+ All Categories
Home > Documents > Design of Solid Spallation Targets at PSI - cap.bnl.gov · Design of Solid Spallation Targets at...

Design of Solid Spallation Targets at PSI - cap.bnl.gov · Design of Solid Spallation Targets at...

Date post: 09-Sep-2018
Category:
Upload: vudan
View: 217 times
Download: 0 times
Share this document with a friend
18
Kürzel, Datum Design of Solid Spallation Targets at PSI G. Heidenreich Paul Scherrer Institut, 5232 Villigen PSI Switzerland
Transcript

Kürzel, Datum

Design of Solid Spallation Targetsat PSI

G. Heidenreich

Paul Scherrer Institut, 5232 Villigen PSI

Switzerland

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich2

Neutron Spallation Sources at PSI (SINQ)

Beam loss

Target E Station

30 % with 40 mm Target E

SINQ (DC-Operation) 570 MeV, 1.4 mA

Target

D2O-Moderator

p

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich3

Neutron Spallation Sources at PSI (UCN)

Ultra Cold Neutron Source UCN(in construction) 590 MeV, 2 mA

UCN-Storage Tank

D2-Moderator (8K)

D2O-Moderator (R.T.)

Target

p

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich4

Layout of the SINQ & UCN Solid Targets

UCN-Target:Pulsed operation: 8 seconds beam on (2 mA 590 MeV) 1.2 MW beam power on target; 1% duty cycleBeam parameter: Gaussian beam spot (cut by collimator at R = 2.5 σ); Peak current density 20 μA/cm2

SINQ-Target:Continuous operation: (1.4 mA 570 MeV) 0.8 MW beam power on targetBeam parameter: Gaussian beam spot (cut by collimator II); Peak current density ~35 μA/cm2

p

∅ 212 mm

1 m

p∅ 269 mm

Target hull Target array Shielding Target shaft D O coolant supply2

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich5

SINQ - Target

Pb filled stainless steel tubes

Pb filled Zy-2 tubes

Targetcooling

Windowcooling

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich6

Power Deposition (590 MeV p-beam)

~70 % of the beam power deposited in the target assembly

flow guides Zy-2 rods or Pb filled Zy-2 tubes Al-clad Pb shielding (320 MeV/p) (1.2 MeV/p)

beam window target hull D2O(4.8 MeV/p) (4.5 MeV/p) (90 MeV/p)

Target cooling18 kg/s D2O

Window cooling2.5 kg/s D2O

UCN - Target

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich7

Layout of the Target Array

Target array options: SINQ: UCN:I. solid Zircaloy rods 1996/98II. Pb filled Stainless Steel tubes 1999/2005III. Pb filled Zircaloy tubes 2004/2005 > 2007

11.04 mm

Pb

Transversal pitch12.75 mm

2 mm

Ø 10.75 mm

Stainless Steelor

Zircaloy tubes90 % filled with Pb

Vfluid = 0.5 m/s

dm/dF = 500 kg/s/m2

Tb = 40°C

·

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich8

Neutronic Performance

Relative thermal flux

gain

Zy-2 rods(64.5% Zr, 35.5% D2O)

Pb-SS304-Cladding (48% Pb, 11.5% SS304, 34.9% D2O, 5.6% Void)

Pb-Zy2-Cladding

(42.9% Pb, 16.7%Zr, 35.5% D2O, 4.9% Void)

UCN 1) 1.00 *) 1.38 1.61

SINQ 2) 1.00 *) 1.42 1.63 **)

1) M. Wohlmuther, G. Heidenreich Design and neutronic performance of the spallation target of the ultra-cold neutron source UCN at PSI, ICANS-XVII, April 25-29, 2005 Santa Fe, New Mexico

2) E.J. Pitcher, J.R. Lebenhaft, E.H. Lehmann, An Investigation of Neutron Spallation Targets in SINQ usingMCNPX, ICANS-XVI, Proceedings of ICANS-XVI, Düsseldorf-Neuss, Germany May 12-15, Vol. III, p.1191, ISSN 1433-559X (2003).

*) ~ 4.5·10 13 n/cm2/s/mA **) ~ 20 % flux gain for MEGAPIE

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich9

Thermo-hydraulic operating regime of the target array

Vfluid = 0.5 m/sdm/dF = 500 kg/s/m2

p = 0.5 MpaTsat = 150 °C

Tbulk = 40 °C

σ : Standard deviationof the Gaussiandistributed beam

σ (cm)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5

Bea

m C

urre

nt (m

A)

UCNSINQ

Critical HeatFlux 3b)

SaturatedBoiling 3a)

High subcooling regime 2)

Forced convection regime 1)

Low subcooling regime 2)

1) V. Gnielinski, VDI-Wärmeatlas,19982) M.M. Shah, Int. J. Heat and Fluid Flow Vol.5, No. 1,1984.3a) M.Z. Hazan et al., J.Heat Trans. 103, 478 (1981).3b) H.J. Ivey , D.J. Morris, UKAEA, AEEW-R137,1962.

·

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich10

Thermo-mechanical design of the Pb-filled tubes for pulsedoperation in the UCN-target

Design steps:

Measurement of stress-strain relation of Pb ⇒ σ = f( T, dε/dt)

Calculation of temperature response of Pb

Calculation of stress response in the tube wall

Pb

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich11

Measured stress-strain relations of Pbstrain rate dε /dt = 7 10-6 s-1

0

1

2

3

4

5

6

7

8

9

0 0.002 0.004 0.006 0.008 0.01

Strain ε

Stre

ss (N

/mm

2 )

20 deg C100 deg C150 deg C

strain rate dε /dt = 0.01 s-1

0

1

2

3

4

5

6

7

8

9

0 0.002 0.004 0.006 0.008 0.01

Strain ε

Stre

ss (N

/mm

2 )

20 deg C100 deg C150 deg C300 deg C (extrapolated)

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich12

Temperature & stress response due to the heat load by theproton pulse (peak current density 20 μA/cm2)

Fatigue limit(106 cycles) of Zy-2 :

⇒ 235 N/mm2 (20 °C)

K.U. Snowden et al., J. Nucl. Mat. 67,p.215, 1977.

0

50

100

150

200

250

300

350

0 2.5 5 7.5 10Time (s)

Tem

pera

ture

(°C

)

2. No heat contact Pb-Zy2 (sliding contact)

1. Perfect intermetallic contact Pb-Zy2

Temperature response of Pb

0

50

100

150

200

0 0.5 1 1.5 2 2.5

Time (s)St

ress

(MPa

)

1. Perfect intermetallic contact Pb-Zy2

2. Sliding contact Pb-Zy2 (no heat contact)

Stress response of Zy-2 cladding

dT/dt = 300°C/s

⇒ strain rate: dε/dt = α⋅dT/dt = 0.01 s-1

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich13

Temperature & stress distribution

190 N/mm2

10cm

10.7

5 m

m

40 °C

240 °C

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich14

Hydrogen production in the target array

LAHET Calculation :

Peak values for Pb-filledZr-tubes per year (10 Ah):

UCN: ~ 3 wppmSINQ: ~ 500 wppm

0 10 20 30 400.00

0.05

0.10

0.15

0.20

ZrPb

Position (cm)

H-a

tom

s/cm

3/ F

luen

ce(p

/cm

2 )

Neutron Radiography Method *):

Measured peak value of hydrogencontent for a Zr-rod irradiated at position 8 cm in SINQ.

~ 70 wppm H / 3·1021 p/cm2

⇒ 0.1 (atoms/cm3) / (p/cm2)*) E. Lehmann, PSI

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich15

Beam window design

Flow guide

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich16

Fluid velocity at window center

UCN : 2.5 m/s

SINQ : 6 m/sMass flow 2.5 kg/s D2O

CFD - Analysis

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich17

Thermo-hydraulic operating regimes of the UCN and SINQ window

0

50

100

150

200

250

0 2 4 6 8 10 12 14

Heat Flux (MW/m2)

Wal

l Tem

pera

ture

(°C

) UCN

SINQ

Fluid velocityUCN: 2.5 m/sSINQ: 6 m/s

Normal operation

Forced convection regime

Subcooled boiling regime

M.M. Shah, Heat Transfer Eng., Vol 4, No.1, 1983

Critical heat flux

S. Mirshak et al., SavannahRiver, DP-355,1959

Quadrupol failure320 μA/cm2

Beam misses target E (40 mm)~ 900 μA/cm2

Tsat = 150°C

2nd High-Power Targetry Workshop, Oak Ridge, TN, October 10-14, 2005 / G. Heidenreich18

Thank you for your attention !


Recommended