+ All Categories
Home > Documents > Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m...

Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m...

Date post: 17-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
39
Fixed Frequency Switch Mode Power Supply Using FA5311BP All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Kit
Transcript
Page 1: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

Fixed Frequency Switch Mode Power Supply Using FA5311BP

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1

Design Kit

Page 2: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

Contents (1/2)

Slide #

1. Background1.1 Flyback Converter................................................................................................1.2 Current Waveforms..............................................................................................1.3 Equations.............................................................................................................

2. Specification...............................................................................................................2.1 Output Voltage.....................................................................................................2.2 Output Current.....................................................................................................2.3 Steady State Initial Conditions.............................................................................2.4 Output Ripple Voltage..........................................................................................2.5 Efficiency..............................................................................................................

3. Design Consideration.................................................................................................3.1 DC Link Voltage VDC,IN.........................................................................................3.2 Reflected Voltage VRO..........................................................................................3.3 Transformer Primary Side Inductance LP.............................................................3.4 Transformer Turn Ratio........................................................................................3.5 Transformer Leakage Inductance Lleak.................................................................3.6 RCD Clamping Network.......................................................................................

4. MOSFET Switching Device M1...................................................................................4.1 M1 Voltage and Current Stresses.........................................................................4.2 Losses in M1........................................................................................................4.3 MOSFET Model...................................................................................................

4-678910111213141516171819-2021-2324-2526272829

2All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

Page 3: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

Contents (2/2)

Slide #

5. Output Rectifier Diode D21...........................................................................................5.1 D21 Voltage and Current Stresses........................................................................5.2 Losses in D21.......................................................................................................

6. Output Capacitor C21 and C22......................................................................................7. Photocoupler PC1........................................................................................................Simulation Index..............................................................................................................

30313233-3535-3638-39

3All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

Page 4: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

1.1 Flyback Converter

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4

• This figure shows the basic configuration of the converter ( Flyback + LCR load ). • The switch M1 ON and OFF events are separated to see how the devices work.

+VLP-

Vin Iin

LP LS

IF,D21

+VDS-

M1

D21

VOUTVLS

LC filter stage

Page 5: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

1.1 Flyback Converter

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5

• This figure shows the current path during the ON time, D21 is reverse biased, and the output capacitor (C21) supplies the LC filter stage on its own.

LS

M1

During the M1 ON time

ON

Reverse Bias

LP

VinVLS =

VinD21

LC filter stage

Page 6: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

1.1 Flyback Converter

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6

• During the OFF time, D21 is forward biased , LS starts conducting and charges C21 ,the secondary winding of the flyback transformer starts transferring energy to the power supply output.

During the M1 OFF time

LP

M1

D21

OFF

LS

VinNVLS ⋅=

NVVinV OUT

DS +=

VOUT

Page 7: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

1.2 Current Waveforms

• The current waveforms of Iin and IF,D21 in CCM and DCM mode.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7

CCM DCM

LpΤVinΔΙin ΟΝ×

=

LpΤVinΔΙin ΟΝ×

=

Discontinuous current

LpNΤVinΔΙ ΟN

DF××

=21,

ΟNΤΤ

ΟNΤ Τ

Iin Iin

IF,D21 IF,D21 LpNΤVinΔΙ ΟN

DF××

=21,

time time

Page 8: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

• The primary side inductance value LP for the DCM mode is calculated as equation below.

1.3 Equations

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8

( ) 22

,2

1

⋅−

<S

P

SDCMP

NN

fRDL

(1)

(3)

swP

LDCMOUT

fLRVinDV××

××=2

,

VinD

DNNV

P

SCCMOUT ⋅

⋅=1

,

(2)

• LP is the inductance of primary winding.• D = TON/T• NP is the turns number of primary winding.• NS is the turns number of secondary winding.

• The relationship between the VOUT and Vin for the CCM and DCM mode are defined as equations below.

Page 9: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

2. Specifications

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9

VIN = 110VrmsVOUT = 24VIOUT = 2A , DCMfSW = 30kHzOutput voltage ripple < 0.06VP-P

%Efficiency = 85.6

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

R221.9k

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

0

R10

5.6k

C447u

R232.2k

R6

220

PC1_A

C6

6800p

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

C3150p

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 0

LpLp

1

2

+

C23RJJ-35V221MG5-T20IC = 0

C50.047u

C240.22u

PC1TLP281

C71500p

LsNsp*Nsp*Lp

1

2

LsubNsubp*Nsubp*Lp

1

2

L21

8RHB

Rs_Lp

0.15

A

K

REFIC2NJM431

C80.22uIC = 0

Page 10: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

2.1 Output Voltage

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• The output voltage is regulated at 24V(RL=12Ω) ,voltage overshoot at startup is less than 1.2V.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10

Overshoot voltage

Page 11: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

2.2 Output Current

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• The output current is 2A (RL=12Ω) ,current overshoot at startup is less than 100mA.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11

Overshoot current

Page 12: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C3150p

0

R10

5.6k

R232.2k

R6

220

PC1_A

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

C71500pIC = 2.9

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 141.4

LpLp

1

2

C6

6800p

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

C447uIC = 16.524

PC1TLP281

R221.9k

C80.22uIC = 2.42

LsNsp*Nsp*Lp

1

2

A

K

REFIC2NJM431

Vin_dc

LsubNsubp*Nsubp*Lp

1

2

Vin_dc L21

8RHB

Rs_Lp

0.15

2.3 Steady State Initial Conditions

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12

Initial condition are set ,so the simulation starts near the steady state.

Initial phase = 30

IC(C1) = 30V

IC(C8) = 2.42V IC(C7)

= 2.9V

IC(C4) = 16.524V

IC(C5) = 3.37V

IC(C23) = 23.9V

Page 13: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

2.4 Output Ripple Voltage

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• The output ripple voltage is less than 60 mVP-P.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13

Output ripple voltage

Page 14: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

2.5 Efficiency

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• The simulation result shows that the efficiency of the power supply is 85.6%.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14

%Efficiency = 85.6

Pout= 47.68[W]

Ploss(D21)= 1.92[W]

Ploss(M1)= 4.64[W]

Pin= 55.7[W]

Tracing the %Efficiency of the power supply ,add trace: 100* AVG(W(RL))/ AVG(V(Vin_dc)*I(Vin_dc))

Tracing the %Efficiency of the power supply ,add trace: 100* AVG(W(RL))/ AVG(V(Vin_dc)*I(Vin_dc))

Page 15: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

R221.8k

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C3150p

0

R10

5.6k

R232.2k

R6

220

PC1_A

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

C71500pIC = 2.9

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 141.4

LpLp

1

2

C6

6800p

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

C447uIC = 16.524

PC1TLP281

C80.22uIC = 2.42

LsNsp*Nsp*Lp

1

2

Vin_dc

LsubNsubp*Nsubp*Lp

1

2

Vin_dc L21

8RHB

IC2TL431

Rs_Lp

0.15

3. Design Considerations

15All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

+VDS-

VOUT

Lp =650uHNP:NS:NSUB = 125:24:14

VIN ,DC

-VRO+

Page 16: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.1 DC Link Voltage VIN,DC

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• The simulation result shows the peak values of the ripple of DC link voltage VIN,DC.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16

Minimum VIN ,DC = 139V

Maximum VIN ,DC = 154V

VLINE, = 110Vac

Page 17: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.2 Reflected Voltage VRO

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• This figure shows the waveform of the drain voltage of flyback converter compared to the VDC,IN.• When M1 is turned off ,VDS = VDC,IN + VRO

• VRO is the voltage reflected to the primary, the value is approximately VOUT / N ,which N=NS/NP

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17

VDC,IN

VDS(M1) = VDC,IN + VRO = 283V

VRO = 153.71V

Zoomed

VDS(M1)VDC,IN

Page 18: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.3 Transformer Primary Side Inductance LP

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• This figure shows the waveforms of ID(M1) and IF(D21 ) in the DCM mode. The peak currents are obtained.• The primary-side inductance (LP) of the transformer determines the converter operation mode.• Once the duty ratio is determined by the equation (1), LP is obtained as the equation (3)• Which the maximum load is 2A (VO=24V, RL=12Ω). At VIN,dc=141V and fs=30kHz ,this equation calls for Lp,DCM <

1.52mH.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18

V(PWM_OUT)

ΟNΤΤ

ID(M1) = VDC,IN TON /Lp= 2.34A

Discontinuous current

IF(D21) = 11.667A

Page 19: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.4 Transformer Turn Ratio

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19

Which the maximum load current is 2A (VO=24V, RL=12Ω). • At VF(D21)≅0.6V and VRO=129V ,this equation calls for NP:NS = 125:24. • At VF(Dsub)≅0.6V and VCC=14V (more than VCC,OFF of FA5311BP) ,this equation calls for

NS:NSUB = 24:14.

The turn ratio between the primary side and the secondary side is obtained as:

The turn ratio between the primary side and the auxiliary side is obtained as:

RO

DFOUT

P

S

VVV

NN )21(+

= (4)

)21(

)(

DFOUT

DsubFCC

S

SUB

VVVV

NN

+

+= (5)

Page 20: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.4 Transformer Turn Ratio

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• This figure shows the waveforms of the voltages at each side of the transformer.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 20

VP

VS

VSUB

VP = 275V

VS = 52.8V

VSUB = 30.8V

Page 21: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.5 Transformer leakage inductance

LSOP

LSSP

LLk

,

,1−=

)1( 2kLL Pleak −⋅=

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 21

• k is the SPICE primitive which describes the coupling ratio between a primary and a secondary.

• LP,LSS is the Inductance value of primary winding when the secondary winding is shorted.• LP,LSS is the Inductance value of primary winding when the secondary winding is opened.

(6)

(7)

• To model the transformer (or coupled inductors), we can use the SPICE primitive k ,which describes the coupling ratio between a primary and a secondary.

• The k value is obtained as:

• The leakage inductance of the transformer Lleak is describe as equation:

Page 22: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

R221.8k

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

C447uIC = 22

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C71500p

IC = 2.9

0

R10

5.6k

R232.2k

R6

220

PC1_A

C6

6800p

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

C3150p

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 154

LpLp

1

2

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

PC1TLP281

LsNsp*Nsp*Lp

1

2

LsubNsubp*Nsubp*Lp

1

2

L21

8RHB

Rs_Lp

0.15

A

K

REFIC2NJM431

C80.22uIC = 2.42

3.5 Transformer leakage inductance

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 22

SPICE primitive k

Which LP is 650uH , Lleak is 5.1184uH for k=0.996055 and 25.74uH for k=0.98.

Page 23: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.5 Transformer leakage inductance

AnalysisTime Domain (Transient)

Run to time: 1000usStart saving data after: 0Maximum step size: 80ns

Sweep variable Global parameter: k Value list: 0.996055, 0.98

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation result shows that the smaller Lleak gets lower VDS peak voltage ,that means better design margin from the MOSFET VDSS

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 23

M1: VDSS=450V VDS,peak = 418V (for Lleak=25.74uH)

VDS,peak = 331V (for Lleak=5.1184uH)

M1: VDS(t)

Page 24: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

R221.8k

PARAMETERS:Cclp = 0.022u

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

C447uIC = 22

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C71500p

IC = 2.9

0

R10

5.6k

R232.2k

R6

220

PC1_A

C6

6800p

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C2CclpR2

33k

R272.2k

C3150p

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 154

LpLp

1

2

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

PC1TLP281

LsNsp*Nsp*Lp

1

2

LsubNsubp*Nsubp*Lp

1

2

L21

8RHB

Rs_Lp

0.15

A

K

REFIC2NJM431

C80.22uIC = 2.42

3.6 RCD Clamping network

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 24

RCD Clamping Network CCLP

Page 25: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

3.6 RCD Clamping network

AnalysisTime Domain (Transient)

Run to time: 500usStart saving data after: 0Maximum step size: 40ns

Sweep variable Global parameter: Cclp Value list: 0.022u, 1000p

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation result shows VDS peak voltages for the CCLP(C2) = 0.022uF and 1000pF.• A larger CCLP value gets lower VDS peak voltage ,that means better design margin from the

MOSFET VDSS

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 25

M1: VDSS=450V

VDS,peak = 332V (for CCLP = 0.022uF)

M1: VDS(t)

VDS,peak = 374V (for CCLP = 1000pF)

Page 26: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C3150p

0

R10

5.6k

R232.2k

R6

220

PC1_A

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

C71500pIC = 2.9

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 141.4

LpLp

1

2

C6

6800p

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

C447uIC = 16.524

PC1TLP281

R221.9k

C80.22uIC = 2.42

LsNsp*Nsp*Lp

1

2

A

K

REFIC2NJM431

Vin_dc

LsubNsubp*Nsubp*Lp

1

2

Vin_dc L21

8RHB

Rs_Lp

0.15

4. MOSFET Switching Device M1

26All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

+VDS- ID

Page 27: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

4.1 M1 Voltage and Current Stresses

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation result shows the VDS(M1) peak voltage and the ID(M1) peak current.• The voltage and current should not exceed the maximum rating of the device M1 (2SK3869:

VDSS=450V , ID,max=10A).

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 27

VPEAK = 333V

IPEAK = 2.6A

Vin_dc(t)

VDS(M1)(t)

ID(M1)(t)

VOUT_24Vdc(t)

Page 28: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

4.2 Losses in M1

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation results shows waveforms of ID and VDS of MOSFET M1. Switching power loss and average power loss are also shown.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 28

Loss(AVG) = 4.64[W]

VDS(t)

ID(t)

Switching loss (turn-off)

Switching loss (turn-on) Conduction loss

(VDS x ID)

PLOSS_(M1)(t)

Page 29: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

4.3 MOSFET Model

Measured Simulated %Error

Fall time (tf) 40(ns) 38.976(ns) -2.56

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 29

VDS(t)VGS(t)

tf

90%VDS

10%

• This figure shows the verification of the MOSFET model with measured fall time characteristics ,that is the key to accurate PLOSS_(M1) simulation.

Page 30: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C3150p

0

R10

5.6k

R232.2k

R6

220

PC1_A

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

C71500pIC = 2.9

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 141.4

LpLp

1

2

C6

6800p

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

C447uIC = 16.524

PC1TLP281

R221.9k

C80.22uIC = 2.42

LsNsp*Nsp*Lp

1

2

A

K

REFIC2NJM431

Vin_dc

LsubNsubp*Nsubp*Lp

1

2

Vin_dc L21

8RHB

Rs_Lp

0.15

5. Output Rectifier Diode D21

30All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

- +VKA

IF

Page 31: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

5.1 D21 Voltage and Current Stresses

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation result shows the VKA(D21) peak voltage and the IF(D21) peak current.• The voltage and current should not exceed the maximum rating of the device D21 (SF6L20U :

VRM=200V ,IO=6A ,and IOFSM=80A).

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 31

VPEAK = 99.5V

IPEAK = 18A

VKA(D21)(t)

IF(D21)(t)

VOUT_24Vdc(t)

Page 32: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

5.2 Losses in D21

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation results shows waveforms of IF and VKA of diode D21. Switching power loss and average power loss are also shown.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 32

Loss(AVG) = 1.92[W]

VKA(t)IF(t)

Peak magnitude current

Conduction loss (VF,AK x IF)

PLOSS_(D21)(t)

Page 33: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

PHASE = 30

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

C50.047uIC = 3.37

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

C3150p

0

R10

5.6k

R232.2k

R6

220

PC1_A

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

C71500pIC = 2.9

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 141.4

LpLp

1

2

C6

6800p

+

C23RJJ-35V221MG5-T20IC = 23.9

C240.22u

C447uIC = 16.524

PC1TLP281

C80.22uIC = 2.42

R221.9k

LsNsp*Nsp*Lp

1

2

A

K

REFIC2NJM431

Vin_dc

LsubNsubp*Nsubp*Lp

1

2

Vin_dc L21

8RHB

Rs_Lp

0.15

6. Output Capacitor C21 and C22

33All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

+ VCE-

IF

IF

IC21 IC22

VC21

Page 34: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

6. Output Capacitor C21 and C22

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation results shows waveforms of IF(D21) , IC21+IC22 and VC21,RIPPLE.• VRIPPLE is mostly caused by ESR ,that the value is 33mΩ for C21 and C22. If the VRIPPLE(240mV)

doesn’t meet the ripple specification ,additional LC filter stages can be used.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 34

VC21(t)

IF(D21)

IC21(t)+IC22(t)

IF(D21)(t)

( IC21 +IC22 )

VRIPPLE = IC ESR = 240mV

Page 35: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

6. Output Capacitor C21 and C22

AnalysisTime Domain (Transient)

Run to time: 60msStart saving data after: 40msMaximum step size: 100ns

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• Simulation results shows the spike voltage ,that caused by ESL effect of C21 and C22. • In case the manufacturer doesn’t provide this data ,ESR and ESL are measured by Precision

Impedance Analyzer.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 35

VC21(t)

IF(D21)

IC21(t)+IC22(t)

IF(D21)(t)

( IC21 +IC22 )

Spike Voltage

Page 36: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

0

D21SF6L20U

ESR2133m

PARAMETERS:Np = 125Ns = 24

Lp = 650uHNsub = 14

Nsp = Ns/NpNsubp = Nsub/NpK = 0.996055

S

R24680

R25330k

ESL216.3nH

1

2

R221.9k

K K1

COUPLING = KK_Linear

L1 = LpL2 = LsL3 = Lsub

VacFREQ = 50HzVAMPL = 110*1.4142

D1

D2SBA60

1 2 3 4

D4

MUR160

R262.2k

PC1_K

R9100

R72.2

DZ1

MTZJ24B

R80.22

R122k

IC1FA5311BP

1 2 3 4

5678

C21890uF

0

R10

5.6k

C447u

R232.2k

R6

220

PC1_A

C6

6800p

PC1_K

R5220

ESR2233m

ESL226.3nH

1

2

C22890uF

C20.022uR2

33k

R272.2k

C3150p

OUT

RL12

G

D

R34.7k

R4220

R2118k

D3ERA91-02

D2ERA91-02

PC1_A

R112.2k

M12SK3869

+

C1SMH200VN270-22AIC = 0

LpLp

1

2

+

C23RJJ-35V221MG5-T20IC = 0

C50.047u

C240.22u

PC1TLP281

C71500p

LsNsp*Nsp*Lp

1

2

LsubNsubp*Nsubp*Lp

1

2

L21

8RHB

Rs_Lp

0.15

A

K

REFIC2NJM431

C80.22uIC = 0

7. Photocoupler PC1

36All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

+ VCE-

IF

Page 37: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

7. Photocoupler PC1

AnalysisTime Domain (Transient)

Run to time: 500msStart saving data after: 0Maximum step size: 10us

.OptionsRELTOL: 0.01VNTOL: 1.0mABSTOL: 100.0nCHGTOL: 0.1pGMIN: 1.0E-12ITL1: 500ITL2: 200ITL4: 20

• When the power supply output reach the spec voltage (24V), a shunt regulator draws current through photorcouple (IF(PC1)).

• Then the current IF(PC1) is coupled to the collector current of the photocoupler IC(PC1). This causes FB pin voltage to decreases ,So the IC can control the output voltage of the power supply.

All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 37

IC(PC1)(t)

IF(PC1)(t)

VOUT_24Vdc(t)

VFB(IC1)(t)

When VOUT reaches 24V ,IF(PC1) starts flowing.

Then the current is coupled to IC(PC1).

VFB(IC1) is dropped as the current flows through the IC(PC1).

Page 38: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

Simulation Index (1/2)

Slide # Folder

1. Background1.1 Flyback Converter....................................................................1.2 Current Waveforms..................................................................1.3 Equations.................................................................................

2. Specification...................................................................................2.1 Output Voltage..........................................................................2.2 Output Current..........................................................................2.3 Steady State Initial Conditions..................................................2.4 Output Ripple Voltage...............................................................2.5 Efficiency..................................................................................

3. Design Consideration......................................................................3.1 DC Link Voltage VDC,IN..............................................................3.2 Reflected Voltage VRO..............................................................3.3 Transformer Primary Side Inductance LP..................................3.4 Transformer Turn Ratio.............................................................3.5 Transformer Leakage Inductance Lleak......................................3.6 RCD Clamping Network...........................................................

4. MOSFET Switching Device M1.......................................................4.1 M1 Voltage and Current Stresses.............................................4.2 Losses in M1.............................................................................4.3 MOSFET Model........................................................................

4-678910111213141516171819-2021-2324-2526272829

TRANSTRANS

STEADYSTEADY

TRANSSTEADYSTEADYSTEADYLEAKCLAMP

TRANSSTEADY

38All Rights Reserved Copyright (C) Bee Technologies Corporation 2010

Page 39: Design Kit - CYBERNET · R10 5.6k C4 47u R23 2.2k R6 220 PC1_A C6 6800p PC1_K R5 220 ESR22 33m ESL22 6.3nH 1 2 C22 890uF C2 R2 0.022u 33k R27 2.2k C3 150p OUT RL 12 G D …

Simulation Index (2/2)

Slide # Folder

5. Output Rectifier Diode D21...............................................................5.1 D21 Voltage and Current Stresses............................................5.2 Losses in D21............................................................................

6. Output Capacitor C21 and C22..........................................................7. Photocoupler PC1............................................................................

30313233-3536-37

TRANSSTEADYSTEADYTRANS

39All Rights Reserved Copyright (C) Bee Technologies Corporation 2010


Recommended