Comparison of QMSFRG to Si and Fe Beams

QMSFRG to data of Zeitlin et al. (2006) σF (measured), mb

102

102

σF (measured), mb

102

σF (measured), mb

102

σF(

QM

SFR

G),

mb

102

H CAl CuPbOne-to-One+25 %

0.65 GeV/u 1.05 GeV/u 1.6 GeV/u

Page 7: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

NSRL Bragg Curve Comparison to GCR Event-based Risk Model (GERM)

Cucinotta FA et al., Radiat Prot Dosimetry, 2011

48Ti (0.98 GeV/u)

Poly Depth, g/cm2

0 10 20 30 40

Dos

e, n

orm

aliz

ed

0.0

0.2

0.4

0.6

0.8

1.0NSRL Data PrimariesHI FragmentsTotal-GERM

56Fe(0.59 GeV/u)

Poly Depth, g/cm2

0 5 10 15 20 25

Dos

e, n

orm

aliz

ed

0

1

2

3

4

PrimariesFragmentsTotal - GERMNSRL Data

28Si (0.403 GeV/u)

Poly Depth, g/cm2

0 4 8 12 16 20

Dos

e, n

orm

aliz

ed

0

1

2

3

4

PrimariesFragmentsTotal - GERMNSRL Data

37Cl (0.50 GeV/u)

Poly Depth, g/cm20 5 10 15 20 25

Dos

e, n

orm

aliz

ed

0

1

2

3

4

5

PrimariesFragmentsTotal - GERMNSRL Data

Page 8: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Thick Target Comparison with NASA’sGERMCode* and GRNTRN Code*

Iron (1 GeV/u) on Polyethylene

Fragment Charge, Z0 4 8 12 16 20 24 28

F(Z)

0.01

0.1

1

GERM 4.2 g/cm217 g/cm2Expt 4.2 g/cm217 g/cm2

*HZETRN uses identical Nuclear Cross Sections and Atomic Data

Page 9: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Space Weather Prediction Center, NWS, NOAA

Satellite Environment GOES Solar X-ray Flux

NOAA Scales ActivityRange 1 (minor) to 5 (extreme)

NOAA Scale Past 24 hours Current

Geomagnetic Storms none none

Solar Radiation Storms none none

Radio Blackouts none none

Page 10: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Fit to Proton Measurements for Continuous SpectrumFunctional Forms with Measurements

• Exponential in Rigidity or Energy: Φ(>R)=J0 exp(-R/R0) or Φ(>E)=J0 exp(-E/E0)

• Sum of Two Exponentials : Φ(>E)=J1 exp(-E/E1) + J2 exp(-E/E2)

• Weibull Function in Energy : Φ(>E)=J0 exp(- κEα)

Space Environmental Models

( )[ ]( ) ( ){ } 0120120

012/

0

)(for)(

)(for)(21122

01

RReRRJR

RReRJR RR

γγγγ

γγγγγγγ

γ

−≥−=>Φ

−≤=>Φ−−−

−−

Band Function with 4 Parameters (J0, γ1, γ2, R0): Double Power Law in Rigidity

Page 11: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Interplanetary Galactic Cosmic Ray Energy SpectraAdvanced Composition Explorer/Cosmic Ray Isotope Spectrometer

Solar modulation parameter:ACE CRIS oxygen measurements (line);

IMP-8 (Z>8) channel 7 measurements ()

Badhwar-O’Neill Model fit of ACE CRIS oxygen energy spectra measurements near solar

minimum and near solar maximum

O’Neil PM, 2010

Page 12: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Shield Geometry Model and Shielding Analysis by CAD

Structural Distribution Model for Layers of Spacecraft Using ProE/Fishbowl

Ray Tracing inside Spacecraft Color-coded Representation of Directional Shielding

Geometry Models

Page 13: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Human Geometry Models and Active Marrow Distributions

Legs: 3.4%

Thorax:24%

All Vertebrae:42.3%

Skull and Arms:9.4%

Pelvic Region:20.9%

Male Adult voXelComputerized Anatomical Male

Head and Neck12.2%

Chest26.1%

Abdomen24.9%

Pelvis33.4%

Thighs/Upper Legs3.4%

Lower Legs and Armsn/a

Page 14: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Inter-Comparisons of Transport Codes

n(C, Al20 g/cm2+H2O20 g/cm2) p(C, Al20 g/cm2+H2O20 g/cm2)

3H(C, Al20 g/cm2) C(O, Al20 g/cm2)

Heinbockel JH et al., NASA TP 2009-215560, 2009

Page 15: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Comparisons with Flight Measurements

RMS 15%

1.5-2.7XAlbedo protons

Albedo neutronsSecondary neutron

Geomagnetic tansmission

function

Secondary Protons Secondary Deuterons

25% Albedo protonsSecondary pionsKaons

Accuracy within 30%

Badhwar GD, 1997

Page 16: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Evaluation of Detector Response- TEPC Response for Trapped Protons on STS-89 -

107

105

103

101

10-1

10-5

10-3

107

105

103

101

10-1

10-5

10-3

Inte

gral

Flu

x, (c

m2

srda

y)-1

without TEPC response with TEPC response

Page 17: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Phantom Torso Experiment (PTE) of ISS/STSTLD Dose Contours of Brain Slice

Yasuda et al., 2002

Brain, Slice 3

Organ Dose Equivalent using CR-39/TLD, mSv

Tissue Measured HZETRN/QMSFRG Difference (%)

SkinThyroidBone surfaceEsophagusLungStomachLiverBone marrowColonBladderGonadChestRemainder

4.5±0.054.0±0.215.2±0.223.4±0.494.4±0.764.3±0.944.0±0.513.4±0.403.6±0.423.6±0.244.7±0.714.5±0.114.0±0.57

4.74.04.03.73.83.63.73.93.93.53.94.54.0

4.40

-23.18.8

-13.6-16.3-7.514.78.3-2.8

-17.000

Effective dose 4.1±0.22 3.9 -4.9

Badhwar GD et al., 2002

Active Dosimetry Data, mGy/d

Organ Trapped GCR Total Difference

Expt Model Expt Model Expt Model (%)

BrainThyroidHeart

StomachColon

0.0510.0620.0540.0500.055

0.0660.0720.0610.0570.056

0.0760.0740.0750.0760.073

0.0770.0770.0760.0770.076

0.1270.1360.1290.1260.128

0.1430.1480.1370.1330.131

13.39.46.75.52.5

Cucinotta FA et al., 2008

Page 18: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Predictions for Mars Mission

0

100

200

300

400

500

600

700

800

900

1000

Neutron Z=1 Z=2 Z=3-10 Z=11-20 Z>21 Projectile Target fragment

E, m

Sv

Radiation type

1-y interplanetary space 1-y Mars surface 30-month Mars mission

Page 19: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120

E, m

Sv

x, g/cm2

Annual GCR at Solar Minimum in Interplanetary Space

Annual GCR at Solar Maximum in Interplanetary Space

Aluminum

Polyethylene

Annual Exposure at LEO (51.6ox400 km) at Solar Minimum

Annual Exposure at LEO(51.6ox400 km) at Solar Maximum

Annual Effective Dose for Male

Page 20: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Model-based Prediction of SPE Occurrence

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2/1/54 2/1/58 2/1/62 2/1/66 2/1/70 2/1/74 2/1/78 2/1/82 2/1/86 2/1/90 2/1/94 2/1/98 2/1/02 2/1/06

λ(t),

eve

nts/

d

Date

2/1/54 2/1/58 2/1/62 2/1/66 2/1/70 2/1/74 2/1/78 2/1/82 2/1/86 2/1/90 2/1/94 2/1/98 2/1/02 2/1/06

SPE onset date

Cycle 19 Cycle 20 Cycle 21 Cycle 22 Cycle 23

Page 21: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Model-based Prediction of SPE FluencePropensity of SPEs: Hazard Function of Offset β Distribution Density Function

)40000(4000

14000)()(

)(40004000

)(11

0 ≤≤

ΓΓ+Γ

+=−−

tttqpqpKt

qpλλ

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

0 50 100 150 200 250 300 350 400

Φ30

, pro

tons

cm

-2

Mission duration, d

95 percentile 90 percentile 75 percentile Median25 percentile 10 percentile 5 percentile The Carrington Event

Page 22: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

Effective dose on Mars Surface with MOLA Topography

Altitude, km T, °C p, kPa

Atmospheric shielding thickness, g/cm2

Low density model

High density model

8.0 -41.16 0.34 0.14 0.194.0 -34.99 0.49 6.73 9.252.0 -33.00 0.58 10.97 15.080.0 -31.00 0.7 16.00 22.00-2.0 -29.00 0.84 19.04 26.17-4.0 -27.01 1.00 22.64 31.13-8.0 -23.02 1.44 32.00 44.00

August 1972 SPEAnnual GCR at Solar Minimum

Page 23: Description of Transport Codes for Space Radiation Shielding · Description of Transport Codes for Space Radiation Shielding Myung-Hee Y. Kim 1, John W. Wilson 2, and Francis A. Cucinotta

• Highly accurate descriptions of space environment models are available: Inter-stellar GCR composition accuracy : ~5% for abundant elements (oxygen, carbon,

and iron); less than 10% for all major GCR components; and solar modulation parameters with the 98.9% correlation in various spacecraft measurements.

Probabilistic SPE occurrence model as a tool for managing the risk. Comprehensive catalogue of GLE fluences and spectra assembled for shielding

design application using satellites and NM spectra; • Radiation transport codes have been validated extensively:

QMSFRG model agrees for absorption σ-section within +5% and elemental fragment σ-section +25%.

Good agreement found from inter-comparisons of transport codes. Comparison of model prediction to flight measurements: accuracy less than 15 % for

GCR dose rates; ~25% for secondary particles ; and ±30% for quality factors by TEPC.Minor scientific questions remained: low-energy light ion cross section, albedo

protons, secondary pions, and kaons.• Space Radiation Shield Design Tool for the reliable and realistic radiation simulation in the

early design process of exploration missions: Environmental models, shielding and body geometry models, atomic and nuclear

interaction and fragmentation models are incorporated.

Conclusion


Recommended