+ All Categories
Home > Documents > DESIGN GUIDE Carrier Board - VIA Technologies,...

DESIGN GUIDE Carrier Board - VIA Technologies,...

Date post: 03-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
44
1.01-09022020-175700 DESIGN GUIDE Carrier Board for VIA QSM-8Q60 Qseven ARM module
Transcript
  • 1.01-09022020-175700

    DESIGN GUIDE

    Carrier Board for VIA QSM-8Q60 Qseven™ ARM module

  • Copyright Copyright © 2017-2020 VIA Technologies Incorporated. All rights reserved.

    No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies, Incorporated.

    Trademarks All trademarks are the property of their respective holders.

    Disclaimer No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided in this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for the use or misuse of the information (including use or connection of extra device/equipment/add-on card) in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

    VIA Technologies, Inc. reserves the right the make changes to the products described in this manual at any time without prior notice.

    Regulatory Compliance FCC-A Radio Frequency Interference Statement This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his personal expense.

    Notice 1 The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

    Notice 2 Shielded interface cables and A.C. power cord, if any, must be used in order to comply with the emission limits.

    Notice 3 The product described in this document is designed for general use, VIA Technologies assumes no responsibility for the conflicts or damages arising from incompatibility of the product. Check compatibility issue with your local sales representatives before placing an order.

  • Carrier Board Design Guide for VIA QSM-8Q60

    iii

    Revision History Revision Date Description

    1.00 03/07/2017 Initial release 1.01 09/02/2020 Updated VIA logo and copyright year

  • Carrier Board Design Guide for VIA QSM-8Q60

    iv

    Table of Contents 1. Introduction ................................................................................................................................... 1

    1.1. Document Overview ......................................................................................................................................... 1 1.2. Acronyms and Definitions ............................................................................................................................... 2 1.3. Illustrations and Schematics ............................................................................................................................ 3

    2. General Carrier Board Recommendations ............................................................................... 4 2.1. PCB Stackup Example ....................................................................................................................................... 4

    2.1.1. Microstrip Versus Stripline Designs ....................................................................................................... 4 2.2. General Layout and Routing Guidelines ...................................................................................................... 6

    2.2.1. Routing Styles and Topology .................................................................................................................. 6 2.2.2. General Trace Attribute Recommendations ........................................................................................ 7 2.2.3. General Clock Routing Considerations ................................................................................................. 7

    3. Qseven Specification Overview................................................................................................. 9 3.1. Qseven Module Placement ............................................................................................................................. 9 3.2. Qseven Mechanical Characteristics ............................................................................................................... 9 3.3. VIA QSM-8Q60 Module and Carrier Board Dimensions ........................................................................... 10 3.4. MXM Connector ............................................................................................................................................. 11

    3.4.1. MXM Connector Dimensions ................................................................................................................ 11 3.4.2. MXM Connector Footprint .................................................................................................................... 12 3.4.3. VIA QSM-8Q60 Module and MXM Connector Footprint ............................................................. 12

    3.5. MXM Connector Pinouts ............................................................................................................................... 13

    4. Layout and Routing Recommendations .................................................................................. 17 4.1. PCI Express Interface ..................................................................................................................................... 17

    4.1.1. MiniPCIe Slot ............................................................................................................................................ 17 4.1.2. PCI Express Layout and Routing Recommendations ....................................................................... 19 4.1.3. PCI Express Reference Schematics ...................................................................................................... 20

    4.2. Ethernet Interface ........................................................................................................................................... 21 4.2.1. Ethernet Interface Topology ................................................................................................................. 22 4.2.2. Gigabit Ethernet Layout and Routing Recommendations ............................................................... 23 4.2.3. Gigabit Ethernet Reference Schematics ............................................................................................. 24

    4.3. USB Interface ................................................................................................................................................... 25 4.3.1. USB Layout and Routing Recommendations ..................................................................................... 25 4.3.2. USB Reference Schematics .................................................................................................................... 28

    4.4. LVDS Interface ................................................................................................................................................. 29 4.4.1. LVDS Layout and Routing Recommendations ................................................................................... 30 4.4.2. LVDS Reference Schematics ................................................................................................................. 32

    4.5. HDMI Interface ................................................................................................................................................ 33 4.5.1. HDMI Layout and Routing Recommendations .................................................................................. 34 4.5.2. HDMI Reference Schematics ................................................................................................................. 35

    4.6. Audio Interface ............................................................................................................................................... 36 4.6.1. Audio Layout and Routing Recommendations ................................................................................. 36 4.6.2. Audio Reference Schematics ................................................................................................................ 37

  • Carrier Board Design Guide for VIA QSM-8Q60

    v

    List of Figures Figure 1: Conventions pertaining to schematics ............................................................................................................3 Figure 2: Six-layer microstrip PCB stackup example ....................................................................................................4 Figure 3: Six-layer stripline PCB stackup example .......................................................................................................4 Figure 4: Point-to-point and multi-drop examples ......................................................................................................6 Figure 5: Daisy-chain example ..........................................................................................................................................6 Figure 6: Alternate multi-drop example .........................................................................................................................6 Figure 7: Suggested clock trace spacing .........................................................................................................................7 Figure 8: Clock trace layout in relation to the ground plane ....................................................................................8 Figure 9: Series termination for multiple clock loads .................................................................................................8 Figure 10: Qseven module placement on carrier board PCB ....................................................................................9 Figure 11: Carrier board with Qseven module installed ............................................................................................9 Figure 12: Qseven module and carrier board height distribution ............................................................................9 Figure 13: Dimensions of the VIA QSM-8Q60 module (top view) ....................................................................... 10 Figure 14: Dimensions of the carrier board (top view) ............................................................................................ 10 Figure 15: Dimensions of the MXM connector (top view) ...................................................................................... 11 Figure 16: Dimensions of the MXM connector (side view) ..................................................................................... 11 Figure 17: Carrier board PCB footprint for the MXM connector ............................................................................ 12 Figure 18: PCB footprint for Qseven module inserted in the MXM connector on the carrier board ............ 12 Figure 19: MXM connector schematics ........................................................................................................................ 16 Figure 20: MiniPCIe card and slot diagram .................................................................................................................. 18 Figure 21: MiniPCI Express interface topology example ......................................................................................... 19 Figure 22: PCI Express trace spacing diagram ............................................................................................................ 19 Figure 23: MiniPCIe slot reference circuitry ................................................................................................................ 20 Figure 24: Gigabit Ethernet layout recommendations (integrated magnetic module) ..................................... 22 Figure 25: Gigabit Ethernet reference circuitry ........................................................................................................... 24 Figure 26: USB differential signal layout recommendations ................................................................................... 25 Figure 27: USB differential signal routing example ................................................................................................... 26 Figure 28: USB 2.0 trace spacing diagram ................................................................................................................... 26 Figure 29: USB host reference circuitry ........................................................................................................................ 28 Figure 30: USB client reference circuitry...................................................................................................................... 28 Figure 31: LVDS panel interface implementation ...................................................................................................... 30 Figure 32: LVDS connector example ............................................................................................................................ 32 Figure 33: LVDS panel power reference circuitry ...................................................................................................... 32 Figure 34: LVDS backlight reference circuitry ............................................................................................................. 32 Figure 35: HDMI interface connector diagram ........................................................................................................... 33 Figure 36: HDMI interface reference circuitry ............................................................................................................. 35 Figure 37: Onboard I2S audio codec implementation example ............................................................................ 36 Figure 38: I2S Audio Codec implementation example ............................................................................................. 37

  • Carrier Board Design Guide for VIA QSM-8Q60

    vi

    List of Tables Table 1: Acronyms and definitions ..................................................................................................................................2 Table 2: General six-layer microstrip PCB stackup ......................................................................................................5 Table 3: PCB stack-up detail .............................................................................................................................................5 Table 4: Recommended trace width and spacing ........................................................................................................7 Table 5: MXM connector sample .................................................................................................................................. 11 Table 6: MXM connector pinout ................................................................................................................................... 15 Table 7: PCI Express signal group and definition ...................................................................................................... 17 Table 8: MiniPCIe slot pinout definition ...................................................................................................................... 18 Table 9: PCI Express interface routing guidelines ..................................................................................................... 20 Table 10: PCI Express interface layout guidelines .................................................................................................... 20 Table 11: PCI Express interface trace properties ....................................................................................................... 20 Table 12: Ethernet signal definition .............................................................................................................................. 21 Table 13: Gigabit Ethernet interface routing guidelines .......................................................................................... 23 Table 14: Gigabit Ethernet interface layout guidelines ............................................................................................ 23 Table 15: Gigabit Ethernet interface trace properties .............................................................................................. 24 Table 16: USB signal definition ...................................................................................................................................... 25 Table 17: USB interface routing guidelines ................................................................................................................. 26 Table 18: USB interface layout guidelines .................................................................................................................. 27 Table 19: USB interface trace properties..................................................................................................................... 27 Table 20: LVDS signal definition ................................................................................................................................... 29 Table 21: LVDS interface routing guidelines .............................................................................................................. 30 Table 22: LVDS interface layout guidelines ................................................................................................................ 31 Table 23: LVDS interface trace properties .................................................................................................................. 31 Table 24: HDMI interface signal definition ................................................................................................................. 33 Table 25: HDMI interface routing guidelines ............................................................................................................. 34 Table 26: HDMI interface layout guidelines ............................................................................................................... 34 Table 27: HDMI interface trace properties ................................................................................................................. 34 Table 28: Audio interface signal definition ................................................................................................................. 36 Table 29: Audio interface routing guidelines ............................................................................................................. 36 Table 30: Audio interface layout guidelines .............................................................................................................. 37 Table 31: Audio interface trace properties ................................................................................................................. 37

  • Carrier Board Design Guide for VIA QSM-8Q60

    1

    1. Introduction This document provides design guidelines to the developers of a custom Qseven compliant carrier board that supports the features of VIA QSM-8Q60™ module. This document includes the layout and routing guidelines for general board designs and major underlying interfaces such as PCI Express, Gigabit Ethernet, USB, LVDS, HDMI and Audio. In addition, the document includes the mechanical information of the ruggedized MXM connector that provides high speed interfaces between the carrier board and the module.

    Please note that this document is considered to be a reference guide only. This document is not intended to be a specification. All information and examples listed below are considered to accurate as of the publication date; however developers must be aware that this document is only a referencing guide.

    1.1. Document Overview A brief description of each chapter is given below.

    Chapter 1: Introduction Briefly introduces the structure of the design guide document.

    Chapter 2: General Carrier Board Recommendations General design schemes and recommended layout rules are shown in this chapter.

    Chapter 3: Qseven Specification Overview Detailed information about the MXM connector placement and dimensions are described.

    Chapter 4: Layout and Routing Recommendations Detailed layout and routing guidelines for each major interface are described.

    Appendix A: Carrier Board Reference Schematics Reference schematics of COMEDB2 evaluation carrier board.

  • Carrier Board Design Guide for VIA QSM-8Q60

    2

    1.2. Acronyms and Definitions Term Description

    ASIC Application-Specific Integrated Circuit EMI Electromagnetic Interference GBE Gigabit Ethernet HDMI High-Definition Multimedia Interface IC Integrated Circuit IEEE Institute of Electrical and Electronics Engineers IO Input/Output I2S Integrated Interchip Sound / Inter-IC Sound LAN Local Area Network LCD Liquid Crystal Display LVDS Low-Voltage Differential Signaling MiniPCIe Mini PCI Express MXM Mobile PCI Express Module NC Not Connected / No Connection OTG On-The-Go PCB Printed Circuit Board PCIe Peripheral Component Interconnect Express PCIe x1 PCI Express one lane RJ-45 Registered Jack-45 USB Universal Serial Bus

    Table 1: Acronyms and definitions

  • Carrier Board Design Guide for VIA QSM-8Q60

    3

    1.3. Illustrations and Schematics Illustrations and schematics depicted in this document may show the directional flow of signals. Directional flow is indicated by the pointed ends of the arrow shapes. See Figure 1.

    IC

    input signal flow output signal flow

    bidirectional signal flow Figure 1: Conventions pertaining to schematics

  • Carrier Board Design Guide for VIA QSM-8Q60

    4

    2. General Carrier Board Recommendations This section contains general guidelines for the PCB stackup and the layout of traces. General guidelines for routing style, topology, and trace attribute recommendations are also discussed.

    2.1. PCB Stackup Example Figure 2 illustrates an example of a PCB with a six-layer stackup. The stackup consists of three signal layers and three reference (power and ground) layers. The three signal layers are referred to as the component layer, inner layer and solder layer. The example below also shows the PCB stackup in a microstrip design.

    Microstrip stackup design

    Solder layer

    Ground layer

    Power layer

    Inner layer

    Ground layer

    Component layer

    Reference layer

    Signal layers

    Figure 2: Six-layer microstrip PCB stackup example

    2.1.1. Microstrip Versus Stripline Designs Carrier board designers can choose between two basic categories of PCB design: microstrip and stripline. Microstrip designs have the outer signal layers exposed. Stripline designs have the outermost signal layers shielded by reference layers.

    Stripline stackup design

    Ground layer

    Solder layer

    Power layer

    Inner layer

    Component layer

    Ground layer

    Reference layer

    Signal layers

    Figure 3: Six-layer stripline PCB stackup example

    The choice of microstrip or stripline design depends on the application for which the carrier board is being designed. If the carrier board is being designed for locations where sensitivity to EMI is an issue, a stripline design is recommended for reducing EMI and noise coupling. For applications where the tolerance for EMI levels is greater, a microstrip design is recommended to reduce costs. Due to the inherent nature of stripline PCB stacks, broad-side coupling is possible.

  • Carrier Board Design Guide for VIA QSM-8Q60

    5

    Layer Description Thickness Value Spacing (mil) Component Layer 0.5 oz. Copper + Planting

    ~62 mils

    Prepeg 2.4 ~3.5 mils thickness Ground Layer 1.0 oz. Copper

    Prepeg 2.4 ~3.5 mils thickness Inner Layer ~52.3 mils thickness

    Prepeg 2.4 ~3.5 mils thickness Power Layer 1.0 oz. Copper

    Prepeg 2.4 ~3.5 mils thickness Ground Layer 1.0 oz. Copper

    Prepeg 2.4 ~ 3.5 mils thickness Solder Layer 0.5 oz. Copper + Planting

    Table 2: General six-layer microstrip PCB stackup

    Description Value Notes Dielectric constant (Ɛr) of Prepeg 3.6 ~ 4.2 @ 1GHz

    Board Impedance 55Ω ± 10% For all signal layers Table 3: PCB stack-up detail

    Notes:

    1. It is not recommended to have any signal routings on either power layer or the ground layer. If a signal must be routed on the power layer, then it should be routed as short as possible.

    2. Signal routing on the ground layer is not allowed.

    3. Lower trace impedance providing better signal quality is preferred over higher trace impedance for clock signals.

  • Carrier Board Design Guide for VIA QSM-8Q60

    6

    2.2. General Layout and Routing Guidelines This section provides general layout rules and routing guidelines for designing carrier boards for VIA QSM-8Q60 module.

    2.2.1. Routing Styles and Topology Topology is the physical connectivity of a net or a group of nets. There are two types of topologies for a motherboard layout: point-to-point and multi-drop. An example of these topologies is shown in Figure 4.

    ASIC

    Multi-Drop

    Point-to-Point

    ASIC orConnector

    ASIC

    ASIC orConnector

    Figure 4: Point-to-point and multi-drop examples

    High-speed bus signals are sensitive to transmission line stubs, which can result in ringing on the rising edge caused by the high impedance of the output buffer in the high state. In order to maintain better signal quality, transmission stubs should be kept as short as possible (less than 1.5”). Therefore, daisy chain style routing is strongly recommended for these signals. Figure 5 below shows an example of daisy chain routing.

    trace segment

    ASICASIC

    short stub

    ASIC orConnector

    ASIC orConnector

    Figure 5: Daisy-chain example

    If daisy chain routing is not allowed in some circumstances, different routings may be considered. An alternative topology is shown in Figure 6. In this case, the branch point is somewhere between both ends. It may be near the source or near the loads. Being close to the load side is best. The separated traces should be equal in length.

    equal lengthASIC

    somewhere in the middle

    ASIC orConnector

    ASIC orConnector

    Figure 6: Alternate multi-drop example

  • Carrier Board Design Guide for VIA QSM-8Q60

    7

    2.2.2. General Trace Attribute Recommendations A 5 mils trace width and 10 mils spacing are generally advised for most signal traces on a carrier board layout. To reduce trace inductance the minimum power trace width is recommended to be 30 mils.

    As a quick reference, the overall recommended trace width and spacing for different trace types are listed in Table 4, and the recommended trace width and spacing for each signal group is shown in Chapter 4.

    Trace Type Trace Width (mil) Spacing (mil) Regular Signal 5 or wider 10 or wider Interface or Bus Reference Voltage Signal 20 or wider 20 or wider Power 30 or wider 20 or wider

    Table 4: Recommended trace width and spacing

    General rules for minimizing crosstalk in high-speed bus designs are listed below:

    • Maximize the distance between traces. Maintain 10 mils minimum spaces between traces wherever possible.

    • Maximize the distance (30 mils minimum) between two adjacent routing areas of different signal groups wherever possible.

    • Avoid parallelism between traces on adjacent layers.

    • Select a board stack-up that minimizes coupling between adjacent traces.

    2.2.3. General Clock Routing Considerations Clock routing guidelines are listed below:

    • The recommended clock trace width is 5 mils.

    • The minimum space between one clock trace and adjacent clock traces is 20 mils. The minimum space from one segment of a clock trace to other segments of the same clock trace is at least two times of the clock width. That is, more space is needed from one clock trace to others or its own trace to avoid signal coupling (see Figure 7).

    • Clock traces should be parallel to their reference ground planes. That is, a clock trace should be right beneath or on top of its reference ground plane (see Figure 8).

    • Series terminations (damping resistors) are needed for all clock signals (typically 0 to 47 ohm Ω). When two loads are driven by one clock signal, the series termination layout is shown in Figure 9. When multiple loads (more than two) are applied, a clock buffer solution is preferred.

    • Isolating clock synthesizer power and ground planes through ferrite beads or narrow channels (typically 20 mils to 50 mils wide) is preferred.

    • No clock traces on the internal layer if a six-layer board is used.

    clocksegment

    clocksynthesizer

    clock trace

    20 mils

    at least two timesof the width of theclock segment

    Figure 7: Suggested clock trace spacing

  • Carrier Board Design Guide for VIA QSM-8Q60

    8

    another ground planeclock trace

    relative ground plane

    Recommended

    another ground planeclock trace

    relative ground plane

    NOT recommended Figure 8: Clock trace layout in relation to the ground plane

    in equal length

    clock source

    damping resistors

    in equal length

    clock load

    clock load

    Figure 9: Series termination for multiple clock loads

  • Carrier Board Design Guide for VIA QSM-8Q60

    9

    3. Qseven Specification Overview The carrier board for VIA QSM-8Q60 module must follow the placement defined in the Qseven specification.

    3.1. Qseven Module Placement Figure 10 shows a depiction of the top view of 3.5” SBC form factor carrier board PCB with appropriate amount of space reserved for the Qseven module (VIA QSM-8Q60).

    70mm

    70mm

    2.5mm

    18mm

    13.5mm

    3mm

    3.95mm

    Carrier Board PCB

    Figure 10: Qseven module placement on carrier board PCB

    3.2. Qseven Mechanical Characteristics Heatsink

    MXM connectorCarrier Board PCB

    Qseven module (QSM-8Q60)

    Hex spacerScrew

    Figure 11: Carrier board with Qseven module installed

    1.8mm1.6mm

    2mm (heatsink base plate

    7.8mm

    5mm

    5mm

    Figure 12: Qseven module and carrier board height distribution

  • Carrier Board Design Guide for VIA QSM-8Q60

    10

    3.3. VIA QSM-8Q60 Module and Carrier Board Dimensions The mechanical dimensions of the QSM-Q860module and reference carrier board (QSMDB2) are shown below.

    70mm

    70mm

    5mm 5.1mm

    64.9mm

    18mm

    2.5mm

    70mm

    3mm

    52mm

    54.53mm

    3.95mm

    62.11mm

    2.69mm

    Figure 13: Dimensions of the VIA QSM-8Q60 module (top view)

    QSMDB2

    137.19mm

    95.24mm

    3mm

    102mm

    3.68mm

    146mm

    5mm

    Figure 14: Dimensions of the carrier board (top view)

  • Carrier Board Design Guide for VIA QSM-8Q60

    11

    3.4. MXM Connector The MXM connector can handle high-speed signals and comprises of 230-pins to connect the VIA QSM-8Q60 module.

    Table 5 shows the specification of MXM connector with 7.8mm height.

    Part Number Resulting height between

    Qseven module and carrier board Height Vendor

    AS0B326-S78N-7F 5mm 7.8mm Foxconn

    Table 5: MXM connector sample

    3.4.1. MXM Connector Dimensions

    0.5mm

    51mm

    5.5mm

    1.42mm2.08mm

    Pin no. 229

    69mm

    Pin no. 1 Pitch

    Pin no. 25.5mm

    1.16mm

    2.32mm51mm

    Pin no. 230

    0.15mm

    Figure 15: Dimensions of the MXM connector (top view)

    5mm

    30

    MXM Card Module1.2mm

    7.8mm

    Figure 16: Dimensions of the MXM connector (side view)

  • Carrier Board Design Guide for VIA QSM-8Q60

    12

    3.4.2. MXM Connector Footprint

    5.5mm

    3.5mm51mm

    0.5mm(Pitch)

    Pin no. 229

    0.36mm

    Pin no. 1

    1.1mm

    5.5mm3.5mm

    0.61mm51mm

    61.5mm

    Pin no. 2

    68.12mm

    Pin no. 230

    0.30mm

    Connector outline

    1.6mm

    5.15mm (2X)

    3mm (2X)2.0mm2.5mm

    0.98mm

    Figure 17: Carrier board PCB footprint for the MXM connector

    3.4.3. VIA QSM-8Q60 Module and MXM Connector Footprint

    Carrier Board PCB

    Figure 18: PCB footprint for Qseven module inserted in the MXM connector on the carrier board

  • Carrier Board Design Guide for VIA QSM-8Q60

    13

    3.5. MXM Connector Pinouts The MXM connector is used for connecting the VIA QSM-8Q60 module to the Qseven carrier board. The MXM connector is consists of 230-pins. The pinout of the MXM connector is shown below.

    Pin# Pin Name Signal Pin# Pin Name Signal 1 GND GND 2 GND GND 3 GBE_MDI3- TXRXM_D 4 GBE_MDI2- TXRXM_C 5 GBE_MDI3+ TXRXP_D 6 GBE_MDI2+ TXRXP_C 7 GBE_LINK100- NC 8 GBE_LINK1000- NC 9 GBE_MDI1- TXRXM_B 10 GBE_MDI0- TXRXM_A 11 GBE_MDI1+ TXRXP_B 12 GBE_MDI0+ TXRXP_A 13 GBE_LINK# LED2_LINK- 14 GBE_ACT# LED1_ACT- 15 GBE_CTREF NC 16 SUS_S5# GPIO_19_PLED 17 WAKE- NC 18 SUS_S3- USB_OTG_PWR_EN 19 SUS_STAT- NC 20 PWRBTN- NC 21 SLP_BTN- NC 22 LID_BTN- NC 23 GND GND 24 GND GND 25 GND GND 26 PWGIN NC 27 BATLOW- NC 28 RSTBTN# RESET_N 29 SATA0_TX+ SATA0_TX+ 30 SATA1_TX+ UART3_RX 31 SATA0_TX- SATA0_TX- 32 SATA1_TX- UART3_TX 33 SATA_ACT- SATA_ACT- 34 GND GND 35 SATA0_RX+ SATA0_RX+ 36 SATA1_RX+ UART3_-CTS 37 SATA0_RX- SATA0_RX- 38 SATA1_RX- UART3_-RTS 39 GND GND 40 GND GND 41 BIOS_DISABLE-

    /BOOT_ALT- NC 42 SDIO_CLK- SD1_CLK

    43 SDIO_CD- SD1_CD- 44 SDIO_LED SD1_LED 45 SDIO_CMD SD1_CMD 46 SDIO_WP SD1_WP 47 SDIO_PWR- SD1_PWR- 48 SDIO_DATA1 SD1_DATA1 49 SDIO_DATA0 SD1_DATA0 50 SDIO_DATA3 SD1_DATA3 51 SDIO_DATA2 SD1_DATA2 52 SDIO_DATA5 SD1_DATA5 53 SDIO_DATA4 SD1_DATA4 54 SDIO_DATA7 SD1_DATA7 55 SDIO_DATA6 SD1_DATA6 56 RSVD NC 57 GND GND 58 GND GND 59 HDA_SYNC

    /I2S_WS AUD4_TXFS 60 SMB_CLK

    /GP1_I2C_CLK UART2_RX

    61 HDA_RST# /I2S_RST#

    GPIO_0_CLKO 62 SMB_DAT /GP1_I2C_DAT

    UART2_TX

    63 HDA_BITCLK /I2S_CLK

    AUD4_TXC 64 SMB_ALERT- NC

    65 HDA_SDI /I2S_SDI

    AUD4_TXD 66 GP0_I2C_CLK I2C3_SCL

    67 HDA_SDO /I2S_SDO

    AUD4_RXD 68 GP0_I2C_DAT I2C3_SDA

    69 THRM- NC 70 WDTRIG- NC 71 THRMTRIP- NC 72 WDOUT WDOG_B 73 GND GND 74 GND GND 75 USB_P7-

    /USB_SSTX0- NC 76 USB_P6-/USB_SSRX0- NC

    77 USB_P7-/USB_SSTX0+

    NC 78 USB_P6-/USB_SSRX0+ NC

    79 USB_6_7_OC- NC 80 USB_4_5_OC# USB_4_OC

  • Carrier Board Design Guide for VIA QSM-8Q60

    14

    81 USB_P5- /USB_SSTX1-

    NC 82

    USB_P4-/USB_SSRX1- USBD_T4-

    83 USB_P5-/USB_SSTX1+

    NC 84

    USB_P4-/USB_SSRX1+ USBD_T4+

    85 USB_2_3_OC# USB_2_3_OC 86 USB_0_1_OC# USB_0_OTG_OC 87 USB_P3- USBD_T3- 88 USB_P2- USBD_T2- 89 USB_P3+ USBD_T3+ 90 USB_P2+ USBD_T2+ 91 USB_CC NC 92 USB_ID USBD_OTG_ID 93 USB_P1- OTG_USBD_T1- 94 USB_P0- USBD_T0- 95 USB_P1+ OTG_USBD_T1+ 96 USB_P0+ USBD_T0+ 97 GND GND 98 GND GND 99 eDP0_TX0+

    /LVDS_A0+ LVDS0_TX0_P 100 eDP1_TX0+

    /LVDS_B0+ LVDS1_TX0_P

    101 eDP0_TX0- /LVDS_A0-

    LVDS0_TX0_N 102 eDP1_TX0- /LVDS_B0-

    LVDS1_TX0_N

    103 eDP0_TX1+ /LVDS_A1+

    LVDS0_TX1_P 104 eDP1_TX1+ /LVDS_B1+

    LVDS1_TX1_P

    105 eDP0_TX1- /LVDS_A1-

    LVDS0_TX1_N 106 eDP1_TX1- /LVDS_B1-

    LVDS1_TX1_N

    107 eDP0_TX2+ /LVDS_A2+

    LVDS0_TX2_P 108 eDP1_TX2+ /LVDS_B2+

    LVDS1_TX2_P

    109 eDP0_TX2- /LVDS_A2-

    LVDS0_TX2_N 110 eDP1_TX2- /LVDS_B2-

    LVDS1_TX2_N

    111 LVDS_PPEN LVDS_PPEN 112 LVDS_BLEN LVDS_BLEN 113 eDP0_TX3+

    /LVDS_A3+ LVDS0_TX3_P 114 eDP1_TX3+

    /LVDS_B3+ LVDS1_TX3_P

    115 eDP0_TX3- /LVDS_A3-

    LVDS0_TX3_N 116 eDP1_TX3- /LVDS_B3-

    LVDS1_TX3_N

    117 GND GND 118 GND GND 119 eDP0_AUX+

    /LVDS_A_CLK+ LVDS0_CLK_P 120 eDP1_AUX+

    /LVDS_B_CLK+ LVDS1_CLK_P

    121 eDP0_AUX-/LVDS_A_CLK-

    LVDS0_CLK_N 122 eDP1_AUX- /LVDS_B_CLK-

    LVDS1_CLK_N

    123 LVDS_BLT_CTRL /GP_PWM_OUT0

    LVDS_PWM2 124 GP_1-Wire_Bus NC

    125 GP2_I2C_DAT /LVDS_DID_DAT

    I2C1_SDA 126 eDP0_HPD# /LVDS_BLC_DAT

    USB_0_2_3_4_EN

    127 GP2_I2C_CLK /LVDS_DID_CLK

    I2C1_SCL 128 eDP1_HPD# /LVDS_BLC_CLK

    HDMI_CEC_IN

    129 CAN0_TX CAN_TX1 130 CAN0_RX CAN_RX1 131 DP_LANE3+

    /TMDS_CLK+ HDMI_CLKP 132 RSVD(Differential) TP_2

    133 DP_LANE3-/TMDS_CLK-

    HDMI_CLKM 134 RSVD(Differential) TP_3

    135 GND GND 136 GND GND 137 DP_LANE1+

    /TMDS_LANE1+ HDMI_D1P 138 DP_AUX+ NC

    139 DP_LANE1- /TMDS_LANE1-

    HDMI_D1M 140 DP_AUX- NC

    141 GND GND 142 GND GND 143 DP_LANE2+

    /TMDS_LANE0+ HDMI_D0P 144 RSVD(Differential) NC

    145 DP_LANE2-/TMDS_LANE0-

    HDMI_D0M 146 RSVD(Differential) NC

    147 GND GND 148 GND GND

  • Carrier Board Design Guide for VIA QSM-8Q60

    15

    149 DP_LANE0+ /TMDS_LANE2+

    HDMI_D2P 150 HDMI_CTRL_DAT I2C2_SDA

    151 DP_LANE0-/TMDS_LANE2-

    HDMI_D2M 152 HDMI_CTRL_CLK I2C2_SCL

    153 DP_HDMI_HPD# HDMI_HPD 154 RSVD GND 155 PCIE_CLK_REF+ PCIe_CREFCLKP 156 PCIE_WAKE# PCIE_WAKE_B 157 PCIE_CLK_REF- PCIe_CREFCLKM 158 PCIE_RST# PCIE_RST_B 159 GND GND 160 GND GND 161 PCIE3_TX+ NC 162 PCIE3_RX+ NC 163 PCIE3_TX- NC 164 PCIE3_RX- NC 165 GND GND 166 GND GND 167 PCIE2_TX+ NC 168 PCIE2_RX+ NC 169 PCIE2_TX- NC 170 PCIE2_RX- NC 171 UART0_TX UART1_TX 172 UART_RTS- UART1_-RTS 173 PCIE1_TX+ NC 174 PCIE1_RX+ CAN_TX2 175 PCIE1_TX- NC 176 PCIE1_RX- CAN_RX2 177 UART0_RX UART1_RX 178 UART0_CTS UART1_CTS 179 PCIE0_TX+ PCIe_CTXP 180 PCIE0_RX+ PCIe_CRXP 181 PCIE0_TX- PCIe_CTXM 182 PCIE0_RX- PCIe_CRXM 183 GND GND 184 GND GND 185 LPC_AD0/GPIO0 GPIO6_IO11 186 LPC_AD1/GPIO1 TP_6 187 LPC_AD2/GPIO2 GPIO_2 188 LPC_AD3/GPIO3 TP_7 189 LPC_CLK/GPIO4 GPIO6_IO14 190 LPC_FRAME#/GPIO5 TP_8 191 SERIRQ/GPIO6 GPIO_5 192 LPC_LDRQ#/GPIO7 TP_9 193 VCC_RTC VDD_RTC_IN 194 SPKR/GP_PWM_OUT2 NC 195 FAN_TACHOIN

    /GP_TIMER_IN NC 196 FAN_PWM

    /GP_PWM_OUT1 PWM_OUT1

    197 GND GND 198 GND GND 199 SPI_MOSI CSPI3_MOSI 200 SPI_CS0# CSPI3_CS0 201 SPI_MISO CSPI3_MISO 202 SPI_CS1# CSPI3_CS1 203 SPI_SCK CSPI3_CLK 204 MFG_NC4 NC 205 VCC_5V_SB NC 206 VCC_5V_SB NC 207 MFG_NC0 NC 208 MFG_NC2 NC 209 MFG_NC1 NC 210 MFG_NC3 NC 211 VCC 5VIN 212 VCC 5VIN 213 VCC 5VIN 214 VCC 5VIN 215 VCC 5VIN 216 VCC 5VIN 217 VCC 5VIN 218 VCC 5VIN 219 VCC 5VIN 220 VCC 5VIN 221 VCC 5VIN 222 VCC 5VIN 223 VCC 5VIN 224 VCC 5VIN 225 VCC 5VIN 226 VCC 5VIN 227 VCC 5VIN 228 VCC 5VIN 229 VCC 5VIN 230 VCC 5VIN

    Table 6: MXM connector pinout

  • Carrier Board Design Guide for VIA QSM-8Q60

    16

    Figure 19: MXM connector schematics

  • Carrier Board Design Guide for VIA QSM-8Q60

    17

    4. Layout and Routing Recommendations The information presented in this chapter includes the signal descriptions, reference schematic examples, topology examples, and detailed layout and routing guidelines for each bus interface. The information provided is intended for designing the Qseven compliant carrier boards to support the features of VIA QSM-8Q60 module.

    4.1. PCI Express Interface This section will guide the developer to create a robust PCI Express interface design in the Qseven carrier board. However, the carrier board designer should do an appropriate analysis and simulation to verify that the design fulfills PCI Express specification requirements.

    The PCI Express is a serial differential low-voltage, point-to-point interface. A PCI Express consists of two differential signal pairs (for transmit data pair and receive data pair), and one pair for reference clock. The bandwidth of a PCI Express link can be increased by adding signal pairs to form multiple lanes between two devices.

    The VIA QSM-8Q60 module can support one PCI Express x1 through miniPCIe slot.

    Signal Name Pin # I/O Description PCIE0_RX+ 180

    IO Receive input differential pair, PCIe channel 0. PCIE0_RX- 182 PCIE0_TX+ 179

    IO Transmit output differential pair, PCIe channel 0. PCIE0_TX- 181 PCIE_CLK_REF+ 155

    IO PCIe reference clock for Lane 0. PCIE_CLK_REF- 157 PCIE_WAKE# 156 IO PCIe wake event up signal: Sideband wake signal

    asserted by components requesting wakeup. PCIE_RST# 158 IO Reset signal for external devices.

    Table 7: PCI Express signal group and definition

    4.1.1. MiniPCIe Slot The miniPCIe slot consists of a single PCI Express x1.The miniPCIe slot is a 52-pin connector designed for add-in PCI Express Mini Cards. Applying the miniPCIe slot on the carrier board will provide the ability to insert different removable and upgradeable miniPCIe cards without the additional expenditure to redesign the carrier board.

    Pin Signal Description 1 PCIE_WAKE_B Request to return to full operation and respond to PCIe 2 MPCIE_3V3 Primary source voltage, 3.3V 3 NC No Connection/Reserved 4 GND Ground 5 NC No Connection/Reserved 6 DDR_1_5V Secondary source voltage, 1.5V 7 NC No Connection/Reserved 8 USIM_VCC Power source for User Identity Modules 9 GND Ground 10 USIM_DATA Data signal for User Identity Module 11 PCIe_CREFCLKM Negative reference clock differential pair 12 USIM_CLK Clock signal for User Identity Module 13 PCIe_CREFCLKP Positive reference clock differential pair 14 USIM_RST Reset signal for User Identity Module 15 GND Ground 16 USIM_VCC Variable supply voltage for User Identity Module 17 NC No Connection/Reserved

  • Carrier Board Design Guide for VIA QSM-8Q60

    18

    18 GND Ground 19 NC No Connection/Reserved 20 NC No Connection/Reserved 21 GND Ground 22 PCIE_RST_B PCI Express reset 23 PCIe_CRXM Receiver differential pair negative signal, Lane 0 24 MPCIE_3V3 Auxiliary voltage source, 3.3V 25 PCIe_CRXP Receiver differential pair positive signal, Lane 0 26 GND Ground 27 GND Ground 28 DDR_1_5V Secondary source voltage, 1.5V 29 GND Ground 30 PCIe_SMB_CLK System Management Bus clock 31 PCIe_CTXM Transmit differential pair negative signal, Lane 0 32 PCIe_SMB_DATA System Management Bus data 33 PCIe_CTXP Transmit differential pair positive signal, Lane 0 34 GND Ground 35 GND Ground 36 PCIE_USB_DM USB data interface differential pair, negative signal 37 GND Ground 38 PCIE_USB_DP USB data interface differential pair, positive signal 39 MPCIE_3V3 Primary source voltage, 3.3V 40 GND Ground 41 MPCIE_3V3 Primary source voltage, 3.3V 42 LED_WWAN_B LED status indicator signal 43 GND Ground 44 LED_WLAN_B LED status indicator signal 45 NC No Connection/Reserved 46 LED_WPAN_B LED status indicator signal 47 NC No Connection/Reserved 48 DDR_1_5V Secondary source voltage, 1.5V 49 NC No Connection/Reserved 50 GND Ground 51 NC No Connection/Reserved 52 MPCIE_3V3 Primary source voltage, 3.3V

    Table 8: MiniPCIe slot pinout definition

    50.95mm

    30mm

    26.80mm

    30mm 7.9mm

    30mm

    7mmFull-length size Half-length size

    Figure 20: MiniPCIe card and slot diagram

  • Carrier Board Design Guide for VIA QSM-8Q60

    19

    The PCI Express signal has a point-to-point topology. The figure below shows the PCI Express x1 point-to-point bus connection from MXM connector to MiniPCI Express slot/device.

    PCIe_CLKP

    PCIe_CLKM

    0 ohm

    0 ohm

    Route DifferentiallyPCIe_CRXP

    PCIe_CRXM

    Qseven Carrier Board

    0.1uF

    49.9 ohm 1% 49.9 ohm 1%

    QSM-8Q60 Module

    Edge

    Fin

    gers

    Route DifferentiallyPCIe_CTXP

    PCIe_CTXM

    0 ohm

    0 ohm

    0.1uF

    PCIE_WAKE_B

    PCIE_RST_B

    PCIE0_TX-PCIE0_TX+

    PCIE0_RX-PCIE0_RX+

    PCIE_RST#

    PCIE_WAKE#

    PCIE_CLK_REF-PCIE_CLK_REF+

    MXM ConnectorMiniPCI Express

    slot/device

    PETn0

    PETp0

    PERn0PERp0

    REFCLK-REFCLK+

    -WAKE

    (1-Lane)

    PERST#

    Figure 21: MiniPCI Express interface topology example

    4.1.2. PCI Express Layout and Routing Recommendations • All the PCI Express signals should be referenced to the ground plane at all times.

    • Each trace of differential pairs should route to parallel to each other with the same trace length.

    • Each trace of differential pairs should not have more than two via holes.

    • Place the AC coupling capacitors as close as possible to the PCI Express slot/device.

    • The spacing between differential pairs must be equal at all times (in parallel), even during trace bending and serpentine topology.

    • Differential pairs must be routed on the same layer with maximum of one signal layer change allowed. The differential pairs must always move to the same layer with the same reference plane.

    • Transmit differential pairs are recommended to be routed on the top layer and receive differential pairs are recommended to be routed on the bottom layer.

    • Do not route PCI Express traces under magnetic devices or IC’s, oscillators and clock synthesizers.

    • To minimize signal crosstalk, wider spacing is recommended wherever possible between traces.

    • It is always best to reduce the line mismatch to add to the timing margin. In other words, a balanced topology can match the trace lengths within the groups to minimize skew.

    Figure 22: PCI Express trace spacing diagram

  • Carrier Board Design Guide for VIA QSM-8Q60

    20

    Routing, layout, and trace properties for implementing PCI Express interface in the carrier board are listed in the following tables.

    Signal Group Signal Name AC Coupling Capacitors

    Routing Topology

    Signal Type

    1-Lane PCI Express

    Transmit PCIE0_TX+ None

    Point to Point Paired Differential Transmit/Receive

    Signals

    PCIE0_TX- None

    Receive PCIE0_RX+ 0.1uF

    PCIE0_RX- 0.1uF

    Table 9: PCI Express interface routing guidelines

    Signal Group Signal Name Routing Layer Accumulated Trace Length

    Note

    1-Lane PCI Express

    Transmit PCIE0_TX+

    Top or Bottom < 2.6” Do not cross power plane division line

    PCIE0_TX-

    Receive PCIE0_RX+

    Top or Bottom < 2.6” PCIE0_RX-

    Table 10: PCI Express interface layout guidelines

    Signal Name Trace & Spacing (mil)

    (S : W : S1 : W : S) Differential

    Trace Impedance Pair to Pair

    Length Mismatch Spacing to

    Other Groups PCIE0_TX+

    20 : 5 : 5 : 5 : 20 85Ω ± 15% 5 mils 20 mils PCIE0_TX- PCIE0_RX+ PCIE0_RX-

    Table 11: PCI Express interface trace properties

    4.1.3. PCI Express Reference Schematics The figure below show an example on how a miniPCIe slot can be connected to a Qseven carrier board.

    PCIe_CLKP

    PCIe_RXP

    PCIe_TXMPCIe_TXP

    PCIe_SMB_CLKPCIe_SMB_DATA

    PCIE_USB_DMPCIE_USB_DP

    PCIe_CLKM

    LED_WLAN_BLED_WPAN_B

    PCIe_RXM

    LED_WLANLED_WPAN

    LED_WWANLED_WWAN_B

    USIM_DATAUSIM_CLKUSIM_RST

    GNDGND

    GNDGNDGND GND GND

    GND

    3P3V MPCIE_3V3VCC15

    GND

    GND

    3P3V

    USIM_VCC

    GND GND

    USIM_VCC

    3P3V

    PCIE_WAKE_B11

    PCIE_RST_B 11

    I2C3_SDA 5,8,10,11I2C3_SCL 5,8,10,11

    PCIe_CTXM11PCIe_CTXP11

    PCIe_CRXM11PCIe_CRXP11

    PCIe_CREFCLKM11PCIe_CREFCLKP11

    USBD_T4+ 11

    USBD_T4- 11

    Place near CON

    R46 0R46 0R45 0R45 0

    R4949.9_1%R4949.9_1%

    R59 330R59 330R52 330R52 330R51 330R51 330

    C2010uFC2010uF

    MINICARDCONN

    MINIPCIE1

    0710A0BA68B

    MINICARDCONN

    MINIPCIE1

    0710A0BA68B

    +3.3V 52GND 50

    +1.5V 48LED_WPAN# 46LED_WLAN# 44

    LED_WWAN# 42GND 40

    USB_D+ 38USB_D- 36

    GND 34SMB_DATA 32

    SMB_CLK 30+1.5V 28GND 26

    +3.3VAUX 24PERST# 22

    Reserved 20GND 18

    UIM_VPP 16UIM_RESET 14

    UIM_CLK 12UIM_DATA 10UIM_PWR 8

    +1.5V 6GND 4

    +3.3V 2-WAKE1

    Reserved51Reserved49Reserved47Reserved45Reserved43Reserved41Reserved39Reserved37GND35PETp033PETn031GND29GND27PERp025PERn023GND21Reserved(UIM_C4)19Reserved(UIM_C8)17

    GND15REFCLK+13REFCLK-11GND9CLKREQ#7Reserved5Reserved3

    G1

    G2

    M1

    M2

    C27 0.1uFC27 0.1uF

    R53 100KR53 100K

    C230.1uFC230.1uF

    C28 0.1uFC28 0.1uF

    C224.7uFC224.7uF

    R43 0R43 0

    C170.1uFC170.1uF

    R50 330R50 330

    R41 0R41 0

    L5

    ACM2012E-900-2P-T00

    L5

    ACM2012E-900-2P-T00

    1 4

    32

    D7 BAT54AT-7-FD7 BAT54AT-7-F

    3

    1

    2

    R4849.9_1%R4849.9_1%

    R40 0R40 0

    C1410uFC1410uF C21

    10uFC2110uF

    R38 0R38 0

    U4

    SN74LVC1G08DBVR

    U4

    SN74LVC1G08DBVR

    12

    43

    5

    C1910uFC1910uF

    R47 0R47 0

    R42 0/XR42 0/X

    LED2B

    VA 25678

    LED2B

    VA 25678

    34

    C180.1uFC180.1uF

    Figure 23: MiniPCIe slot reference circuitry

  • Carrier Board Design Guide for VIA QSM-8Q60

    21

    4.2. Ethernet Interface The VIA QSM-8Q60 module provides one Gigabit Ethernet (LAN) port that complies with the IEEE standard for 10BASE-T, 100BASE-T, 1000BASE-T, TX and T4 Ethernet interfaces.

    The Gigabit Ethernet (LAN) interface of the VIA QSM-8Q60 module consists of four differential signals and control signals for activity link indicators. These signals can be used to connect to the RJ-45 port with integrated or external isolation magnetic (transformer) to the carrier board.

    Signal Name Pin # I/O Description

    GBE_MDI0+ 12 IO

    Media Dependent Interface differential pair 0. The TXRX can operate in 1000, 100, and 10Mbps modes. This signal pair is used for all modes. GBE_MDI0- 10

    GBE_MDI1+ 11 IO

    Media Dependent Interface differential pair 1. The TXRX can operate in 1000, 100, and 10Mbps modes. This signal pair is used for all modes. GBE_MDI1- 9

    GBE_MDI2+ 6 IO

    Media Dependent Interface differential pair 2. The TXRX can operate in 1000, 100, and 10Mbps modes. This signal pair is only used 1000Mbps Gigabit Ethernet mode. GBE_MDI2- 4

    GBE_MDI3+ 5 IO

    Media Dependent Interface differential pair 3. The TXRX can operate in 1000, 100, and 10Mbps modes. This signal pair is only used 1000Mbps Gigabit Ethernet mode. GBE_MDI3- 3

    GBE_LINK# 13 IO Ethernet controller link indicator, active low

    GBE_ACT# 14 IO Ethernet controller 0 activity indicator

    Table 12: Ethernet signal definition

  • Carrier Board Design Guide for VIA QSM-8Q60

    22

    4.2.1. Ethernet Interface Topology This section shows the layout recommendations of both transmit and receive differential data pairs and single-ended control signal between the VIA QSM-8Q60 module and RJ-45 port with integrated magnetic module.

    Qseven Carrier Board

    0.1uF

    0.1uF

    3P3V

    3P3V

    Route DifferentiallyTXRXP_A

    TXRXM_A

    Route DifferentiallyTXRXP_B

    TXRXM_B

    Route DifferentiallyTXRXP_D

    TXRXM_D

    Route DifferentiallyTXRXP_C

    TXRXM_C

    LED1_ACT-

    LED2_LINK-

    330 ohm

    330 ohm

    0 ohm

    RJ-45 + LED

    12

    36

    45

    78

    GBE_MDI0-GBE_MDI0+

    GBE_LINK#GBE_ACT#

    MXM Connector

    GBE_MDI1-GBE_MDI1+

    GBE_MDI2-GBE_MDI2+

    GBE_MDI3-GBE_MDI3+

    QSM-8Q60 Module

    Edge

    Fin

    gers

    TX+

    TX-

    RX+

    RX-

    TX+

    TX-

    RX+

    RX-

    T+

    T-

    R+

    R-

    T+

    T-

    R+

    R-

    Figure 24: Gigabit Ethernet layout recommendations (integrated magnetic module)

    Notes:

    1. If the Gigabit Ethernet implementation is not being use, the pins GBE_MDI2+, GBE_MDI2-, GBE_MDI3+ and GBE_MDI3- should not be connected.

    2. It is recommended to use termination circuits for the unused pin at the RJ-45 connector and for wire-side center-taps of the magnetic module. Improper usage (or lack of usage) of the termination circuits for those unused pins at the RJ-45 connector wire-side center taps of the transformer will cause emissions and long cable noise problems related to other IEEE conformance issues.

    3. If using an external LAN magnetic module, the magnetic module has to be placed as close as possible to the RJ-45 port. The distance must be

  • Carrier Board Design Guide for VIA QSM-8Q60

    23

    4.2.2. Gigabit Ethernet Layout and Routing Recommendations • Route differential pairs close together and away from other signals.

    • Route any other trace parallel to one of the differential trace.

    • Keep trace length within each differential pair equal.

    • Keep proper impedance between two traces within a differential pair.

    • Each trace of differential pairs should not have more than two via holes.

    • Each differential pair of signals is required to be paralleled to each other with the same trace length (Tolerance ±50 mils) on the component (top) layer and to be paralleled to a respective ground plane. The length difference between the shortest and longest pairs should be less than 200 mils.

    • The accumulated trace length of differential signals pair between the MXM connector and magnetic module should be less than 1”.

    • The accumulated trace length of differential signals pair between the external magnetic module and RJ-45 connector should be less than 1″. Isolate ground plane and connect to chassis earth.

    • Keep each differential pair on the same plane.

    • To prevent any noise from injecting into the differential pairs, be sure to keep digital signals or other signals away from the differential signals.

    • The external magnetic module should be placed close to the RJ-45 connector to limit EMI emissions.

    Routing, layout, and trace properties for implementing Gigabit Ethernet interface in the carrier board are listed in the following tables.

    Signal Group Signal Name Topology Signal Type Note

    Differential Pair

    GBE_MDI0+

    Point to Point Differential

    Data I/O Pairs Route traces as

    short as possible

    GBE_MDI0- GBE_MDI1+ GBE_MDI1- GBE_MDI2+ GBE_MDI2- GBE_MDI3+ GBE_MDI3-

    Control GBE_LINK#

    Point to Point Single-Ended Route traces as

    short as possible GBE_ACT#

    Table 13: Gigabit Ethernet interface routing guidelines

    Signal Group Signal Name Routing Layer Accumulated Trace Length

    Note

    Differential Pair

    GBE_MDI0+

    Top Layer < 1.2” Do not cross power plane division line

    GBE_MDI0- GBE_MDI1+ GBE_MDI1- GBE_MDI2+ GBE_MDI2- GBE_MDI3+ GBE_MDI3-

    Control GBE_LINK#

    Top Layer < 1.2” Do not cross power plane division line GBE_ACT#

    Table 14: Gigabit Ethernet interface layout guidelines

  • Carrier Board Design Guide for VIA QSM-8Q60

    24

    Signal Name Trace & Spacing (mil)

    (S : W : S1 : W : S) Trace Impedance

    Pair to Pair Length Mismatch

    Spacing to Other Group

    GBE_MDI0+

    20 : 5 : 8 : 5 : 20 100Ω ± 15% differential

    5 mils 20 mils

    GBE_MDI0- GBE_MDI1+ GBE_MDI1- GBE_MDI2+ GBE_MDI2- GBE_MDI3+ GBE_MDI3- GBE_LINK#

    5 : 8 55Ω ± 10% - 20 mils GBE_ACT#

    Table 15: Gigabit Ethernet interface trace properties

    4.2.3. Gigabit Ethernet Reference Schematics

    Figure 25: Gigabit Ethernet reference circuitry

  • Carrier Board Design Guide for VIA QSM-8Q60

    25

    4.3. USB Interface The Universal Serial Bus (USB) provides a bi-directional, isochronous, hot-attachable Plug and Play serial interface for adding external peripheral devices (e.g., game controllers, communication devices, and input devices) on a single bus. The USB interface of the VIA QSM-8Q60 module is compliant to USB 2.0 specification.

    The VIA QSM-8Q60 module can support up to four USB 2.0 host and one USB 2.0 client port.

    Signal Name Pin # I/O Description USB_P0+ 96 IO Universal Serial Bus port 0, data+ USB_P0- 94 IO Universal Serial Bus port 0, data- USB_P1+ 95 IO OTG Universal Serial Bus port 1, data+ USB_P1- 93 IO OTG Universal Serial Bus port 1, data- USB_P2+ 90 IO Universal Serial Bus port 2, data+ USB_P2- 88 IO Universal Serial Bus port 2, data- USB_P3+ 89 IO Universal Serial Bus port 3, data+ USB_P3- 87 IO Universal Serial Bus port 3, data- USB_P4+ 84 IO Universal Serial Bus port 4, data+ USB_P4- 82 IO Universal Serial Bus port 4, data- USB_2_3_OC# 85 I Universal Serial Bus over-current sense, USB ports 2 and 3 USB_4_5_OC# 80 I Universal Serial Bus over-current sense, USB port 4 USB_ID 92 I Universal Serial Bus I.D. pin. Configures the mode of USB port 1

    Table 16: USB signal definition

    4.3.1. USB Layout and Routing Recommendations • The layout guidelines for the USB data lines are listed below. And a routing example for two

    pairs of USB data buses is shown in Figure 27.

    • The differential pair signals should be all referenced to ground.

    • Each trace of differential pairs should not have more than two via holes.

    • Differential pair route in parallel and in equal length.

    • The amount of vias and corners used for the USB 2.0 signal layout should be minimized; this is to prevent the occurrence of reflection and impedance changes.

    • Each pair of USB data lines is required to be parallel to each other with the same trace length (see Figure 27), and not parallel with other signals to minimize crosstalk.

    • Separate the signal traces into similar groups and route similar signal traces together. In addition, it is recommended to have differential pairs routed together on the motherboard.

    • Control trace signals (USB_2_3_OC#, USB_4_5_OC# and USB_ID) impedance should maintain 55Ω ± 10%.

    • For the USB traces, do not route them under oscillators, crystals, clock synthesizers, magnetic devices or IC’s which could be using duplicate clocks.

    Route to Minimum45

    45

    USBD_T+

    USBReceptacle

    USBReceptacle

    Cable Ground

    Cable Power

    USB Twisted Pair Cable

    USBDeviceUSBD_T-

    QSM-8Q60Module

    MXMConnector

    Qseven Carrier Board

    Edge

    Fin

    gers

    90

    Figure 26: USB differential signal layout recommendations

  • Carrier Board Design Guide for VIA QSM-8Q60

    26

    Recommended

    Not recommended MXM

    ConnectorQSM-8Q60

    ModuleEd

    ge F

    inge

    rs

    USB port

    USB port

    Qseven Carrier Board

    Figure 27: USB differential signal routing example

    Figure 28: USB 2.0 trace spacing diagram

    Routing, layout, and trace properties for implementing USB interface in the carrier board are listed in the following tables.

    Signal Group Signal Name Termination Option Topology Signal Type

    Differential Data Pair

    Port 0 USB_P0+

    None Point-to-Point Differential

    Data I/O Pairs

    USB_P0-

    Port 1 USB_P1+ USB_P1-

    Port 2 USB_P2+ USB_P2-

    Port 3 USB_P3+ USB_P3-

    Port 4 USB_P4+ USB_P4-

    Control USB_2_3_OC#

    None Point-to-Point Single-ended USB_4_5_OC# USB _ID

    Table 17: USB interface routing guidelines

  • Carrier Board Design Guide for VIA QSM-8Q60

    27

    Signal Group Signal Name Routing Layer Termination Stub Length

    Accumulated Trace Length

    Note

    Differential Data Pair

    Port 0 USB_P0+

    Top or Bottom < 1″ < 4″

    USB_P0-

    Port 1 USB_P1+ USB_P1-

    Port 2 USB_P2+ USB_P2-

    Port 3 USB_P3+ USB_P3-

    Port 4 USB_P4+ USB_P4-

    Control USB_2_3_OC#

    Top or Bottom < 1″ Route to minimum

    USB_4_5_OC# USB_ID

    Table 18: USB interface layout guidelines

    Signal Name Trace Impedance Trace & Spacing (mil)

    (S : W : S1 : W : S) Pair to Pair

    Length Mismatch Spacing to

    Other Group USB_P0+

    90Ω ± 15% 20 : 5 : 5 : 5 : 20 5 mils < 0.03″

    USB_P0- USB_P1+ USB_P1- USB_P2+ USB_P2- USB_P3+ USB_P3- USB_P4+ USB_P4- USB_2_3_OC#

    55Ω ± 10 5 : 10 - < 0.02″ USB_4_5_OC# USB_ID

    Table 19: USB interface trace properties

  • Carrier Board Design Guide for VIA QSM-8Q60

    28

    4.3.2. USB Reference Schematics

    Figure 29: USB host reference circuitry

    The USB port mode can be controlled by the signal USB_ID. In the reference circuitry example below, the USB_ID signal is referenced to ground that makes the USB port 1 mode as Client USB (or USB OTG port).

    Figure 30: USB client reference circuitry

  • Carrier Board Design Guide for VIA QSM-8Q60

    29

    4.4. LVDS Interface The LVDS interface in the VIA QSM-8Q60 module enables displaying graphics on LVDS flat panel. The LVDS is a dual-channel that supports 18-bit and 24-bit interfaces.

    The LVDS signal interface consists of four differential data pairs and one differential clock pair for each channel, and five single-ended control signals. The five single-ended control signals are used for LVDS power enable, backlight control, enable lines and I2C interface.

    The LVDS interface signals are implemented in MXM connector.

    Signal Name Pin # I/O Description LVDS_A0+ 99

    O LVDS channel A differential signal pair 0 LVDS_A0- 101 LVDS_A1+ 103

    O LVDS channel A differential signal pair 1 LVDS_A1- 105 LVDS_A2+ 107

    O LVDS channel A differential signal pair 2 LVDS_A2- 109 LVDS_A3+ 113

    O LVDS channel A differential signal pair 3 LVDS_A3- 115 LVDS_A_CLK+ 119

    O LVDS channel A differential clock pair LVDS_A_CLK- 121 LVDS_B0+ 100

    O LVDS channel B differential signal pair 0 LVDS_B0- 102 LVDS_B1+ 104

    O LVDS channel B differential signal pair 1 LVDS_B1- 106 LVDS_B2+ 108

    O LVDS channel B differential signal pair 2 LVDS_B2- 110 LVDS_B3+ 114

    O LVDS channel B differential signal pair 3 LVDS_B3- 116 LVDS_B_CLK+ 120

    O LVDS channel B differential clock pair LVDS_B_CLK- 122 LVDS_PPEN 111 O LVDS flat panel power enable LVDS_BLEN 112 O LVDS flat panel backlight enable

    LVDS_BLT_CTRL 123 O LVDS flat panel backlight brightness control via pulse width modulation.

    LVDS_BLC_DAT/eDP0_HPD# 126 IO Control data signal for external SSC clock chip LVDS_BLC_CLK/eDP1_HPD# 128 IO Control clock signal for external SSC clock chip

    LVDS_DID_DAT/GP2_I2C_DAT 125 IO General Purpose I2C bus data line / DisplayID DDC data line used for LVDS flat panel detection

    LVDS_DID_CLK/GP2_I2C_CLK 127 IO General Purpose I2C bus clock line / DisplayID DDC clock line used for LVDS flat panel detection

    Table 20: LVDS signal definition

  • Carrier Board Design Guide for VIA QSM-8Q60

    30

    LVDS1_CLK_P/N

    LVDS0_CLK_P/N

    Qseven Carrier Board

    Serial COMcontroller

    Powercontrol

    Backlightcontrol

    Backlight and Powerselect Jumper

    Inverterconnector

    EEPROM

    0 ohmLVDS0_TX[3:0]P

    LVDS0_TX[3:0]N

    LVDS1_TX[3:0]P

    LVDS1_TX[3:0]N

    LVDS_BLEN

    LVDS_PWM2

    LVDS_PPEN

    I2C1_SDA

    I2C1_SCL

    LCD Pane LVDSConnectorEd

    ge F

    inge

    rs

    LVDS_A[3:0]+

    LVDS_BLT_CTRL

    LVDS_DID_DAT

    LVDS_B_CLK+/-

    LVDS_A_CLK+/-LVDS_A[3:0]-

    LVDS_B[3:0]+LVDS_B[3:0]-

    LVDS_DID_CLK

    LVDS_PPEN

    LVDS_BLEN

    MXM Connector

    QSM-8Q60Module

    Figure 31: LVDS panel interface implementation

    4.4.1. LVDS Layout and Routing Recommendations The layout and routing recommendations for the LVDS interface in carrier board are listed below:

    • Differential pairs should all be referenced to ground.

    • Each trace of differential pairs should not have more than two via holes.

    • Each differential pair signal (LVDS_A[3:0]±, LVDS_B[3:0]±) and clock differential pair (LVDS_A_CLK±, LVDS_B_CLK±) should be routed parallel to each other with the same trace length.

    • Clock differential pair signals (LVDS_A_CLK±, LVDS_B_CLK±) should be length matched

  • Carrier Board Design Guide for VIA QSM-8Q60

    31

    Signal Group Signal Name Routing Layer Accumulated Trace Length

    Note

    Data

    LVDS_A[3:0]+

    Top or Bottom

  • Carrier Board Design Guide for VIA QSM-8Q60

    32

    4.4.2. LVDS Reference Schematics The following reference circuitry is an example of how to implement the LVDS interface on the carrier board.

    LVDS0_TX1_NCLVDS0_TX1_PC

    LVDS0_TX2_NCLVDS0_TX2_PC

    LVDS0_CLK_NCLVDS0_CLK_PC

    LVDS0_TX0_NCLVDS0_TX0_PC

    LVDS1_TX3_NCLVDS1_TX3_PC

    LVDS0_TX3_NCLVDS0_TX3_PC

    LVDS0_TX3_NLVDS0_TX3_P

    LVDS1_TX1_NCLVDS1_TX1_PC

    LVDS1_TX2_NCLVDS1_TX2_PC

    LVDS1_CLK_NCLVDS1_CLK_PC

    LVDS1_TX0_NCLVDS1_TX0_PC

    LVDS0_TX1_NLVDS0_TX1_P

    LVDS0_TX2_NLVDS0_TX2_P

    LVDS0_CLK_NLVDS0_CLK_P

    LVDS0_TX0_NLVDS0_TX0_P

    LVDS1_TX1_NLVDS1_TX1_P

    LVDS1_TX2_NLVDS1_TX2_P

    LVDS1_CLK_NLVDS1_CLK_P

    LVDS1_TX0_NLVDS1_TX0_P

    LVDS1_TX3_NLVDS1_TX3_P

    LVDS0_CLK_N11LVDS0_CLK_P11

    LVDS0_TX3_N11LVDS0_TX3_P11

    LVDS0_TX0_N11LVDS0_TX0_P11

    LVDS0_TX1_N11LVDS0_TX1_P11

    LVDS0_TX2_N11LVDS0_TX2_P11

    LVDS1_CLK_N11LVDS1_CLK_P11

    LVDS1_TX3_N11LVDS1_TX3_P11

    LVDS1_TX0_N11LVDS1_TX0_P11

    LVDS1_TX1_N11LVDS1_TX1_P11

    LVDS1_TX2_N11LVDS1_TX2_P11

    RN6 0RN6 0

    1 23 4

    RN7 0RN7 0

    1 23 4

    RN2 0RN2 01 23 4

    RN5 0RN5 01 23 4

    RN1 0RN1 01 23 4

    RN3 0RN3 01 23 4

    IVDD PVDD_PWR

    3P3V

    5VIN5VIN

    +12V_VIN **

    J1(1-3)

    MINI-JUMPER

    J1(1-3)

    MINI-JUMPER

    J1(2-4)

    MINI-JUMPER

    J1(2-4)

    MINI-JUMPERJ1

    2208SM-06G-CP

    J1

    2208SM-06G-CP

    13 4

    2

    5 6

    RN4 0RN4 01 23 4

    RN8 0RN8 0

    1 23 4

    RN9 0RN9 0

    1 23 4

    RN10 0RN10 0

    1 23 4

    LVDS0_EDID_SCLLVDS0_EDID_SDA

    PVDD

    LVDS0_TX0_NCLVDS0_TX0_PC

    LVDS0_TX2_NC

    LVDS0_TX1_PCLVDS0_TX1_NC

    LVDS0_TX3_NCLVDS0_TX3_PC

    LVDS0_CLK_PCLVDS0_CLK_NC

    LVDS0_TX2_PC

    LVDS1_TX0_NCLVDS1_TX0_PC

    LVDS1_TX1_NCLVDS1_TX1_PC

    LVDS1_TX2_NCLVDS1_TX2_PC

    LVDS1_CLK_NCLVDS1_CLK_PC

    LVDS1_TX3_PCLVDS1_TX3_NC

    3P3V

    3P3V

    5VIN

    I2C3_SDA7,8,10,11I2C3_SCL7,8,10,11

    PDD_ 2A= 80mi l s

    R14100_1%/X R14100_1%/X

    R22

    4.7K

    R22

    4.7K

    R24 0R24 0

    R16 100_1%/XR16 100_1%/X

    C410uFC410uF

    R17100_1%/X R17100_1%/X

    LVDS1

    87209-4040-06

    LVDS1

    87209-4040-06

    22 1 144 3 366 5 588 7 71010 9 91212 11 111414 13 131616 15 151818 17 172020 19 192222 21 212424 23 232626 25 252828 27 273030 29 293232 31 313434 33 333636 35 353838 37 374040 39 39

    G1

    G1

    G2

    G2

    M1

    M1

    M2

    M2

    R19100_1%/X R19100_1%/X

    R23 100_1%/XR23 100_1%/X

    R13 100_1%/XR13 100_1%/X

    C50.1uFC50.1uF

    R18 100_1%/XR18 100_1%/X

    C30.1uFC30.1uF

    R214.7KR214.7K

    R25 0R25 0

    R20 100_1%/XR20 100_1%/X

    R12100_1%/X R12100_1%/X

    R15100_1%/X R15100_1%/X

    Figure 32: LVDS connector example

    PVDD

    5VIN

    PVDD_PWR

    LVDS_PPEN11

    R26374K_1%R26374K_1%

    C60.1uFC60.1uF

    C822uFC822uF

    R2833R2833

    FB2CBF-2012ES-121U/XFB2CBF-2012ES-121U/X

    C70.1uFC70.1uF

    R33 4.7KR33 4.7K

    R30 140K_1%R30 140K_1%

    FB3CBF-2012ES-121U

    FB3CBF-2012ES-121U

    C100.1uFC100.1uF

    Q3

    Si3443CDV-T1-GE3

    Q3

    Si3443CDV-T1-GE3

    1234 5 6

    C90.1uF/XC90.1uF/X

    Q4

    NX7002AK

    Q4

    NX7002AK

    1

    32

    Q5

    NX7002AK

    Q5

    NX7002AK

    1

    32

    Figure 33: LVDS panel power reference circuitry

    IVDD

    BLT_EN

    3P3V

    LVDS_PWM211LVDS_BLEN11

    PWM_OUT111

    I VDD_ 2A= 80mi l s

    R27220_1%/XR27220_1%/X FB4

    QT2012RL600HC2ALF

    FB4

    QT2012RL600HC2ALF

    R31 0R31 0R29 0R29 0

    R32 0/XR32 0/X

    FB5FB5

    C110.1uFC110.1uF

    C1210uFC1210uFR34

    33K_1%R3433K_1%

    INVERTER1

    85205-0800N

    INVERTER1

    85205-0800N

    112233445566

    8877

    G1G1

    G2G2

    Figure 34: LVDS backlight reference circuitry

  • Carrier Board Design Guide for VIA QSM-8Q60

    33

    4.5. HDMI Interface The VIA QSM-8Q60 supports one HDMI interface. The HDMI is used to connect high definition video and digital audio using a single cable. It allows connecting the digital video devices to utilize a high definition video signal.

    HDMI interface uses four differential data pair signals that carries video and audio signals.

    Signal Name Shared with Pin # I/O Description TMDS_CLK+ DP_LANE3+ 131

    O TMDS differential pair clock lines TMDS_CLK- DP_LANE3- 133 TMDS_LANE0+ DP_LANE2+ 143

    O TMDS differential pair lines lane 0 TMDS_LANE0- DP_LANE2- 145 TMDS_LANE1+ DP_LANE1+ 137

    O TMDS differential pair lines lane 1 TMDS_LANE1- DP_LANE1- 139 TMDS_LANE2+ DP_LANE0+ 149

    O TMDS differential pair lines lane 2 TMDS_LANE2- DP_LANE0- 151 HDMI_CTRL_DAT - 150 IO DDC based control signal (data) for HDMI device HDMI_CTRL_CLK - 152 IO DDC based control signal (clock) for HDMI device DP_HDMI_HPD# - 153 I Hot plug detection signal that serves as an

    interrupt request

    Table 24: HDMI interface signal definition

    123

    4

    56

    789

    101112

    13

    19

    18

    17

    16

    15

    HDMI_+5V

    1.5K ohm

    1.5K ohm0 ohm

    1 4

    2 3

    1 4

    2 3

    1 4

    2 3

    1 4

    2 3

    EMI filter

    10K ohm

    620 ohm

    3P3V

    0 ohm

    3P3V

    6

    2510K ohm

    2

    1

    38

    39

    36

    35

    33

    32

    16

    15

    12

    13

    9

    10

    18

    19

    3 8 14 20 21 26 31 37

    10K ohm

    10K ohm

    10K ohm

    0.1uF

    0 ohm

    0 ohm

    HDMI/TMDSTransmitter

    HDMIport

    RailClamp IC

    10K ohm

    10K ohm

    53P3V

    Dual N-ChannelDigital FET

    23

    22

    0 ohm

    0 ohm

    3P3V

    4.7K ohm

    10K ohm

    10K ohm

    73P3V

    30

    4.3K ohm 1%

    4 8 1117 2427 34 40

    0.1uF 0.1uF

    3P3V

    QSM-8Q60Module

    Edge

    Fin

    gers

    TMDS_LANE0+

    TMDS_CLK-

    TMDS_LANE2-

    TMDS_LANE2+

    TMDS_LANE0-

    TMDS_LANE1+

    TMDS_LANE1-

    DP_HDMI_HPD#

    TMDS_CLK+

    Qse

    ven

    MXM

    Con

    nect

    or

    eDP1_HPD#

    HDMI_CTRL_CLK

    HDMI_CTRL_DAT 28

    29

    2 3

    1

    Qseven Carrier Board

    3P3V

    0 ohm

    1.65K ohm 1%

    Figure 35: HDMI interface connector diagram

  • Carrier Board Design Guide for VIA QSM-8Q60

    34

    4.5.1. HDMI Layout and Routing Recommendations • Differential pair should be all referenced to ground.

    • Each trace of differential pairs should not have more than two via holes.

    • Each differential pairs signal should route to parallel to each other with the same trace length.

    • Route the differential pairs on a single layer adjacent to a ground plane.

    Routing, layout and trace properties for implementing HDMI interface in the carrier board are listed in the following tables.

    Signal Group Signal Name Signal Reference Routing Topology Signal Type

    Data

    TMDS_LANE0+

    Ground Point to Point Differential

    Data I/O Pairs

    TMDS_LANE0- TMDS_LANE1+ TMDS_LANE1- TMDS_LANE2+ TMDS_LANE2-

    Clock TMDS_CLK+

    Ground Point to Point Differential Pairs TMDS_CLK-

    Control HDMI_CTRL_DAT

    Ground Point to Point Single-ended HDMI_CTRL_CLK DP_HDMI_HPD#

    Table 25: HDMI interface routing guidelines

    Signal Group Signal Name Routing Layer Accumulated Trace Length

    Note

    Data

    TMDS_LANE0+

    Top or Bottom < 3.3”

    TMDS_LANE0- TMDS_LANE1+ TMDS_LANE1- TMDS_LANE2+ TMDS_LANE2-

    Clock TMDS_CLK+

    Top or Bottom

  • Carrier Board Design Guide for VIA QSM-8Q60

    35

    4.5.2. HDMI Reference Schematics

    HDMI_TX0_PC

    DP1TX1-

    DP1TX0+

    DP1TX0-

    DP1TX1+

    HDMI_TX2_NC

    HDMI_TX1_NC

    HDMI_TXC_PC

    HDMI_TXC_NC

    HDMI_TX2_PC

    HDMI_TX0_NC

    HDMI_TX1_PC

    DP1TX2+

    DP1TX3-

    DP1TX2-

    HDMI_DSDA

    HDMI_TX1_NC

    HDMI_TXC_PC

    HDMI_TXC_NC

    HDMI_TX2_PC

    HDMI_DSCL

    HDMI_HPD

    HDMI_TX0_NC

    HDMI_TX0_PC

    HDMI_TX2_NCHDMI_TX1_PC

    HDMI_CEC_IN

    DP1TX3+

    GND GND

    HDMI_+5V

    GND

    HDMIL3 DLW2012B-900NPL3 DLW2012B-900NP

    1 4

    32

    R602 10K/XR602 10K/X

    L1 DLW2012B-900NPL1 DLW2012B-900NP

    1 4

    32

    C10.1uFC10.1uF

    R1

    0

    R1

    0

    L4 DLW2012B-900NPL4 DLW2012B-900NP

    1 4

    32

    L2 DLW2012B-900NPL2 DLW2012B-900NP

    1 4

    32

    HDMI1

    51U19S-323N-A4-BD

    HDMI1

    51U19S-323N-A4-BD

    123456789

    10111213141516171819

    G1

    G2

    G4

    G3

    HDMI_TX1_NC

    HDMI_TX2_PCHDMI_TX2_NC

    HDMI_TX1_PC

    HDMI_DSDA

    HDMI_DSCL

    HDMI_HPDHDMI_DSDA

    HDMI_CEC_INHDMI_DSCL

    HDMI_HPD

    HDMI_TXC_PCHDMI_TXC_NC

    HDMI_TX0_NCHDMI_TX0_PC

    HDMI_TX1_NC

    HDMI_TX2_PCHDMI_TX2_NC

    HDMI_TX1_PC

    HDMI_TXC_PCHDMI_TXC_NC

    HDMI_TX0_NCHDMI_TX0_PC

    HDMI_CEC_INHDMI_CEC_IN11

    HDMI_HPD11

    D2

    RClamp0544T.TCT/X

    D2

    RClamp0544T.TCT/X

    2

    G1

    34

    1

    56

    78

    D4

    RClamp0544T.TCT/X

    D4

    RClamp0544T.TCT/X

    2

    G1

    34

    1

    56

    78

    D1

    RClamp0544T.TCT/X

    D1

    RClamp0544T.TCT/X

    2

    G1

    34

    1

    56

    78

    HDMI_DSDAHDMI_DSCL

    HDMI_DDC_CLK_INHDMI_DDC_CLK_IN

    DDI_CTRL_DATA HDMI_DDC_DAT_INHDMI_DDC_DAT_IN

    DDI_CTRL_CLK

    HDMI_DDC_DAT_INHDMI_DDC_DAT_IN

    HDMI_DDC_CLK_INHDMI_DDC_CLK_IN

    HDMI_+5V

    3P3V

    3P3V

    I2C2_SDA11

    I2C2_SCL11

    R8 1.5KR8 1.5KR7 1.5KR7 1.5K

    Q1

    FDC6301N

    Q1

    FDC6301N

    G1

    1

    S2

    2

    G2

    3D

    24

    S1

    5

    D1

    6

    R44 0/XR44 0/X

    R4 0R4 0

    R6 0R6 0

    R24.7KR24.7K

    R70 0/XR70 0/X

    R5 0R5 0

    R9 0R9 0

    R34.7KR34.7K

    HDMI_+5V

    +12V VIN

    5VIN

    HDMI_+5V

    R11 0/XR11 0/X

    C21uFC21uF

    PS1

    SMD1206P150TFT

    PS1

    SMD1206P150TFT

    1 2

    D3B320A-13-F/X

    D3B320A-13-F/XA K

    Q2

    SM2306NSAC-TRG

    Q2

    SM2306NSAC-TRG

    G

    DS

    R1010K/XR1010K/X

    FB1

    QT2012RL600HC2ALF

    FB1

    QT2012RL600HC2ALF

    DP1TX2-

    DP1TX1+

    DP1TX1-

    DP1TX2+

    DP1TX0+

    DP1TX3+

    DP1TX3-

    DP1TX0-

    For HDMI ; c l ose t o TMDS141

    C192 0.1uF/XC192 0.1uF/X

    C191 0.1uF/XC191 0.1uF/X

    C193 0.1uF/XC193 0.1uF/XR495 300_1%/XR495 300_1%/X

    R493 300_1%/XR493 300_1%/X

    R494 300_1%/XR494 300_1%/X

    R500 300_1%/XR500 300_1%/XC194 0.1uF/XC194 0.1uF/X

    TMDS_RX2-

    TMDS_RXC-

    TMDS_RX1+

    TMDS_RXC+

    TMDS_RX0-

    TMDS_RX2+TMDS_RX1-

    TMDS_RX0+

    3P3V

    Not e: Pl ease pl ace cl ose t o U33 TMDS141.

    R596 620_1%/XR596 620_1%/X

    R601 620_1%/XR601 620_1%/X

    R594 620_1%/XR594 620_1%/X

    R597 620_1%/XR597 620_1%/X

    R599 620_1%/XR599 620_1%/XR600 620_1%/XR600 620_1%/X

    R593 10K/XR593 10K/X

    R595 620_1%/XR595 620_1%/X

    R598 620_1%/XR598 620_1%/X

    Q43

    NX7002AK/X

    Q43

    NX7002AK/X

    1

    32

    HDMI_D2P

    HDMI_D1P

    HDMI_CLKP

    TMDS_RX0+HDMI_D2M

    PRE

    TMDS_RX0-

    TMDS_RX1+

    DDI_CTRL_DATA

    TMDS_RX1-

    OVS

    TMDS_RX2+TMDS_RX2-

    DP1TX0+

    TMDS_RXC+TMDS_RXC-

    HDMI_D1M

    DP1TX0-

    DP1TX1+

    HDMI_D0P

    DP1TX1-

    DP1TX2+HDMI_D0M DP1TX2-

    DP1TX3+

    VSADJ

    HDMI_CLKM DP1TX3-

    -OEB

    DDI_CTRL_CLK

    3P3V

    3P3V

    3P3V

    3P3V

    HDMI_D2P11HDMI_D2M11

    HDMI_D1P11HDMI_D1M11

    HDMI_D0P11HDMI_D0M11

    HDMI_CLKP11HDMI_CLKM11

    I2C2_SDA11I2C2_SCL11

    U33

    TMDS141RHAR

    U33

    TMDS141RHAR

    TX1# 13

    GN

    D14

    RX2#1

    I2CEN5

    VC

    C11

    VC

    C27

    VC

    C24

    RX22

    OE#6 PRE 7

    TX2 9TX2# 10

    GN

    D20

    TXC# 19

    GN

    D3

    RSDA28

    VC

    C4

    TXC 18

    TSDA 23TSCL 22

    GN

    D8

    GN

    D21

    OVS25

    TX1 12

    TX0# 16TX0 15V

    CC

    17

    GN

    D26

    RSCL29

    VSADJ 30

    GN

    D31

    RXC33RXC#32

    VC

    C34

    RX036RX0#35

    GN

    D37

    RX139RX1#38

    VC

    C40

    G1

    G1

    C1600.01uFC1600.01uF

    R171 0R171 0

    R176 0R176 0

    C1610.01uFC1610.01uF

    R177 0R177 0

    C1620.01uFC1620.01uF

    C1560.01uFC1560.01uF

    R170 0R170 0

    C1570.01uFC1570.01uF

    R585 10KR585 10K

    C1580.01uFC1580.01uF

    R172 0R172 0

    C1590.01uFC1590.01uF

    R173 0R173 0

    R73 0/XR73 0/X

    R588 4.3K_1%R588 4.3K_1%R589 10KR589 10KR590 10K/XR590 10K/X

    R587 10KR587 10KR584 10K/XR584 10K/X

    R74 0/XR74 0/X

    R586 10K/XR586 10K/X

    R175 0R175 0

    R583 10KR583 10K

    R174 0R174 0

    3P3V

    I2C2_SDA11

    I2C2_SCL11 R591 1.65K_1%/XR591 1.65K_1%/X

    R592 1.65K_1%/XR592 1.65K_1%/X

    Figure 36: HDMI interface reference circuitry

  • Carrier Board Design Guide for VIA QSM-8Q60

    36

    4.6. Audio Interface The Audio interface is a link between the VIA QSM-8Q60 module and Audio Codec that supports the I2S bus in the carrier board. This section contains I2S layout and routing information.

    The corresponding audio interface signals are defined in the table below.

    Signal Name Pin # I/O Description HDA_RST#/I2S_RST# 61 O Codec reset HDA_SYNC/I2S_WS 59 O Serial Sample Rate Synchronization HDA_BITCLK/I2S_CLK 63 O Bit clock for Codec HDA_SDO/I2S_SDO 67 O Serial Data Output to Codec HDA_SDI/I2S_SDI 65 I Serial Data Input Stream from Codec

    Table 28: Audio interface signal definition

    QSM-8Q60Module

    Edge

    Fin

    gers

    Qseven Carrier Board

    0 ohmHDA_SYNC/I2S_WS

    HDA_SDO/I2S_SDO

    HDA_RST/I2S_RST#

    HDA_BITCLK/I2S_CLK

    HDA_SDI/I2S_SDI

    MXM ConnectorI2S_LRCLK

    I2S_DOUT

    SYS_MCLK

    I2S_SCLK

    I2S_DIN

    I C Audio Codec2

    22 ohm

    Route to minimum

    Figure 37: Onboard I2S audio codec implementation example

    4.6.1. Audio Layout and Routing Recommendations • Route the analog and digital trace signals as far as possible from each other to prevent noise.

    • Route the clock trace away from any analog input and voltage reference pins.

    • Isolate the codec or put away from any major current path or ground bounce.

    • Fill with copper the regions between the analog traces and attached it to the analog ground.

    • Fill with copper the regions between the digital traces and attached it to the digital ground.

    Note:

    For optimizing timing and signal quality issues, the values of the series resistors are design dependent and should be verified.

    Routing, layout and trace properties for implementing audio interface in the carrier board are listed in the following tables.

    Signal Name Signal Reference Topology Signal Type HDA_RST#/I2S_RST#

    Ground or Power Point to Point Single-ended HDA_SYNC/I2S_WS HDA_BITCLK/I2S_CLK Ground or Power Point to Point Single-ended HDA_SDO/I2S_SDO Ground or Power Point to Point Single-ended HDA_SDI/I2S_SDI Ground or Power Point to Point Single-ended

    Table 29: Audio interface routing guidelines

  • Carrier Board Design Guide for VIA QSM-8Q60

    37

    Signal Name Routing Layer Accumulated Trace Length Note

    HDA_RST#/I2S_RST# Top or Bottom

    Route traces as short as possible

    HDA_SYNC/I2S_WS HDA_BITCLK/I2S_CLK Top or Bottom HDA_SDO/I2S_SDO

    Top or Bottom HDA_SDI/I2S_SDI

    Table 30: Audio interface layout guidelines

    Signal Name Trace Impedance Trace Width

    and Spacing (mil) Spacing to

    Other Signal HDA_RST#/I2S_RST#

    55Ω ± 10% 5 : 10 HDA_SYNC/I2S_WS HDA_BITCLK/I2S_CLK 55Ω ± 10% 5 : 20 HDA_SDO/I2S_SDO

    55Ω ± 10% 5 : 10 HDA_SDI/I2S_SDI

    Table 31: Audio interface trace properties

    4.6.2. Audio Reference Schematics

    LINEOUT_LLINEIN_L

    LINEIN_R

    AUDIO_CLK

    LINEOUT_R

    LINE_IN_L

    LINE_IN_R

    HP_R HEAD_RIGHT

    HEAD_LEFT

    CODEC_I2C_DAT

    CODEC_I2C_CLK

    MICBIAS

    MIC_IN

    VDDD

    GND_ANALOG

    3P3V

    3P3V

    VCC15

    AUD4_TXD11

    AUD4_RXD11

    AUD4_TXC11

    AUD4_TXFS11

    I2C3_SDA5,7,8,11

    I2C3_SCL5,7,8,11

    GPIO_0_CLKO11 R67 22R67 22

    C400.1uFC400.1uF

    TP3TP31

    C47 1uFC47 1uF

    C46 0.1uFC46 0.1uF

    C420.1uFC420.1uF

    TP1TP1

    1

    LINE_IN_R LINE_IN_LHEAD_RIGHT HEAD_LEFT

    MIC_IN MIC_IN

    GND_ANALOG GND_ANALOG

    AUDIO1

    1600S-08-SM-TR

    AUDIO1

    1600S-08-SM-TR

    13 4

    2

    5 68109

    R68 0R68 0

    FB7QT1608RL060HC3A-LFFB7QT1608RL060HC3A-LF

    R66 0R66 0

    TP4TP41

    CE3220uF

    CE3220uF

    C49 0.1uFC49 0.1uF

    C45 4.7uFC45 4.7uF

    C48 0.1uFC48 0.1uF

    CE2220uF

    CE2220uF

    FB11CBF-2012ES-121U/XFB11CBF-2012ES-121U/X

    R65 0R65 0

    TP2TP21

    C41

    0.1uF

    C41

    0.1uF

    U8

    SGTL5000XNAA3/R2

    U8

    SGTL5000XNAA3/R2

    I2S_SCLK24 NC5 22

    LINEIN_L14

    CPFILT 18

    VDD

    IO20

    NC4 19

    SYS_MCLK21

    I2S_DOUT25

    I2S_DIN26

    HP_L 6

    CTRL_DATA27

    NC6 28

    CTRL_CLK29

    GN

    D1

    1

    NC1 8

    HP_R 2

    GN

    D2

    3VD

    DA

    5

    LINEOUT_L 12

    LINEOUT_R 11

    MIC15

    NC3 17

    LINEIN_R13

    AGN

    D7

    I2S_LRCLK23

    VDD

    D30

    CTR

    L_AD

    R0 _

    CS

    31

    CTR

    L_M

    OD

    E32

    HP_VGND 4

    NC2 9

    VAG 10

    MIC_BIAS16

    GN

    D3-

    PAD

    G1

    R64 2.2KR64 2.2K

    C44 4.7uFC44 4.7uF

    C434.7uFC434.7uF

    Figure 38: I2S Audio Codec implementation example

  • 1F, 531 Zhong-zheng Road,Xindian Dist., New Taipei City 231Taiwan

    Tel: 886-2-2218-5452Fax: 886-2-2218-9860Email: [email protected]

    940 Mission CourtFremont, CA 94539,USA

    Tel: 1-510-687-4688Fax: 1-510-687-4654Email: [email protected]

    Email: [email protected]

    Taiwan Headquarters USA

    Europe

    Tsinghua Science Park Bldg. 7No. 1 Zongguancun East Road,Haidian Dist., Beijing, 100084China

    Tel: 86-10-59852288Fax: 86-10-59852299Email: [email protected]

    3-15-7 Ebisu MT Bldg. 6F,Higashi, Shibuya-kuTokyo 150-0011Japan

    Tel: 81-3-5466-1637Fax: 81-3-5466-1638Email: [email protected]

    ChinaJapan

    Carrier Board Design Guide for VIA QSM-8Q60 Module1. Introduction1.1. Document Overview1.2. Acronyms and Definitions1.3. Illustrations and Schematics

    2. General Carrier Board Recommendations2.1. PCB Stackup Example2.1.1. Microstrip Versus Stripline Designs

    2.2. General Layout and Routing Guidelines2.2.1. Routing Styles and Topology2.2.2. General Trace Attribute Recommendations2.2.3. General Clock Routing Considerations

    3. Qseven Specification Overview3.1. Qseven Module Placement3.2. Qseven Mechanical Characteristics3.3. VIA QSM-8Q60 Module and Carrier Board Dimensions3.4. MXM Connector3.4.1. MXM Connector Dimensions3.4.2. MXM Connector Footprint3.4.3. VIA QSM-8Q60 Module and MXM Connector Footprint

    3.5. MXM Connector Pinouts

    4. Layout and Routing Recommendations4.1. PCI Express Interface4.1.1. MiniPCIe Slot4.1.2. PCI Express Layout and Routing Recommendations4.1.3. PCI Express Reference Schematics

    4.2. Ethernet Interface4.2.1. Ethernet Interface Topology4.2.2. Gigabit Ethernet Layout and Routing Recommendations4.2.3. Gigabit Ethernet Reference Schematics

    4.3. USB Interface4.3.1. USB Layout and Routing Recommendations4.3.2. USB Reference Schematics

    4.4. LVDS Interface4.4.1. LVDS Layout and Routing Recommendations4.4.2. LVDS Reference Schematics

    4.5. HDMI Interface4.5.1. HDMI Layout and Routing Recommendations4.5.2. HDMI Reference Schematics

    4.6. Audio Interface4.6.1. Audio Layout and Routing Recommendations4.6.2. Audio Reference Schematics

    Contact VIA


Recommended