+ All Categories
Home > Documents > Design of High Efficiency DC-DC SMPS

Design of High Efficiency DC-DC SMPS

Date post: 07-Aug-2018
Category:
Upload: pham-long
View: 232 times
Download: 0 times
Share this document with a friend

of 6

Transcript
  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    1/11

    Design of HighDesign of High--efficiency DCefficiency DC--

    DC Power Converter CircuitsDC Power Converter Circuits

    Prof. Amit Patra, Department of EE &

    Advanced VLSI Design Laboratory,

    Indian Institute of Technology, Kharagpur 

     Advanced VLSI Design Laboratory 

     Why Power Management Chips Why Power Management Chips??????

    Power management chips are the interface between batteries

    and different chips (RF, Base-band and Digital)

    Different elements need special supply voltage and have also

    different requirements in terms of noise, power supplyrejection ratio (PSRR) and quiescent current

    Mobile

     phone

    PC Private mobile

    radioCamera PDA

     Advanced VLSI Design Laboratory 

    Power DistributionPower Distribution

     Advanced VLSI Design Laboratory 

    Power Management CircuitsPower Management Circuits

    Linear Voltage Regulator (LDOs)

    Step-Down Regulator 

    Switching Voltage Regulator 

    Buck (Step-Down) Converter 

    Boost (Step-Up) Converter 

    Buck-Boost Converter (Inverting / Non-inverting)

    Switched Capacitor Converters (Charge-Pumps)

    Step-Up Regulator 

    Step-Down Regulator  Inverting Amplifier 

     Advanced VLSI Design Laboratory 

    Linear Voltage RegulatorLinear Voltage Regulator

    Simple and low noise

    Output Voltage is lower than the input voltage

    High efficiency only if Vo is close to Vg

     Advanced VLSI Design Laboratory 

    Linear Regulator Power ModelLinear Regulator Power Model

    η

    Linear regulator efficiency cannot be greater than the ratio o f

    the output and the input voltage

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    2/11

     Advanced VLSI Design Laboratory 

    Buck Switching Voltage RegulatorBuck Switching Voltage Regulator

    f s = Switching f requency

    D = Duty Ratio

    D’ = 1 - D

     Advanced VLSI Design Laboratory 

    Switching Voltage RegulatorsSwitching Voltage Regulators

     Advanced VLSI Design Laboratory 

    Switching Voltage Regulator

    DC-DC Buck Converter  DC-DC Boost Converter 

    DC-DC Buck-Boost Converter 

     Advanced VLSI Design Laboratory 

    Device/Converter SpecificationsDevice/Converter Specifications

    Static voltage regulation DC output voltage precision, i.e., % variation wit h

    respect to the nominal value over:

    input voltage range (“ line regulation”)

    output load range (“ load regulation” )

    temperature

    Dynamic voltage regulation “ Load transient response,” including peak output

    voltage variation and settling time for a step loadtransient

    “ Line transient response,” including output voltagevariation and settling time for a step input voltagetransient

     Advanced VLSI Design Laboratory 

    Other Features/RequirementsOther Features/Requirements

    Overvoltage protection

     – prevents the output voltage from rising above a specifiedlimit

    Undervoltage shutdown

     – turns the device off if the input (battery) voltage drops

    below a specified threshold

    Current limiting (overload protection)

     – limits the load current

    Thermal shutdown

     – turns the device off if the temperature exceeds a specified

    threshold

     Advanced VLSI Design Laboratory 

    Other Features/RequirementsOther Features/Requirements

    Frequency synchronization  – allows synchronization of the switching fr equency to

    an external system clock

    Soft start  – controlled output vol tage increase during startup

    Shut-down and operating-mode control  – enables a system controller to shut-down the device,

    or to select an operating mode(PWM,PFM,LDO)

     Adjustment of the output voltage using  – a resistive voltage divider,

     – external analog control voltage, or 

     – digital (pin-select) control

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    3/11

     Advanced VLSI Design Laboratory 

    Buck converter analysisBuck converter analysis

    Switch 1 is ON Switch 2 is ON

     Advanced VLSI Design Laboratory 

    Switch in position 1Switch in position 1

     Advanced VLSI Design Laboratory 

    Switch in position 2Switch in position 2

     Advanced VLSI Design Laboratory 

    Inductor Voltage and Current WaveformsInductor Voltage and Current Waveforms

     Advanced VLSI Design Laboratory 

     Average Voltage across the Inductor Average Voltage across the Inductor

     Advanced VLSI Design Laboratory 

     Average Current across the Inductor Average Current across the Inductor

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    4/11

     Advanced VLSI Design Laboratory 

    Inductor Current Conduction ModeInductor Current Conduction Mode

     Advanced VLSI Design Laboratory 

    Implementing ZeroImplementing Zero--cross Detectcross Detect

    With the zero-crossing comparator the switch S2 operates

    as a diode, resulting in DCM and improved efficiency at light

    loads

     Advanced VLSI Design Laboratory 

    CCM vs. DCMCCM vs. DCM

    In DCM, the inductor cur rent is always positive

     At l igh t loads , in DCM, the dut y cycle is s ign if ican tly low erthan in CCM

    CCM operation at light loads is un desirable because thereversal of the inductor current polarity contributes toconduction losses, while it does not contribute to the outputload current

    With a diode rectifier, DCM operation occurs automaticallybecause of the diode characteristic

    With a synchronous rectifier, DCM operation at light loadscan be accomplished by turning off th e NMOS switch at the

    zero-crossing of the inductor current

     Advanced VLSI Design Laboratory 

    Selection of the InductorSelection of the Inductor

     Advanced VLSI Design Laboratory 

    Selection of the CapacitorSelection of the Capacitor

     Advanced VLSI Design Laboratory 

    Switch RealizationSwitch Realization

    Switch

    control

    signals

    PMOS

    Switch

    NMOS switch

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    5/11

     Advanced VLSI Design Laboratory 

    Conduction LossesConduction Losses

     Average and RMS values

    Switch on-resistance and forward voltage drops result in switch conduction

    losses

     Advanced VLSI Design Laboratory 

    Switching LossesSwitching Losses

    Switching losses are proportional to the

    switching frequency

    Switching loss mechanisms:

    Charging/discharging of capacitance at

    MOSFET gates and sw itch node

    Body-diode reverse recovery

    Inductor eddy-current and core loss es

     Advanced VLSI Design Laboratory 

    Switching Frequency in PFMSwitching Frequency in PFM

    In PFM, the switching frequency is directly proportional to the load current

     Advanced VLSI Design Laboratory 

    Discussion of Operating ModesDiscussion of Operating Modes

     Advanced VLSI Design Laboratory 

    Different Control approachesDifferent Control approaches

    Hysteretic voltage control

    Voltage-mode contro l The switch duty cycle is control led based on

    output voltage compensation

    Current-mode contro l

    The switch duty cycle is control led based on

    output voltage and switch current sensing

    Energy based Control

     Advanced VLSI Design Laboratory 

     Asynchronous Buck Converter (in PSM)

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    6/11

     Advanced VLSI Design Laboratory 

     Typical Waveform

    Inductor

    Current

    GatePulses

    OutputVoltage

    Hysteresis

    Band

    Time

    Mode-I Mode-II

     Advanced VLSI Design Laboratory 

    Inductor Current In PSM

    t

    Inductor CurrentiLIP

    During charging:

    During discharging:

    IP L is constant. => constant Volt-sec.

    Vo- E=- Ldi

    dt

    Ton =E- Vo

    IP L

    dVo

    dt=C

    Vo

    R ( i- )

    di

    dtVo=- L

    Toff = Vo

    IP L

    dVo

    dt=C

    VoR 

    ( i- )

     Advanced VLSI Design Laboratory 

    Possible Improvements

    The efficiency will be lower

    for lower output voltage due

    to large forward diode drop in

    the rectifier 

    The efficiency can be

    improved if the diode is

    replaced by a synchronous

    switch

     Advanced VLSI Design Laboratory 

    Hysteretic Control of PSM Converter

     Advanced VLSI Design Laboratory 

    Ip

    IL

    E-IL*rds(on)

    Vout

    Vg

    Vz

    Vcomp

    Vmono

    Ton Toff 

    PMOS-On NMOS-On

    Diode-On

    Typical Waveforms

     Advanced VLSI Design Laboratory 

     Advantages and Disadvantage of HMC

    Suitable for low load applications

    Predetermination of inductor value and peak

    inductor current

    Variable frequency operation

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    7/11

     Advanced VLSI Design Laboratory 

     Voltage Voltage--Mode Control ArchitectureMode Control Architecture

     Advanced VLSI Design Laboratory 

    Different Blocks for VMC

    Band gap reference circuit

    Error Amplifier 

    Ramp Oscillator 

    PWM Comparator 

    Dead Time

    Drivers

     Advanced VLSI Design Laboratory 

    Error Amplifier

    High DC gain > 60db

    Unity gain Bandwidth ~= 10 times crossover 

    Slew Rate > 10times Vdd*Fs

    Pole zero compensation of LC filter 

    Desired loop bandwidth =~ Fs/5 to Fs/10

     Advanced VLSI Design Laboratory 

    Ramp Oscillator

    comparator

    10/2

    R2

    R1

    v1

    dd Supply Voltage

    clock 

    vc

    Vref 

    comparator

    200/2   C

    Ramp SignalLatch

    RS

    I

    +

    +

    I = C * Fsw * v1

     Advanced VLSI Design Laboratory 

    CurrentCurrent--Mode Control ArchitectureMode Control Architecture

     Advanced VLSI Design Laboratory 

    Switching Regulators : Design Steps

    1. Define requirements

    • Range of input voltages

    • Required output voltage(s)• Required output current

    2. Find a suitable controller IC

    • Web sites; parametric searches

    • From a list of suitable IC’s, optimize forefficiency and ease of procurement

    3. Read datasheet closely!

    4. Find the inductor, capacitor, diode

    5. Build prototype

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    8/11

     Advanced VLSI Design Laboratory 

    Switching Regulator ICsFinding Parts

      Some manufacturers

      www.national.com

      www.maxim-ic.com

      www.linear.com   www.analog.com

      www.ti.com

      www.intersil.com

      www.fairchild.com

      www.st.com

      Many more or design yourself ….

     Advanced VLSI Design Laboratory 

    Switching Regulators: Passives

    Capacitors

    ‘Low-ESR’ tantalums: medium ESR,Sanyo’s POSCAP—no explosions!

     Aluminum electrolytics: high ESR,

    Cornell Dubilier’s Organic semiconductor“OSCON”—low ESR, high cost

    Solid polymer aluminum: low ESR,

    Diodes

    Schottky diodes: low voltage drop

    SMT are best

    Inductors

    High current-handling, low resistancerequired

    SMT toroids work very well

     Advanced VLSI Design Laboratory 

    Switch Capacitor Circuits

    or

    Charge Pumps

     Advanced VLSI Design Laboratory 

    Motivations

    Inductor-less

    On-chip integration

    Low cost

    High switching frequency

    Easy to implement (open-loop system)

    Fast transient but large ripple

    High efficiency but limited output power 

     Advanced VLSI Design Laboratory 

    Ideal Dickson’s Charge Pump(Phase 1)

    clk_bar 

    VDD Vo

    C1 C2 C3

    clk

    VDD-Vt

    2VDD-VtVDD

    0

    VDD

    VDD-Vt

    VDD-Vt

    • Clk=0, Clk_bar=VDD• Finite diode voltage drops, Vt

     Advanced VLSI Design Laboratory 

    Ideal Dickson’s Charge Pump(Phase 2)

    clk_bar 

    VDD Vo

    C1 C2 C3

    clk

    VDD-Vt2VDD-2Vt

    2VDD-Vt3VDD-2Vt

    VDD

    VDD

    0

    • Clk=VDD, Clk_bar=0• Maximum voltage stress on diodes 2VDD-Vt => reliability issue

    • Maximum voltage stress on capacitors VCn =n(VDD-Vt) => reliability issue

    VDD-Vt

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    9/11

     Advanced VLSI Design Laboratory 

    Switching Regulators : Switched Capacitor

    Produce output voltage

    equal to –Vin or 2 x Vin

    Output noisy and poorly

    regulated, but OK for

    certain applications

     Advanced VLSI Design Laboratory 

     Applications

    Flash ROM

    Substrate Biasing Circuits

     Advanced VLSI Design Laboratory 

    Power Supply Design : Helpful Hints Efficiency not an issue? Linear regulators may be best.

    Battery powered? Consider switcher for efficiency.

    Vout > Vin? Use a switcher (Boost).

    With switchers, stick to simple topologies like Boost andBuck. Advanced topologies not for the faint of heart!

    Use a combination of switchers and linear regulators to getmultiple output voltages.

    Electrical noise an issue (e.g., with A/D converters)?Strongly consider post-regulation using a linear regulator.

    Need to double (2 x Vin) or invert (-Vin)? Consider acapacitive ‘charge pump’ .

    Put batteries in series, not parallel. Parallel batteries canrapidly self-discharge, wasting battery life.

     Advanced VLSI Design Laboratory 

     Voltage Regulator Modules

     Advanced VLSI Design Laboratory 

    Next Generation Power Supplies

    Decreasing trend of supply voltages

    Higher current load together with

    increased slew rate

    Intel road map of CPU load voltage

    and current

     Advanced VLSI Design Laboratory 

    Smaller inductor can be used improves dynamics

    Ripple cancellation @ Vo

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    10/11

     Advanced VLSI Design Laboratory 

    Interleaving Technique

    Two synchronous Buck Phase Shifted by 180 degree

    Current ripple is cancelled for duty ratio of 50%

     Advanced VLSI Design Laboratory 

     Why Multiphase?

    Current division Higher current carrying capability

    Better thermal performance Low current in each phase reduces the loss and heat

    generated 

    Use of ceramic capacitors for decoupling Inductors are in parallel during load transient fast

    settling small multi-layer ceramic capacitors

     Advanced VLSI Design Laboratory 

     Voltage Mode Control Scheme

    SW2

    SW1

    Rds=2m

    G2

    G1

    Rds=2m

    Rds=2m

    Rds=2m

    load

    20m1m

    ESR

    S2

    S1

    Ramp1

    Ramp2

    6

    VID

    Vref 

    Vout

    Ve

    Vin

    12V

    DRIVERS

    DRIVERS

    +

    A

    C

    DCompensator

    Voltage

    PID

    2000uF

    2m4 n

    400nH

    2m

    D

    Q’

    Q−

    +

    D

    Q’

    Q−

    +

    +

     Advanced VLSI Design Laboratory 

     Waveforms for VMC

    1. Phase shifted ( switching

     period divided by number

    of phases) ramps are

    compared with error

    amplifier output

    2. D = Vea/Vramp

    G2

    Vea

    TsTs/20   3/2Tst1  t2

    Ramp2

    VeaRamp1

    S2

    S1

    G1

     Advanced VLSI Design Laboratory 

    Layout Issues

    Power MOSFET Design

    Current Carrying Capability

    Maximum current limit of Metals used

    Maximum current in an array

    Optimization of Losses

    Conduction Loss is inversely proportional to size

    Switching loss is directly proportional to size

    Conduction Loss = Switching Loss

     Advanced VLSI Design Laboratory 

    Layout of the Power MOSFET

    Determine size of the single cell forfixed current carrying capability

    which is fraction of total rated

    current of POWER MOSFET

  • 8/20/2019 Design of High Efficiency DC-DC SMPS

    11/11

     Advanced VLSI Design Laboratory 

    Connect the devices in parallel

    Source

    Drain

     Advanced VLSI Design Laboratory 

     Array of MOSFETs

    S

    O

    U

    R

    C

    E

    D

    R A

    I

    N

    Gate

     Advanced VLSI Design Laboratory 

     A POWER MOSFET

     Advanced VLSI Design Laboratory 

    Thank You


Recommended