+ All Categories
Home > Documents > Design of High Performance Drilling Fluids: Challenges And...

Design of High Performance Drilling Fluids: Challenges And...

Date post: 06-Mar-2018
Category:
Upload: vuongbao
View: 219 times
Download: 1 times
Share this document with a friend
16
Design of High Performance Drilling Design of High Performance Drilling Fluids: Challenges And Future Directions for HP/HT Fluids for HP/HT Fluids Apurva Samudra Prof. Nick Sahinidis Kickoff Meeting Energy Systems Initiative (ESI) Energy Systems Initiative (ESI) Center for Advanced Process Decision-making
Transcript

Design of High Performance Drilling Design of High Performance Drilling Fluids: Challenges And Future Directions for HP/HT Fluidsfor HP/HT Fluids

Apurva Samudra

Prof. Nick Sahinidis

Kickoff MeetingEnergy Systems Initiative (ESI) Energy Systems Initiative (ESI)

Center for Advanced Process Decision-making

Deep Drilling

o World energy demand continuously increasing 

Total estimated conventional gas resources ato Total estimated conventional gas resources at depths > 4.5 km = 844 TCF

o No. of deep wells disproportionately small compared to their potential

Costs are an order of magnitude higher  High costs limit the number of deep wells g p Drilling amounts to 50% of the total well costs Last 10‐20% of the bore hole can account for 50% 

of the total cost2

Drilling Process

A Drill pipe

B Drill string

AE g

C Drill bit

D Rock cuttingsFB

E Annulus

F Solid ti

Dseparationdevices 

C

3Source: Schlumberger Excellence in Educational Development (SEED)

Drilling Cycle

Drill pipe 

i h h

Turbulent zone

i dj d

ill biProperty

o High shear zoneo High temperature 

Properties adjusted with additives

Drill bit Property Adjustment 

o Laminar flow

Well annulus 

Solids control 

o Filter‐cake formation 

o Cuttings transport

Shale shakers, centrifuges etc. with 

Low shear rate

4

o Cuttings transport

Functions of Drilling Fluids

o Remove and transport drilled cuttings 

Removal increases rate of penetration Removal increases rate of penetration

o Cool and lubricate the drill bit

Increase lifespan of the bit

o Seal the wall in permeable formations 

Form a filter cake to reduce loss of circulation

o Control pressure in the drilled formationo Control pressure in the drilled formation 

Stability and efficiency affected greatly by pressure Manage gas kicks formation liquid invasion etc Manage gas kicks, formation liquid invasion etc.

5

Functions of Drilling Fluids

o Minimize reservoir damage 

Permit formation evaluationo Permit formation evaluation

o Maintain well‐bore stability

o Prevent corrosion and excessive wear

o Facilitate cementing and completiono Facilitate cementing and completion

o Inhibit gas hydrate formation

o Neutralize corrosive gases encountered

6

Components of Water-based MudsWaterFreshwater, seawater, brines

Base fluidSolubleThinners

InertOther minerals

Water‐based muds

Thinners, salts, …

ReactiveSmectite

mudsMud system High density

Weighing material,Solids

Drilled cuttings

Low density

Weighing material, insoluble salts

7

Low densityClays, polymers

Components of Non-aqueous Muds

External phase

Base fluidEsters, diesel, mineral oilssynthetic fluids like olefins, 

phase

Soluble additives

Non‐aqueous Muds

Soluble additivesSurfactants, rheology modifiers, thinners, Internal phase

Lime, glycols, acetates, Muds

Mud systemOrganophillic clays, weight 

nitrates

Solids

material, CaCO3

Drilled

8

Drilled cuttings

HP/HT Drilling Challenges

o Meet the demanding conditions

Depths > 20000 ft Pressures up to 2000 bar Depths > 20000 ft , Pressures up to 2000 bar, Temperatures up to 250°C

o At extreme conditions low ROP leads to higho At extreme conditions low ROP leads to high costs

ddi i d d Additive degrade Mud breaks down Mud behavior difficult to predict

o Performance vs. Environmental acceptance

9

Design Process

o Identify possible

FormulateoDevelop

oAssess current muds

oDefine needs

o Identify possible additives 

oFormulate d l

oDevelop algorithms to span the search spaceoDefine needs

Assesproperty models space

Design

10

Assessment of Current Muds

o Asses conditions of failure for current drilling fluids and additivesfluids and additives

Define the targets for Computer‐Aided Molecular Design (CAMD)Design (CAMD)

o Identify classes of components used for drilling

lo Over 500 patents in just last 10 years

o Review of drilling fluid additives tailored for gextreme conditions

11

Future Directions

o CAMD is an effective technique used for product 

designdesign

o Key directionsy

Polymer additive design

h i b fl id d i Synthetic base fluid design

Surfactant system design

Tailoring mixture properties for optimal drilling 

parameters

12

p

Temperature Effects

o Examine the current additives 

Stability and applicability range Stability and applicability range

o Degradation needs to be considered

Rate of decomposition as function of temperature

o Model for stability of mixtures

Colloidal mixture property models  Effects of temperature on colloidal stabilityp y

o Develop and include stability models

13

Polymer Additives

Approaches to polymer design

Group Contribution (GC)o Group Contribution (GC)

Contributions for some polymer properties using monomer structure

o Quantity‐Structure Property Relations (QSPR)

Diverse structural descriptors to predict properties

o Connectivity Indices (CI)y ( )

Topological indices as descriptors for backbone and pedant groupsp g p

14

Polymer Design Challenges

o GC, CI fail with increasing size and complexity

Difficult to include effects ofo Difficult to include effects of

Branching Co‐polymers

o Lack of quality data for different systems

o Uncertainty present in property prediction

Polymer additives deteriorate at higho Polymer additives deteriorate at high temperature

15

Other Key Areas

o Base fluid design

Targets: Expected rheology and stability Targets: Expected rheology and stability Environmentally conscious design

C ll id l i t d io Colloidal mixture design

Composition selection based on mixture stability lmodels

Optimal weighing material size distribution

o Surfactant systems

o Lost‐circulation material

16


Recommended