+ All Categories
Home > Documents > Design BEoL and 3 D TSV structures –A joint of FEA for reliability of BEoL and 3‐D TSV...

Design BEoL and 3 D TSV structures –A joint of FEA for reliability of BEoL and 3‐D TSV...

Date post: 19-Mar-2018
Category:
Upload: doduong
View: 231 times
Download: 2 times
Share this document with a friend
60
March 17, 2011 • Santa Clara, California Design for reliability of BEoL and 3D TSV structures – A joint effort of FEA and innovative experimental techniques Jürgen Auersperg 1 , D. Vogel 1 , M.U. Lehr 3 , M. Grillberger 3 , J. Oswald 3 , S. Rzepka 1 , B. Michel 1,2 1 Fraunhofer Institute for Electronic Nano Systems ENAS, Germany 2 l hf f l bl d 2 Micro Materials Center at Fraunhofer Institute for Reliability and Microintegration IZM, Germany 4 GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Dresden, Germany Micro Materials Center Chemnitz Heads: Prof. B. Michel and Dr. Sven Rzepka
Transcript

March 17, 2011 • Santa Clara, California

Design for reliability of BEoL and 3‐D TSV structures – A joint effort of FEA and innovative experimental techniques

Jürgen Auersperg1, D. Vogel1, M.U. Lehr3, M. Grillberger3, J. Oswald3, S. Rzepka1, B. Michel1,2

1 Fraunhofer Institute for Electronic Nano Systems ENAS, Germany2 l h f f l b l d2Micro Materials Center at Fraunhofer Institute for Reliability and Microintegration IZM, Germany

4GLOBALFOUNDRIES Dresden Module One LLC & Co. KG, Dresden, Germany

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

Outline

Motivation

Multi‐level FE modeling of CPI

Multi‐failure evaluation for Near‐Chip‐Edge and Near‐Bump Cracks in BEoL

Role of Initial Stresses

TSV –damage and delamination investigation 

Required experimentsRequired experiments

Summary and Outlook

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Task – Heterogeneous Integration ‐ Packaging

Bridging the gap between chip and application

Bump side

Transistor side

<10 µm

Jürgen Auersperg D Vogel M U Lehr

nm, µmNanostructures

cm, mApplications

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale – why? Geometry 

Packaged microprocessor(eight symmetric model

Packaged microprocessor(10 – 40 mm size) PI layerNi layerBEoL stack region

HMT solderUnderfill

Bump side

HMT solder

Soldermask

LJT solder

gap<10 

BEoL‐stack(5 – 10 µm size)

Jürgen Auersperg D Vogel M U Lehr

Boardpad

LJT solder

Transistor side

µm

Solder interconnect with BEoL‐stack(50 – 80 µm size)

Feature sizes: some nm!

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale – why? Geometry 

Bridge 40 mm to sub‐nm forBridge 40 mm to sub nm for Chip Packaging Interaction investigations of 

a BEoL structure

Structural details: sub ‐ nm

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale – why? Structure

Nano lawn for interconnect formation

Can these materials longer be modeled as homogeneous 

materials?materials?

Atomistic level modeling

Molecular dynamics

Jürgen Auersperg D Vogel M U Lehr

Low‐k dielectrics (nano‐porous) Polymer: 23 H2O for 98 °C/ 100 RH

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale ‐Molecular Dynamics – Two Ways used Structure

The way I:

1. Modeling of the molecular structure

2. Homogenization in a unit cell

3. Use it directly inside a Macro‐model,a FE‐Model for instancea FE Model for instance

The way II:

Finite Element Region

1. Modeling of the molecular structure

2. Simulations towards extraction of key‐properties (YOUNG’s modulus CTEFinite Element Region

Crack Tip Molecular Dynamics Region

properties (YOUNG s modulus, CTE, diffusion coefficients)

3. Use these properties inside a Macro‐d l FE M d l f i

Jürgen Auersperg D Vogel M U Lehr

model, a FE‐Model for instance

Polymer: 23 H2O for 98 °C/ 100 RHJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

M i i

Moisture Diffusion in Epoxy by Molecular Dynamics StructureMotivation:

Understand diffusion phenomena as structure‐property correlation for reliability prediction

Method

Materials: Epoxy with sev. chem. composition Exp: measure diffusion D & saturation S

Varied parameters = Arrow:

increasing polarity and chain lenght

Exp: measure diffusion D & saturation S Sim: molecular dynamics

Result:

Polymer: 23 H2O for 98 °C/ 100 RH

2.0x10-6

2.5x10-6

3.0x10-6

2/s)1.50E-007

2.00E-007

2.50E-007

m^2

/s)

oeff.

oeff.

D and S are strong functions of (as tested) ‐ density, ‐ polarity, h l h

0 0

5.0x10-7

1.0x10-6

1.5x10-6

D (c

m^

0 00E 000

5.00E-008

1.00E-007

D (c

mDiff co

Diff co

‐ chain length, ‐ stoichiometry, ‐ temperature

Sim & Exp show correct tendencies

Jürgen Auersperg D Vogel M U Lehr

Molecular Dynamics 98°C/100RH0.0

Experiment:98°C/100RH0.00E+000

SimExp98 °C/ 100 rh

Sim & Exp show correct tendencies

Quantitative Results need correct 3D network representation of epoxy resins

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

E.D. Dermitzaki, J. Bauer, B. Wunderle, B. Michel

Multiscale – Finite Element Techniques ‐ Substructuring Continuum

Multi‐level Substructuring 256xSubstructuring 256x

3

24 1

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale – Finite Element Techniques – Submodeling Continuum

256x

Multi‐level Submodeling 256x

2Submodeling

31 4

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multi‐failure Evaluationf

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

2nd Failure‐Mode – Risk for Die‐Cracking, Cracking of Substrates, …

Stress field with stress singularity

r1Smooth bending w/o singularities in stresses/strains

Stress field with well known stress singularity 1stresses/strains singularity r1

Cl i l t th h th G li d t i t it F t h i

Well known angle from anisotropic etching, for instance

Jürgen Auersperg D Vogel M U Lehr

Classical strength hypothesesmax. surface stress evaluation Weibull‐plots

Generalized stress intensity factor (gSIF) A‐factor …

Fracture mechanics: K‐factor (SIF), J‐integral, energy release rate (ERR) …

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

3rd Failure‐Mode – Delamination at Materials Interfaces

20µm

rrKi iyyxx 2/)( 0 Hutchinson et al.

1992

xyyy forarandforar

exp2

2exp2 *

00

Jürgen Auersperg D Vogel M U Lehr

Mixed Mode Situation 2

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Cohesive Zone Modeling – Drawbacks and Challenges CZM

DCB specimen with crack propagation under continuous displacement controlled opening ! CZM‐Models have to handle and 

deliver damage parameters (damage progress per(damage progress per cycle/time)

CZM with damage options

Jürgen Auersperg D Vogel M U Lehr

Subjects of current research!

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

XFEM ‐Mesh Independent Crack Propagation XFEM

FEM shape functions

FEM unknowns

Discontinuousenrichment functions

XFEM unknowns

FEMdisplacement

XFEMHeaviside enrichmentdisplacement

all nodesHeaviside enrichmentsubset of nodes

Crack crossing an element Crack tip in an element

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

BEoL Stack of an IC – Cracking/Delamination ‐ Locations and Impacts

Near-chip-edge cracks under Chip Package Interaction (CPI)

Crack stop structure

Near-bump cracking during reflow(NBC)

Leadfree Copper Pillars

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Chip Package Interaction (CPI)

Near-chip-edge cracks

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

BEoL Stack of an IC – Near‐Bump‐Cracks – Region of Interest NBC

LID adhesive

Packaged FE‐model(eight symmetric model)

LID adhesive

TIM1

Die

Underfill

PI layerNi layerBEoL stack region

Board

Soldermask

HMT solderUnderfill

Soldermask

LJT solder

gap

Jürgen Auersperg D Vogel M U Lehr

Boardpad

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

3D BEoL Stack Part‐model – Submodeling with Substructures NBC

Substructure

Finite elelement characteristic size in BEoL‐stack

Substructure region

< nm

Replacement of the finest (1x) structures b s perelements (repeatedl sed) leads

Substructure region

by superelements (repeatedly used) leads to a dramatically reduced model size(by factor 3),

Jürgen Auersperg D Vogel M U Lehr

complete model(with and without element edges)

vias andmetal traces

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

3d Local Model of a BEoL Part – Crack Introduced ‐ SubModeling NBC

Global model

Submodel

Initial crack

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

3d Local Model of a BEoL Part – SubModel Placing and Orientation NBC

Submodel driving nodes

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale –Substructure & Submodeling of a BEoL stack of an IC NBC

Mode II(In‐Plane Shear)

Mode III(Out‐of‐Plane Shear)

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Multiscale –Substructure & Submodeling of a BEoL stack of an IC NBC

C k d i i f l h k fCrack driving force along the crack front

Results:

• Find most critical places with

• Material interface delamination

Jürgen Auersperg D Vogel M U Lehr

Material interface delaminationand/or

• Cohesive fracture of material

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

BEoL Stack of an IC – Die Edge Cracking ‐ Interface Fracture Mechanics CPI

max. norm. ERR vs Crack Length

1,20

1,40max. norm. ERR vs Crack Length

1,20

1,40

Chip corner0 60

0,80

1,00

orm

. G

0 60

0,80

1,00

orm

. G

C k t t t0,20

0,40

0,60n

margin 51 µm to crack-stop-structure

margin 51 µm to crack-stop-structure

w/o crack stop structure0,20

0,40

0,60n

margin 51 µm to crack-stop-structure

margin 51 µm to crack-stop-structure

w/o crack stop structure

Jürgen Auersperg D Vogel M U Lehr

Margin

Crack stop structure0,00

0 20 40 60 80 100 120crack length [µm]

w/o crack-stop-structure0,00

0 20 40 60 80 100 120crack length [µm]

w/o crack-stop-structure

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

BEoL Stack of an IC – Die Edge Cracking ‐ Interface Fracture Mechanics CPI

• 10 bimaterial interface paths +

• 4 cohesive crack paths in ULK

Max. ERR in diff. Crack Paths, 40 µm Crack Length marg 100

2,9

3Max. ERR in diff. Crack Paths, 40 µm Crack Length marg 100

2,9

3

2,7

2,8

en. G

2,7

2,8

en. G Chip corner

2 4

2,5

2,6ge

2 4

2,5

2,6ge

C k t t t

Path

Jürgen Auersperg D Vogel M U Lehr

2,3

2,4

1 2 3 4 5 6 7 8 9 10path2,3

2,4

1 2 3 4 5 6 7 8 9 10pathMargin

Crack stop structure

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

NBC

Reflow Process Dependent f pNear‐Bump‐Cracks in BEoL

Leadfree

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

3d Global‐Local Model Simulations – Stress States NBC

Peeling Stresses at 0 °C (under CPI) Peeling Stresses at RT (end of reflow)

Chip center Chip center

Chip centerChip center

Jürgen Auersperg D Vogel M U Lehr

Avoid worst case: white spots in SAM

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Cooling Down from Soldering – Reflow Profiles NBC

Aggressive cooling l

Highlead Leadfreeslope 

Some studies have shown  Mohanty, R., Apell, M. C., Burke, fl lthat an aggressive cooling 

slope can provide optimal diffusion of material and fine eutectic grain

R.: Reflow Process Control Monitoring, and Data Logging, URL: http://www.emsnow.com/cnt/files/White%20Papers/speedReflo

Jürgen Auersperg D Vogel M U Lehr

fine eutectic grain structures

es/White%20Papers/speedReflowProcessControl.pdf

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

FE‐Modeling of the Soldering Process – Reflow Profile Modification NBC

Temperature vs. Time

200

250

300Leadfree profileLeadfree profile 02Highlead profileHighled profile 02

Temperature vs. Time

200

250

300Leadfree profileLeadfree profile 02Highlead profileHighled profile 02

Highest G for Leadfree Soldering

Stress relaxation of the solder joints

50

100

150

200 Highled profile 02Highled profile 03

50

100

150

200 Highled profile 02Highled profile 03

Stress relaxation of the solder joints 

0

50

0 400 800 1200 1600 20000

50

0 400 800 1200 1600 2000

C li dCooling down period discussed here

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Crack and Damage Initiation/Propagation Investigation NBC

Problems:Material/Interface propertiesIntegration Stability/Controlability

Damage

Damage propagation investigation in order to find highest damage risk locationsg g

XFEM

Jürgen Auersperg D Vogel M U Lehr

XFEM in order to find crack starting locations and paths 

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Chip Package Interaction and Initial Stressesp g

From Manufacturing Processes

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

Local Residual Stress Measurement ‐ Approaches ‐

Electron Back Scattered Diffraction(EBSD) based method deformation of Kikuchi diffraction pattern as measure of stressas measure of stress

determines stress tensor comp.

Residual StressesStresses

Raman Spectroscopy uses shift of Raman

Stress Release Technique (fibDAC)

uses shift of Raman bands due to stress

TERS effect with potential to obtain resolution beyond 100

Jürgen Auersperg D Vogel M U Lehr

Stress Release Technique (fibDAC) utilizing deformation field after trench 

milling by FIB

resolution beyond 100 nm

D Vogel A GollhardtJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

D. Vogel, A. Gollhardt

Local stress measurement concept – stress relief by FIB milling (fibDAC)

Material removalby

FIB feature milling 

Stress relief, i.e.deformation 

nearby milling pattern 

Quantifying d f i fi ld b

Solution of the  mechanical stress relief Displacement deformation field by

Digital ImageCorrelation (DIC)

mechanical stress relief problem by

Finite Element Analysis(FEA)

Displacement field fitting

Jürgen Auersperg D Vogel M U Lehr

Stress values

D Vogel A GollhardtJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

D. Vogel, A. Gollhardt

Near‐Bump Cracks in BEoL – Taking Initial Stresses into Account

During whole processing w/o and with initial stresses

Crack Paths 6 and 14 with ULK vs. Gen3

1,00000

1,2max. ERR for all Steps at the Crack Front

With initial stresses

0,662850,8

1

G

0,22349 0 18113

0,44671 0,432920,4

0,6

gen.

,0,12081

0,181130,10560

0

0,2

Path 6 Path 6 Path 14 Path 14 Path 6 Path 6 Path 14 Path 14

Jürgen Auersperg D Vogel M U Lehr

Path 6 ULK

Path 6 Gen3

Path 14 ULK

Path 14 Gen3

Path 6 ULK is

Path 6 Gen3 is

Path 14 ULK is

Path 14 Gen3 is

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

3D I t ti TSV d BE L3D‐Integration – TSV and BEoL

Cracking/Delamination risks during BEoL‐manufacturing on top of TSVs?

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

TSV and BEoL‐structure

Protrusion

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

TSV and BEoL‐structure ‐ Possible Failure Mode – Delamination 

Protrusion

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

TSV and BEoL‐structure ‐ Possible Failure Mode – Delamination 

Protrusion Assumtions:• Initial delamination between TSV and barrier• Initial stresses in TSV and introduced step by stepInitial stresses in TSV and introduced step by step during BEoL‐processing

• Partly delaminated BEoL• Cracks in BEoL

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

TSV and BEoL‐structure – Delamination Investigation

Changing stress traction direction

Strong dependence on stress free assumptions

Crack flanks partly in

stress free assumptions

Jürgen Auersperg D Vogel M U Lehr

contact – negative Jint

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Sequential Build Up – Cohesive Zone Modeling – BEoL to MOL Delamination

Measure for interface

Cohesive zone elements introduced between MOL and BEoL – damaging during thermal loading  delamination of initially undamaged material interface

Measure for interface loading (BEoL removed for better demonstration

Interface totally damaged atInterface totally damaged at distance ‘d’

d

TSV Define CZM‐properties:

Jürgen Auersperg D Vogel M U Lehr

Silicon Tn, Ts, Tt, GI, GII, GIII, En, Es, Et (all are estimated here!)

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

and BEoL‐structure ‐ Possible Failure Mode – Damaging of Copper

Define damage ‐

Jürgen Auersperg D Vogel M U Lehr

properties:pl, ‐p/q, rate, Gc, …)all are estimated here!)

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

M t i l P t D t i tiMaterial Property Determination

Size Dependent Material Behavior

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

Material Behavior ‐Measure Required Properties

Dynamical‐Mechanical Analysis (DMA) Thermomechanical Analysis (TMA) Creep data eval. (Solder)

Temp.dep. creep data (Epoxy) Stress relaxation data (Epoxy) Poisson’s ratio eval.Temp.dep. creep data (Epoxy) Stress relaxation data (Epoxy) Poisson s ratio eval.

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

H. Walter, J. Auersperg

Nanoindentation in low‐K DielectricsBump side

BEoL stack

7 µm

Thin layers

Chip side

7 µm

For TSV:

800

1000

1200

1400

SimN] 800

1000

1200

1400

SimN]

F, uF, u • Initial yield stress• Hardening behavior

200

400

600

MeasurementE=145, sy=1600-10000Experiment

Sim

Forc

e [µ

200

400

600

MeasurementE=145, sy=1600-10000Experiment

Sim

Forc

e [µ

Intenter

Thin Layer

S b t t

Intenter

Thin Layer

S b t t

a de g be a o

-200

00 20 40 60 80

Distance [nm]

-200

00 20 40 60 80

Distance [nm]

SubstrateSubstrate

Experiment Simulation Agreement

Jürgen Auersperg D Vogel M U Lehr

Parameter – extraction only possible by coupled Sim & Exp

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Raul Mrosko, Saskia Huber, O. Wittler

TSV Copper – YOUNGs Modulus by nano‐Indentation

46,405

P13 Messung 3

d e m o d e m o d e m o d e m o d e m od e m o d e m o d e m o d e m o d e m o

120

140

P13 Messung 3

46,400

)

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

80

100

Er(G

Pa)

46,395

Y(m

m)

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

d e m o d e m o d e m o d e m o d e m o

82 275 82 270 82 265 82 26040

60

46390

d e m o d e m o d e m o d e m o d e m od e m o d e m o d e m o d e m o d e m o

-82,275 -82,270 -82,265 -82,260

X(mm)

-82,275 -82,270 -82,265 -82,26046,390

X(mm)

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Copper Material Behavior– Properties Necessary

Necessary  to know:

• Young's‐modulus dep. On Temperature

• Initial yield stressInitial yield stress

• Hardening vs. plastic strains

• Regarding TSV: initial stress state

Xi Liu, Qiao Chen, Pradeep Dixit, Ritwik Chatterjee, Rao R. Tummala, and Suresh K. Sitaraman, Failure Mechanisms and Optimum Design for Electroplated Copper Through‐Silicon Vias(TSV), 2009 Electronic Components and Technology 

fConference, pp. 624 ‐ 629

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Size Effects and Damage in Thin Metallic Films during Nano‐Indentation

Meso‐mechanics Homogeneous

• Strain gradient plasticity

• Higher order stress theories

Dislocation movementDislocation movement restrictions inside boundaries

D. Gross, A. Trondl:Numerical Simulation of Size Effects and Damage in Thin Metallic Films during Nano‐

Jürgen Auersperg D Vogel M U Lehr

Indentation,Proc. ICF 12, Ottawa, CA, 2009, Paper on CD: fin00457.pdf

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

D d F t T h Ch t i tiDamage and Fracture Toughness Characterization

Size Dependent Material Behavior

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

Interface Fracture Toughness Tests

P

Pull‐off test schematic of substrate, interface and pull stud

Modified CT‐specimen Peel test

Jürgen Auersperg D Vogel M U Lehr

Pull‐out test Brazilian disk specimen Superlayer adhesion test

A.A. Volinsky et al. / Acta Materialia 50 (2002) 441–466

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Interface Fracture Toughness Tests ‐ Bending

Asymmetric Double Cantilever Beam Brazil‐Nut‐Sandwich                

Single Leg BendingSymmetric Double Cantilever Beam

4‐point bending

Asymmetric DCB 

Asymmetric End‐Notched FlexureEnd‐Notched Flexure

Mill H 2000

Double Cantilever BeamCenter Cracked Beam

Jürgen Auersperg D Vogel M U Lehr

Sundaraman, Sitaraman 1997Yeung, Lam, Yuen 2000

Miller, Ho 2000

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Mode Separation/Evaluation – Critical ERR and Phase Angle

failure regionregion

Measured fracture toughness

Calculated crack loading

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Mode Separation/Evaluation – Critical ERR and Phase Angle

2sin11 ICc GG

With (a further material/interface parameter) is a function of temperature and moisture concentration

G() i i i i

Gc

failure i G() initiation

G()no initiation

region

Jürgen Auersperg D Vogel M U Lehr

K. Liechti, Adhesion Measurements Relative to Electronic Packaging, Proc. 4th Annual Topical Conference On Reliability, October 30 - November 1, 2000

Hutchinson and Suo, "Mixed Mode Cracking in Layered Materials", Advances in Applied Mechanics, Vol. 29, pp. 63-191

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Nano‐Indentation for Interface Fracture Toughness Evaluation

• Nanoindentation for “measuring“ Young’s modulus and hardness

• Nanoindentation for “measuring“ fracture toughness

• Nanoindentation for “measuring“ interfacial fracture toughness (adhesion) – Conical and wedge indentersBuckling

For instance:

Jürgen Auersperg D Vogel M U Lehr

For instance:E.E. Gdoutos, A. Volinsky, Interfacial Fracture Toughness of Thin Films, Tutorial AC‐Conf., June 6, 2005M. R. Begley, D. R. Mumm, A. G. Evan,  J. W. Hutchinson, Analysis of a Wedge Impression Test for Measuring the Interface Toughness Between Films/Coatings and Ductile Substrates, Acta mater. 48 (2000) 3211‐3220

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

St St t D t i ti /V ifi tiStress State Determination/Verification

Fitting modeling assumption with experimental results

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka

TSV ‐ Stresses near the Surface – vs. Raman‐Spectroscopy

zz rz

rr

Jürgen Auersperg D Vogel M U Lehr

M. Hecker, GlobalFoundries, Dresden

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Surface vs. Midd‐Stress rr

Surface - rr

Middle -

Jürgen Auersperg D Vogel M U Lehr

Middle - rr

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Summary 

M ltil l FE d lli f k i BE L St kt Multilevel FE‐modelling of cracks in BEoL‐Struktures

For Chip Package Interaction and

fl l df b i Reflow ‐ leadfree bumping

Goal: Reliability enhancement

Utilizing fracture mechanics concepts (cohesive and adhesive) and/or

Damage mechanics approaches

Jürgen Auersperg D Vogel M U LehrJürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

What we need

Intensive experimental work necessary  for

Evaluation of residual stresses from manufacturing,

Evaluation of the material behavior (constitutive, size dependent)

Characterization of the damage behavior of materials

Characterization of strength/toughness properties (fracture mechanics characterization) of materials and materials interfaces

Verification of simulation results

Extensive simulation work necessary 

Huge simulation models and computing resources

Jürgen Auersperg D Vogel M U Lehr

Theoretical work – delamination und fracture (CZM, XFEM), materials behavior (SGPM)

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

What we Need for Helpful Simulation Results

Residual stress characterization

Damage and fracture characterization

Material behavior and property characterization

Jürgen Auersperg D Vogel M U Lehr

Simulation results verification

Jürgen Auersperg, D. Vogel, M.U. Lehr, M. Grillberger, J. Oswald, S. Rzepka, B. Michel Micro Materials Center Chemnitz

Heads: Prof. B. Michel andDr. Sven Rzepka

Th k Y f Y Att ti !Thank You for Your Attention!

Micro Materials Center ChemnitzHeads: Prof. B. Michel and

Dr. Sven Rzepka


Recommended