+ All Categories
Home > Documents > Design of Vessel Supports 215pvmanage.com/wp...from-Pages-from-PRESSURE-VESSEL...Procedure 4-5:...

Design of Vessel Supports 215pvmanage.com/wp...from-Pages-from-PRESSURE-VESSEL...Procedure 4-5:...

Date post: 02-Apr-2020
Category:
Upload: others
View: 22 times
Download: 2 times
Share this document with a friend
31
Design of Vessel Supports 215
Transcript

Design of Vessel Supports 215

2 Types of legs pipe angle tube or beam

Flow chart for design of vertical vessels on legs

Determine preliminarydesign details

Design vessel on unbracedlegs

Practicalsuccess YESNO

Begin braced leg design

Cross-braced Sway-braced

Bracing not pinned at centerBracing pinned at center

1 Qty of legs 346 etc2 Type of legs pipe angle tube or beam

4 Leg attachment type

Design anchor bolts amp base plates

3 Size of legs 4 6 8 etc

5 Type amp size of cross-bracing6 Method of attachment of cross-bracing to columns

3 Size of legs 4 6 8etc4 Leg attachment type

Preliminary Design Details

Final Desigin Details

1 Qty of legs 346 etc

Figure 4-17 Flow chart for design of vertical vessels on legs

216 Pressure Vessel Design Manual

Procedure 4-5 Seismic Design ndash Vessel on Braced Legs

Notation

Ab frac14 Area brace in2

Ac frac14 Area column in2

Abr frac14 Area brace required in2

Ca frac14 Corrosion allowance inDc frac14 Centerline diameter of columns inE frac14 Modulus of elasticity psif frac14 Maximum force in brace Lbsfa frac14 Axial stress compression psift frac14 Tension stress psiFa frac14 Allowable axial stress psiFb frac14 Allowable stress bending psiFc frac14 Allowable stress compression psiFD frac14 Axial load on column due to dead weight lbsFh frac14 Horizontal seismic force LbsFL frac14 Axial load on column due to seismic or wind lbsFt frac14 Allowable stress tension psiFV frac14 Vertical seismic force LbsFy frac14 Yield strength of material at temperature psig frac14 Acceleration due to gravity 386 insec2

Ib frac14 Moment of inertia bracing in4

Ir frac14 Required moment of inertia in4

Ic frac14 Moment of inertia column in4

k frac14 End connection coefficient columnsMo frac14 Overturning moment in-LbsN frac14 Number of columnsn frac14 Number of active rods per panel use 1 for sway

bracing 2 for cross bracingn0 frac14 Factor for cross bracing use 1 for unpinned and 2

for pinned at centerQ frac14 Maximum axial force in column Lbsrb frac14 Radius of gyration brace inrc frac14 Radius of gyration column inSr frac14 Slenderness ratioT frac14 Period of vibration secondsV frac14 Base shear LbsVn frac14 Horizontal force per column LbsWo frac14 Weight operating Lbsw frac14 Unit weight of liquid pcf

DL frac14 Change in length of brace ind frac14 Lateral deflection of vessel in

Horizontal Load Distribution Vn

The horizontal load on any one leg is dependent on thedirection of the leg bracing The horizontal force V istransmitted to the legs through the bracing Thus thegeneral equation

Vn frac14 Vsin2 an1 thorn sin2an

N

and SVn frac14 V

Vertical Load Distribution Fn

The vertical load distribution on braced and unbracedlegs is identical The force on any one leg is equal to thedead load plus the greater of seismic or wind and the angleof that leg to the direction of force V The general equa-tion for each case is as follows

For Case 1 For Case 2

FD frac14 Fv

NFD frac14 Fv

N

FL frac14 4M

NdFL frac14 4Md1

Nd2

Fn frac14 FD FL cos fn Fn frac14 FD FL cos fn

Design of Columns

bull Base ShearVUse worst case of wind or seismicV frac14 ________

bull Overturning Moment Mo

Mo frac14 L Vbull Maximum Dead load FD

FD frac14 ethTHORNWo=Nbull Maximum EarthquakeWind Load FEW

FL frac14 thorn= 4 Mo=N Dc

bull Maximum Column Load QSelect worst case from Table or use

Q frac14 FD thorn = FL

Q max compression frac14 QC frac14

Q max tension frac14 QT frac14

Table 4-12Dimensions for d1

No of Legs d1

3 750 DC

4 707 DC

6 866 DC

8 924 DC

10 951 DC

12 966 DC

16 981 DC

Design of Vessel Supports 217

Note If there is no uplift then there is no tension force

bull Leg selection

Use frac14 __________

AC frac14 ___________

Compression Casebull Compressive stress fa

fa frac14 QC=AC Fa

bull Slenderness ratio Sr frac14 khrcFafrac14

Tension Casebull Tension stress ft

ft frac14 QT=AC Ft

bull Allowable tension stress Ft

FT frac14 1206

Fy

Cross Bracing

Note Loads in cross bracing are tension andcompression

Compression Casebull Case 1 Pinned at center

Ir frac14 FL12=4p2E

Case 2 Not pinned at center

Ir frac14 FL12=p2E

Figure 4-18 Load diagrams for horizontal load distribution

D

FV

Fh

Fn Fn

FV

cg

ff

L

H

Y

V

Four legs (for illustration only)

218 Pressure Vessel Design Manual

Design of Vessel Supports 219

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

2 Types of legs pipe angle tube or beam

Flow chart for design of vertical vessels on legs

Determine preliminarydesign details

Design vessel on unbracedlegs

Practicalsuccess YESNO

Begin braced leg design

Cross-braced Sway-braced

Bracing not pinned at centerBracing pinned at center

1 Qty of legs 346 etc2 Type of legs pipe angle tube or beam

4 Leg attachment type

Design anchor bolts amp base plates

3 Size of legs 4 6 8 etc

5 Type amp size of cross-bracing6 Method of attachment of cross-bracing to columns

3 Size of legs 4 6 8etc4 Leg attachment type

Preliminary Design Details

Final Desigin Details

1 Qty of legs 346 etc

Figure 4-17 Flow chart for design of vertical vessels on legs

216 Pressure Vessel Design Manual

Procedure 4-5 Seismic Design ndash Vessel on Braced Legs

Notation

Ab frac14 Area brace in2

Ac frac14 Area column in2

Abr frac14 Area brace required in2

Ca frac14 Corrosion allowance inDc frac14 Centerline diameter of columns inE frac14 Modulus of elasticity psif frac14 Maximum force in brace Lbsfa frac14 Axial stress compression psift frac14 Tension stress psiFa frac14 Allowable axial stress psiFb frac14 Allowable stress bending psiFc frac14 Allowable stress compression psiFD frac14 Axial load on column due to dead weight lbsFh frac14 Horizontal seismic force LbsFL frac14 Axial load on column due to seismic or wind lbsFt frac14 Allowable stress tension psiFV frac14 Vertical seismic force LbsFy frac14 Yield strength of material at temperature psig frac14 Acceleration due to gravity 386 insec2

Ib frac14 Moment of inertia bracing in4

Ir frac14 Required moment of inertia in4

Ic frac14 Moment of inertia column in4

k frac14 End connection coefficient columnsMo frac14 Overturning moment in-LbsN frac14 Number of columnsn frac14 Number of active rods per panel use 1 for sway

bracing 2 for cross bracingn0 frac14 Factor for cross bracing use 1 for unpinned and 2

for pinned at centerQ frac14 Maximum axial force in column Lbsrb frac14 Radius of gyration brace inrc frac14 Radius of gyration column inSr frac14 Slenderness ratioT frac14 Period of vibration secondsV frac14 Base shear LbsVn frac14 Horizontal force per column LbsWo frac14 Weight operating Lbsw frac14 Unit weight of liquid pcf

DL frac14 Change in length of brace ind frac14 Lateral deflection of vessel in

Horizontal Load Distribution Vn

The horizontal load on any one leg is dependent on thedirection of the leg bracing The horizontal force V istransmitted to the legs through the bracing Thus thegeneral equation

Vn frac14 Vsin2 an1 thorn sin2an

N

and SVn frac14 V

Vertical Load Distribution Fn

The vertical load distribution on braced and unbracedlegs is identical The force on any one leg is equal to thedead load plus the greater of seismic or wind and the angleof that leg to the direction of force V The general equa-tion for each case is as follows

For Case 1 For Case 2

FD frac14 Fv

NFD frac14 Fv

N

FL frac14 4M

NdFL frac14 4Md1

Nd2

Fn frac14 FD FL cos fn Fn frac14 FD FL cos fn

Design of Columns

bull Base ShearVUse worst case of wind or seismicV frac14 ________

bull Overturning Moment Mo

Mo frac14 L Vbull Maximum Dead load FD

FD frac14 ethTHORNWo=Nbull Maximum EarthquakeWind Load FEW

FL frac14 thorn= 4 Mo=N Dc

bull Maximum Column Load QSelect worst case from Table or use

Q frac14 FD thorn = FL

Q max compression frac14 QC frac14

Q max tension frac14 QT frac14

Table 4-12Dimensions for d1

No of Legs d1

3 750 DC

4 707 DC

6 866 DC

8 924 DC

10 951 DC

12 966 DC

16 981 DC

Design of Vessel Supports 217

Note If there is no uplift then there is no tension force

bull Leg selection

Use frac14 __________

AC frac14 ___________

Compression Casebull Compressive stress fa

fa frac14 QC=AC Fa

bull Slenderness ratio Sr frac14 khrcFafrac14

Tension Casebull Tension stress ft

ft frac14 QT=AC Ft

bull Allowable tension stress Ft

FT frac14 1206

Fy

Cross Bracing

Note Loads in cross bracing are tension andcompression

Compression Casebull Case 1 Pinned at center

Ir frac14 FL12=4p2E

Case 2 Not pinned at center

Ir frac14 FL12=p2E

Figure 4-18 Load diagrams for horizontal load distribution

D

FV

Fh

Fn Fn

FV

cg

ff

L

H

Y

V

Four legs (for illustration only)

218 Pressure Vessel Design Manual

Design of Vessel Supports 219

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Procedure 4-5 Seismic Design ndash Vessel on Braced Legs

Notation

Ab frac14 Area brace in2

Ac frac14 Area column in2

Abr frac14 Area brace required in2

Ca frac14 Corrosion allowance inDc frac14 Centerline diameter of columns inE frac14 Modulus of elasticity psif frac14 Maximum force in brace Lbsfa frac14 Axial stress compression psift frac14 Tension stress psiFa frac14 Allowable axial stress psiFb frac14 Allowable stress bending psiFc frac14 Allowable stress compression psiFD frac14 Axial load on column due to dead weight lbsFh frac14 Horizontal seismic force LbsFL frac14 Axial load on column due to seismic or wind lbsFt frac14 Allowable stress tension psiFV frac14 Vertical seismic force LbsFy frac14 Yield strength of material at temperature psig frac14 Acceleration due to gravity 386 insec2

Ib frac14 Moment of inertia bracing in4

Ir frac14 Required moment of inertia in4

Ic frac14 Moment of inertia column in4

k frac14 End connection coefficient columnsMo frac14 Overturning moment in-LbsN frac14 Number of columnsn frac14 Number of active rods per panel use 1 for sway

bracing 2 for cross bracingn0 frac14 Factor for cross bracing use 1 for unpinned and 2

for pinned at centerQ frac14 Maximum axial force in column Lbsrb frac14 Radius of gyration brace inrc frac14 Radius of gyration column inSr frac14 Slenderness ratioT frac14 Period of vibration secondsV frac14 Base shear LbsVn frac14 Horizontal force per column LbsWo frac14 Weight operating Lbsw frac14 Unit weight of liquid pcf

DL frac14 Change in length of brace ind frac14 Lateral deflection of vessel in

Horizontal Load Distribution Vn

The horizontal load on any one leg is dependent on thedirection of the leg bracing The horizontal force V istransmitted to the legs through the bracing Thus thegeneral equation

Vn frac14 Vsin2 an1 thorn sin2an

N

and SVn frac14 V

Vertical Load Distribution Fn

The vertical load distribution on braced and unbracedlegs is identical The force on any one leg is equal to thedead load plus the greater of seismic or wind and the angleof that leg to the direction of force V The general equa-tion for each case is as follows

For Case 1 For Case 2

FD frac14 Fv

NFD frac14 Fv

N

FL frac14 4M

NdFL frac14 4Md1

Nd2

Fn frac14 FD FL cos fn Fn frac14 FD FL cos fn

Design of Columns

bull Base ShearVUse worst case of wind or seismicV frac14 ________

bull Overturning Moment Mo

Mo frac14 L Vbull Maximum Dead load FD

FD frac14 ethTHORNWo=Nbull Maximum EarthquakeWind Load FEW

FL frac14 thorn= 4 Mo=N Dc

bull Maximum Column Load QSelect worst case from Table or use

Q frac14 FD thorn = FL

Q max compression frac14 QC frac14

Q max tension frac14 QT frac14

Table 4-12Dimensions for d1

No of Legs d1

3 750 DC

4 707 DC

6 866 DC

8 924 DC

10 951 DC

12 966 DC

16 981 DC

Design of Vessel Supports 217

Note If there is no uplift then there is no tension force

bull Leg selection

Use frac14 __________

AC frac14 ___________

Compression Casebull Compressive stress fa

fa frac14 QC=AC Fa

bull Slenderness ratio Sr frac14 khrcFafrac14

Tension Casebull Tension stress ft

ft frac14 QT=AC Ft

bull Allowable tension stress Ft

FT frac14 1206

Fy

Cross Bracing

Note Loads in cross bracing are tension andcompression

Compression Casebull Case 1 Pinned at center

Ir frac14 FL12=4p2E

Case 2 Not pinned at center

Ir frac14 FL12=p2E

Figure 4-18 Load diagrams for horizontal load distribution

D

FV

Fh

Fn Fn

FV

cg

ff

L

H

Y

V

Four legs (for illustration only)

218 Pressure Vessel Design Manual

Design of Vessel Supports 219

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Note If there is no uplift then there is no tension force

bull Leg selection

Use frac14 __________

AC frac14 ___________

Compression Casebull Compressive stress fa

fa frac14 QC=AC Fa

bull Slenderness ratio Sr frac14 khrcFafrac14

Tension Casebull Tension stress ft

ft frac14 QT=AC Ft

bull Allowable tension stress Ft

FT frac14 1206

Fy

Cross Bracing

Note Loads in cross bracing are tension andcompression

Compression Casebull Case 1 Pinned at center

Ir frac14 FL12=4p2E

Case 2 Not pinned at center

Ir frac14 FL12=p2E

Figure 4-18 Load diagrams for horizontal load distribution

D

FV

Fh

Fn Fn

FV

cg

ff

L

H

Y

V

Four legs (for illustration only)

218 Pressure Vessel Design Manual

Design of Vessel Supports 219

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Design of Vessel Supports 219

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

METHOD 1 METHOD 2 METHOD 3

Vn = Horiz shear per lug

Worst case from Table dependent on number of legs and direction of seismic force (between legs or through legs)

NA Vn =VN

f = Max force in brace

f = Vn n Sin θ f = 2 Wo 2 N Sin θ f = Vn Sin θ

ΔL = Change in length of brace

ΔL = (f L1 ) (E Ab) ΔL = (f L1 ) (E Ab) ΔL = (2 Wo L1 ) (2 N E Ab Sin θ)

δ = Lateral deflection of Vessel

δ = ΔL Sin θ δ = ΔL Sin θ δ = ΔL Sin θ

T = Period of vibration

T = 2 π ( δ g )12 T = 2 π ( δ g )12 T = 2 π ( δ g )12

VESSEL ON BRACED LEGS - SEISMIC DESIGN

NOTES

1 Approx POV per ASCE 7-05 Ta = Ct hnx

220 Pressure Vessel Design Manual

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Figure 4-19 Load diagrams for vertical load distribution

Table 4-13Summary of loads forces amp moments at support locations

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

6 1 thorn 0083 V FD thorn 1000 FL thorn 0125 V FD thorn 0866 FL

2 thorn 0208 V FD thorn 0500 FL thorn 0250 V FD

3 thorn 0208 V FD 0500 FL thorn 0125 V FD 0866 FL

4 thorn 0083 V FD 1000 FL thorn 0125 V FD 0866 FL

5 thorn 0208 V FD 0500 FL thorn 0250 V FD

6 thorn 0208 V FD thorn 0500 FL thorn 0125 V FD thorn 0866 FL

8 1 thorn 0036 V FD thorn 1000 FL thorn 0062 V FD thorn 0923 FL

2 thorn 0125 V FD thorn 0707 FL thorn 0187 V FD thorn 0382 FL

3 thorn 0213 V FD thorn 0187 V FD 0382 FL

4 thorn 0125 V FD 0707 FL thorn 0062 V FD 0923 FL

5 thorn 0036 V FD 1000 FL thorn 0062 V FD 0923 FL

6 thorn 0125 V FD 0707 FL thorn 0187 V FD 0382 FL

7 thorn 0213 V FD thorn 0187 V FD thorn 0382 FL

8 thorn 0125 V FD thorn 0707 FL thorn 0062 V FD thorn 0923 FL

10 1 thorn 0019 V FD thorn 1000 FL thorn 0034 V FD thorn 0951 FL

2 thorn 0075 V FD thorn 0809 FL thorn 0125 V FD thorn 0587 FL

3 thorn 0165 V FD thorn 0309 FL thorn 0180 V FD

4 thorn 0165 V FD 0309 FL thorn 0125 V FD 0587 FL

5 thorn 0075 V FD 0809 FL thorn 0034 V FD 0951 FL

6 thorn 0019 V FD 1000 FL thorn 0034 V FD 0951 FL

7 thorn 0075 V FD 0809 FL thorn 0125 V FD 0587 FL

8 thorn 0165 V FD 0309 FL thorn 0180 V FD

9 thorn 0165 V FD thorn 0309 FL thorn 0125 V FD thorn 0587 FL

10 thorn 0075 V FD thorn 0809 FL thorn 0034 V FD thorn 0951 FL

12 1 thorn 0011 V FD thorn 1000 FL thorn 0020 V FD thorn 0965 FL

2 thorn 0047 V FD thorn 0866 FL thorn 0083 V FD thorn 0707 FL

3 thorn 0119 V FD thorn 0500 FL thorn 0145 V FD thorn 0258 FL

4 thorn 0155 V FD thorn 0145 V FD 0258 FL

5 thorn 0119 V FD 0500 FL thorn 0083 V FD 0707 FL

6 thorn 0047 V FD 0866 FL thorn 0020 V FD 0965 FL

7 thorn 0011 V FD 1000 FL thorn 0020 V FD 0965 FL

8 thorn 0047 V FD 0866 FL thorn 0083 V FD 0707 FL

(Continued )

Design of Vessel Supports 221

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Use ___________

Ibfrac14 ___________

rbfrac14 ___________

Abfrac14 ___________

bull Compressive Stress fa

fa frac14 Qc=Ac Fabull Slenderness ratio Srfrac14KL1n0rb n0 frac14 1 for not pinned2 for pinnedFafrac14

Tension Casebull Tension stress ft

ft frac14 f=Ab Ftbull Allowable tension stress Ft

FT frac14 1206

Fy

Sway Bracing

Note Loads in sway bracing are tension only

bull Area of bracing required Abr

Abr frac14 f=Ft

bull Allowable tensile stress Ft

FT frac14 1206

Fy

End Connections

bull Shear per bolt frac14 5 f number of boltsbull Shear per inch of weldfrac14 5 f inch of weld

Table 4-13Summary of loads forces amp moments at support locationsdcontrsquod

Qty of

Columns Leg No

Case 1 At Columns Case 2 Between Columns

Horiz ( Vn ) Vertical ( Q ) Horiz ( Vn ) Vertical ( Q )

9 thorn 0119 V FD 0500 FL thorn 0145 V FD 0258 FL

10 thorn 0155 V FD thorn 0145 V FD thorn 0258 FL

11 thorn 0119 V FD thorn 0500 FL thorn 0083 V FD thorn 0707 FL

12 thorn 0047 V FD thorn 0866 FL thorn 0020 V FD thorn 0965 FL

16 1 thorn 0004 V FD thorn 1000 FL thorn 0009 V FD thorn 0980 FL

2 thorn 0021 V FD thorn 0923 FL thorn 0040 V FD thorn 0831 FL

3 thorn 0062 V FD thorn 0707 FL thorn 0084 V FD thorn 0555 FL

4 thorn 0103 V FD thorn 0382 FL thorn 0115 V FD thorn 0195 FL

5 thorn 0120 V FD thorn 0115 V FD 0195 FL

6 thorn 0103 V FD 0382 FL thorn 0084 V FD 0555 FL

7 thorn 0062 V FD 0707 FL thorn 0040 V FD 0831 FL

8 thorn 0021 V FD 0923 FL thorn 0009 V FD 0980 FL

9 thorn 0004 V FD 1000 FL thorn 0009 V FD 0980 FL

10 thorn 0021 V FD 0923 FL thorn 0040 V FD 0831 FL

11 thorn 0062 V FD 0707 FL thorn 0084 V FD 0555 FL

12 thorn 0103 V FD 0382 FL thorn 0115 V FD 0195 FL

13 thorn 0120 V FD thorn 0115 V FD thorn 0195 FL

14 thorn 0103 V FD thorn 0382 FL thorn 0084 V FD thorn 0555 FL

15 thorn 0062 V FD thorn 0707 FL thorn 0040 V FD thorn 0831 FL

16 thorn 0021 V FD thorn 0923 FL thorn 0009 V FD thorn 0980 FL

Notes

1 Radius Rn in equations will be R1 if a girder is used Rc if no girder is used

Table 4-14Allowable shear load in kips (bolts and welds per AISC steel

construction manual ASD method)

Bolt Size A-307 A-325

625rdquo 368 736

75rdquo 530 106

875rdquo 721 144

1rdquo 942 188

1125rdquo 119 238

WELD SIZE E60XX E70XX

1875 239 278

25 318 371

3125 398 464

375 477 557

4375 556 650

222 Pressure Vessel Design Manual

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Post Connection Plate

See ldquoDesign of Ring Girdersrdquo

Notes

1 Cross-bracing the legs will conveniently reducebending in legs due to overturning moments (ldquowindand earthquakerdquo) normally associated with unbracedlegs The lateral bracing of the legs must be sized totake lateral loads induced in the frame that wouldotherwise cause the legs to bend

2 Legs may be made from angles pipes channelsbeam sections or rectangular tubing

3 Legs longer than about 7 ft should be cross-braced4 Check to see if the cross-bracing interferes with

piping from bottom head5 Shell stresses at the leg attachment should be

investigated for local loads For thin shells extendldquoYrdquo Legs should be avoided as a support methodfor vessels with high shock loads or vibrationservice

Procedure 4-6 Seismic Design ndash Vessel on Rings [458]

Notation

Cv Ch frac14 verticalhorizontal seismic factorsAb frac14 bearing area in2

Fv Fh frac14 verticalhorizontal seismic force lbN frac14 number of support pointsn frac14 number of gussets at supports

P Pe frac14 internalexternal pressure psiW frac14 vessel weight under consideration lbsb frac14 bending stress psi

sf frac14 circumferential stress psiKr frac14 internal moment coefficientCr frac14 internal tensioncompression coefficientZ frac14 required section modulus ring in3

I1ndash2 frac14 moment of inertia of rings in4

S frac14 code allowable stress tension psiA1ndash2 frac14 cross-sectional area ring in2

TC TT frac14 compressiontension loads in rings lbM frac14 internal moment in rings in-lb

Table 4-15Suggested sizes of legs and cross-bracing

Vessel OD (in)

Tan to Tan

Length (in)

Support Leg

Angle Sizes (in)

Base Plate

Size (in)

Bracing Angle

Size (in)

Bolt

Size (in) Y (in)

Up to 30 Up to 240 (3) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 12

Up to 120 (4) 3 3 frac14 6 6 ⅜ frac34 8

30 to 42 121 to 169 (4) 3 3 frac14 6 6 ⅜ 2 2 frac14 frac34 10

170 to 240 (4) 3 3 ⅜ 6 6 frac12 frac34 12

Up to 120 (4) 3 3 ⅜ 6 6 frac12 2frac12 2frac12 frac14 frac34 8

43 to 54 121 to 169 (4) 3 3 ⅜ 6 6 frac12 frac34 10

170 to 240 (4) 4 4 ⅜ 8 8 ⅜ frac34 12

Up to 120 (4) 4 4 ⅜ 8 8 ⅜ 2frac12 2frac12 frac14 1 8

55 to 56 121 to 169 (4) 4 4 frac12 8 8 frac12 1 10

170 to 240 (4) 4 4 frac12 8 8 frac12 1 12

Up to 120 (4) 5 5 ⅜ 9 9 frac12 3 3 frac14 1⅛ 8

67 to 78 121 to 169 (4) 5 5 ⅜ 9 9 frac12 1⅛ 10

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅛ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 frac14 1⅛ 10

79 to 80 121 to 169 (4) 6 6 frac12 10 10 frac12 1⅛ 12

170 to 240 (4) 6 6 frac12 10 10 frac12 1⅜ 12

Up to 120 (4) 6 6 frac12 10 10 frac12 3 3 ⅜ 1⅜ 12

91 to 102 121 to 169 (6) 6 6 frac12 10 10 frac12 1⅜ 12

170 to 240 (6) 6 6 ⅝ 10 10 frac34 1⅜ 12

Design of Vessel Supports 223

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Mb frac14 bending moment in base ring in-lb greaterof Mx or My

Bp frac14 bearing pressure psiQ frac14 maximum vertical load at supports lbf frac14 radial loads on rings lb

bull Internal moment in rings M1 and M2Upper ring

M1 frac14 krfR1 cos q

Lower ring

M2 frac14 krfR2 cos q

Note cos q is to be used for nonradial loads Disregard ifload f is radial

bull Required section modulus of upper ring Z

Z frac14 M1

S

Note It is assumed the lower ring is always larger or of

equal size to the upper ring

bull Tensioncompression loads in rings Note In generalthe upper ring is in compression at the application ofthe loads and in tension between the loads The lowerring is in tension at the loads and in compressionbetween the loads Since the governing stress isnormally at the loads the governing stresses wouldbe

Upper ring

Tc frac14 Crf cos q

Figure 4-20 Typical dimensional data and forces for a vessel supported on rings

224 Pressure Vessel Design Manual

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

L3A

A A

A

L3

L4

L4

F2

F2

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTIONGOVERNS

UPPER PORTIONGOVERNS

F1

F1

LOS

LOS

INFLUENCE OF RING SUPPORT POSITIONING

Figure 4-21 Vessel supported on rings (Influence of support positioning)

Design of Vessel Supports 225

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Figure 4-22 Coefficients for rings

226 Pressure Vessel Design Manual

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Lower ring

TT frac14 Crf cos q

where Cr is the maximum positive value for TT and themaximum negative value for Tcbull Maximum circumferential stress in shell sfCompression in upper ring

sf frac14 ethTHORN PeRm

t Tc

A1

Tension in lower ring

sf frac14 PRm

tthorn TT

A2

bull Maximum bending stress in shell

Upper ring

sb frac14 M1C1

I1Lower ring

sb frac14 M2C2

I2bull Maximum bending stress in ringUpper ring

sb frac14 M1y1I1

Figure 4-23 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Figure 4-24 Coefficients for rings (Signs in the table arefor loads as shown Reverse signs for loads are in theopposite direction)

Design of Vessel Supports 227

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Figure 4-25 Properties of upper ring

Figure 4-26 Properties of lower ring

Figure 4-27 Determining the thickness of the lower ringto resist bending

Table 4-16Maximum bending moments in a bearing plate with gussets

lsquo

bMx

x[ 05by[ lsquo

Mx

x[ 05by[0

0 0 ()0500 Bpl2

0333 00078 Bp b2 ()0428 Bpl

2

05 00293 Bp b2 ()0319 Bpl

2

0666 00558 Bp b2 ()0227 Bpl

2

10 00972 Bp b2 ()0119 BPl

2

15 01230 Bp b2 ()0124 Bpl

2

20 01310 Bp b2 ()0125 BPl

2

30N 01330 Bp b2 ()0125 BPl

2

Reprinted by permission of John Wiley amp Sons Inc

From Process Equipment Design Table 103 (See Note 2)

228 Pressure Vessel Design Manual

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

bull Properties of upper ringbull Properties of lower ring

Lower ring

sb frac14 M2y2I2

bull Thickness of lower ring to resist bendingBearing area AbAb frac14

Bearing pressure Bp

Bp frac14 QAb

From Table 4-16 select the equation for the maximumbending moment in the bearing plate Use the greater ofMx or My

lsquo

bfrac14

Mb frac14Minimum thickness of lower ring tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mb

S

r

Notes

1 Rings may induce high localized stresses in shellimmediately adjacent to rings

2 When lb 15 the maximum bending momentoccurs at the junction of the ring and shell Whenlbgt 15 the maximum bending moment occurs atthe middle of the free edge

3 Since the mean radius of the rings may be unknownat the beginning of computations yet is required fordetermining maximum bending moment substituteRm as a satisfactory approximation at that stage

4 The following values may be estimatedbull Ring thickness The thickness of each ring isarbitrary and can be selected by the designer Asuggested value is

tb frac14 03

ffiffiffiffiffiffiffiffiffiffiffiMmax

S3

r

bull Ring spacing Ring spacing is arbitrary and can beselected by the designer A suggested minimumvalue is

h frac14 B D

bull Ring depth The depth of ring cannot be computeddirectly but must be computed by successiveapproximations As a first trial

d frac14 21

ffiffiffiffiffiffiffiffiffiffiffiMmax

trS

r

Procedure 4-7 Seismic Design ndash Vessel on Lugs [58ndash13]

Notation

Rm frac14 center line radius of shell inN frac14 number of equally spaced lugsW frac14 weight of vessel plus contents lbf frac14 radial load lb

Fh frac14 horizontal seismic force lbFv frac14 vertical seismic force lbVh frac14 horizontal shear per lug lbVv frac14 vertical shear per lug lbQ frac14 vertical load on lugs lb

g b frac14 coefficientsMc frac14 external circumferential moment inndashlbML frac14 external longitudinal moment in-lb

Mf frac14 internal bending moment circumferentialin-lbin

Mx frac14 internal bending moment longitudinal in -lbin

Nf frac14 membrane force in shell circumferential lbin

Nx frac14 membrane force in shell longitudinal lbinP frac14 internal pressure psiCh frac14 horizontal seismic factorCv frac14 vertical seismic factor

CcCi frac14 multiplication factors for Nf and Nx forrectangular attachments

KCK1 frac14 coefficients for determining b for momentloads on rectangular areas

Design of Vessel Supports 229

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

K1K2 frac14 coefficients for determining b for radial loadson rectangular areas

KnKb frac14 stress concentration factors (see Note 5)sf frac14 circumferential stress psisx frac14 longitudinal stress psits frac14 thickness of shell intp frac14 thickness of reinforcing pad ina frac14 coefficient of thermal expansion inindegFz frac14 radial deflection in

Neutralaxis

ML

Rm

bVh

a

Q1 Inner Outer

aQ3

Neutralaxis

bVh

ML = Q3a ndash VhbM1 = Q1a + Vhb

C

Figure 4-28 Dimensions and forces for support lug

OuterIug

Q1Q3

Fv

Fh

Fv

cg L

B

Innerlug

Neutralaxis

Figure 4-29 Case 1 Lugs below the center of gravity

InnerIug

Outerlug

Neutralaxis

B

LQ1

Q3

FvFh

Fv

cg

Figure 4-30 Case 2 Lugs above the center of gravity

00

90deg90deg

180deg

270deg270deg

b

2C12C1

2C2

2C2

b

Figure 4-31 Area of loading

L3

L3

L4

L4

F2

F2

F1

F1

LOSAA

A ALOS

Mmax = GREATER OF

Vmax = Greater of F1 or F2

MAA = F1 L3

Or F2 L4

LOWER PORTION

GOVERNS

UPPER PORTION

GOVERNS

Figure 4-32 Vessel supported on lugs (Influence ofsupport positioning)

230 Pressure Vessel Design Manual

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Design of Vessel Supports 231

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Table 4-18Coefficients for longitudinal moment ML

b1b2 g CL for Nf CL for Nx KL for Mf KL for Mx

15 075 043 180 124

50 077 033 165 116

025 100 080 024 159 111

200 085 010 158 111

300 090 007 156 111

15 090 076 108 104

50 093 073 107 103

05 100 097 068 106 102

200 099 064 105 102

300 110 060 105 102

15 089 100 101 108

50 089 096 100 107

1 100 089 092 098 105

200 089 099 095 101

300 095 105 092 096

15 087 130 094 112

50 084 123 092 110

2 100 081 115 089 107

200 080 133 084 099

300 080 150 079 091

15 068 120 090 124

50 061 113 086 119

4 100 051 103 081 112

200 050 118 073 098

300 050 133 064 083

Reprinted by permission of the Welding Research Council

Table 4-17Coefficients for circumferential moment Mc

b1b2 g Cc for Nf Cc for Nx Kc for Mf Kc for Mx

15 031 049 131 184

50 021 046 124 162

025 100 015 044 116 145

200 012 045 109 131

300 009 046 102 117

15 064 075 109 136

50 057 075 108 131

05 100 051 076 104 116

200 045 076 102 120

300 039 077 099 113

15 117 108 115 117

50 109 103 112 114

1 100 097 094 107 110

200 091 091 104 106

300 085 089 099 102

15 170 130 120 097

50 159 123 116 096

2 100 143 112 110 095

200 137 106 105 093

300 130 100 100 090

15 175 131 147 108

50 164 111 143 107

4 100 149 081 138 106

200 142 078 133 102

300 136 074 127 098

Reprinted by permission of the Welding Research Council

232 Pressure Vessel Design Manual

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Analysis when Reinforcing Pads are Used

Step 1 Compute radial loads f

Step 3 Compute equivalent b values

Step 2 Compute geometric parameters

Figure 4-33 Dimensions of load areas for radial loads

Case 1 Case 2 Case 3

Outer f1 frac14 3ML1

4C2f1 frac14 3ML1

4C2

Sides f2 frac14 3ML2

4C2f2 frac14 3ML2

4C2

Inner f3 frac14 3ML3

4C2f3 frac14 3ML3

4C2

Table 4-19

Four values of b are computed for use in

determining Nf Nx Mf and Mx as follows The values of K1 and K2 are taken from Table 4-19 Values of coefficient K1 and K2

b1b2 Dagger 1 b K1 K2

b frac14 frac121 1

3ethb1b2

1THORNeth1 k1THORNffiffiffiffiffiffiffiffiffiffib1b2

pba for Nf frac14 Nf 091 148

bb for Nxfrac14 Nx 168 12

b1b2 lt 1

b frac14 frac121 4

3eth1 b1

b2THORNeth1 k2THORN

ffiffiffiffiffiffiffiffiffiffiffiffiffib1=b2

pbc for Mf frac14 Mf 176 088

bd for Mx frac14 Mx 12 125

Reprinted by permission of the Welding Research Council

At Edge of Attachment At Edge of Pad

Rm frac14 IDthorn ts thorn tp2

Rm frac14 IDthorn ts2

t frac14ffiffiffiffiffiffiffiffiffiffiffiffiffit2s thorn t2p

qt frac14 ts

g frac14 Rm=t g frac14 Rm=t

b1 frac14 C1=Rm b1 frac14 d1=Rm

b2 frac14 4C2=3Rm b2 frac14 d2=Rm

b1=b2 b1=b2

Design of Vessel Supports 233

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Step 4 Compute stresses for a radial load

Radial Load Figure b Values from Figure Forces and Moments Stress

Membrane 7-21A ba frac14 NfRm

ffrac14 eth THORN Nf frac14 eth THORNf

Rmfrac14 sf frac14 KnNf

tfrac14

7-21B bb frac14 NxRm

ffrac14 eth THORN Nx frac14 eth THORNf

Rmfrac14 sx frac14 KnNx

tfrac14

Bending 7-22A bc frac14 Mf

ffrac14 eth THORN Mf frac14 eth THORNf frac14 sf frac14 6KbMf

t2frac14

7-22B bd frac14 Mx

ffrac14 eth THORN Mx frac14 eth THORNf frac14 sx frac14 6KbMx

t2frac14

234 Pressure Vessel Design Manual

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Figure 4-34 Radial loads F and f

Design of Vessel Supports 235

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

7

7

B

Fh

Case 1 Load through lugs

Case 2 Load between lugs

Fh

V7

V7

V8

V8

Φ1 = 0

Φ2 = 45ordm

Φ3 = 90ordm

Φ4 = 135ordm

Φ5 = 180ordm

Φ1 = 225ordm

Φ2 = 675ordm

Φ3 = 1125ordm

Φ4 = 1575ordm

V1

V1

V2

V2

B1

V3

V3

V4

V4

V5

V5

V6

V6

8

8

6

6

5

5

4

4

3

3

2

2

1

1

Φ2

Φ2

Φ1

Φ3

Φ3

Φ4

Φ4

Φ5

Figure 4-35 Vessel supported on (8) lugs

236 Pressure Vessel Design Manual

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Design of Vessel Supported on (8) Lugs

Item Formula Calculation

Lateral Force Fh frac14 Ch W

Horizontal ShearLug Vh frac14 Fh N

Vertical Force FV frac14 ( 1 thorn CV ) W

Overturning Moment M frac14 Fh L

Dead LoadLug VV frac14 FV N

Worst Case Vertical Live Load per Lug FL frac14 4 M N B

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b

Design of Vessel Supported on (8) Lugs (Example) Data

ITEM FORMULA CALCULATION Ch frac14 1

Lateral Force Fh frac14 Ch W Fh frac14 1 (141K ) frac14 141K CV frac14 2

Horizontal ShearLug Vh frac14 Fh N Vh frac14 141K 8 frac14 176K W frac14 141K

Vertical Force FV frac14 ( 1 thorn CV ) W FV frac14 (1 thorn 2 ) 141K frac14 1692K L frac14 84

Overturning Moment M frac14 Fh L M frac14 141K (84) frac14 1184 In-Kips a frac14 12

Dead LoadLug VV frac14 FV N VV frac14 1692K 8 frac14 2115K b frac14 624

Worst Case Vertical Live Load per Lug FL frac14 4 M N B FL frac14 4(1184K ) (8) 16025 frac14 369K B frac14 16025

B1 frac14 11331

VERTICAL LIVE LOAD ON EACH LUG FLn

LUG CASE 1 CASE 2

1 FL 924 FL

2 707 FL 383 FL

3 0 thorn 383 FL

4 thorn707 FL thorn 924 FL

5 thorn FL thorn 924 FL

6 707 FL thorn 383 FL

7 0 383 FL

8 thorn 707 FL 924 FL

Formulas in Table are based on the following equations

CASE 1 FL frac14 4 M cosfn N B

CASE 2 FL frac14 4 M cosfn N B1

Vertical Load on any Lug Qn frac14 VV thorn FLn

Worst Case Load per Lug Q frac14 VV thorn FL Q frac14 2115 thorn 369 frac14 2484K

Longitudinal Moment for any Given Lug MLn frac14 Qn a thorn- Vh b

Longitudinal Moment for any Worst Case ML frac14 Q a thorn- Vh b ML frac14 2484K (12) thorn 176K (624) frac14 309 in-Kips

Design of Vessel Supports 237

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Check lug for radial thermal expansion zr

DT frac14 Design temperature oFR frac14 Radius frac14 B 2a frac14 Coefficient of thermal expansion inin oF

DT frac14 Change in temperature from 70 oF

zr frac14 a DT R frac14

Example

R frac14 80125 in

DT frac14 925Fa frac14 79

106 in=in=F

DT frac14 925 70 frac14 855Fzr frac14 79

106 855 80125 frac14 541 in

Use slotted holes

Size of anchor bolts Required Ar

Due to Overturning Moment

Ar frac14 frac12eth4 M=BTHORN Wfrac121=ethNb SbTHORN

Nb frac14 Number of anchor boltsIf Ar is negative there is no uplift

Due to Shear

Shear lug fSfS frac14 Fh=Nb

Ar frac14 fS=FS

Use minimum size of anchor bolts of 075 in diameter

Notes

1 A change in location of the cg for various oper-ating levels can greatly affect the moment at lugsby increasing or decreasing the ldquoLrdquo dimensionDifferent levels and weights should be investigatedfor determining worst case (ie full half-fullempty etc)

2 This procedure ignores effects of sliding frictionbetween lugs and beams during heatingcoolingcycles These effects will be negligible forsmall-diameter vessels relatively low operating

temperatures or where slide plates are used toreduce friction forces Other cases should beinvestigated

3 Since vessels supported on lugs are commonlylocated in structures the earthquake effects will bedependent on the structure as well as on the vesselThus horizontal and vertical seismic factors mustbe provided

4 If reinforcing pads are used to reduce stresses in theshell or a design that uses them is being checkedthen Bijlaard recommends an analysis that convertsmoment loadings into equivalent radial loads Theattachment area is reduced about two-thirdsStresses at the edge of load area and stresses at theedge of the pad must be checked See ldquoAnalysisWhen Reinforcing Pads are Usedrdquo

5 Stress concentration factors are found in theprocedure on local stresses

6 To determine the area of attachment see ldquoAttach-ment Parametersrdquo Please note that if a top(compression) plate is not used then an equivalentrectangle that is equal to the moment of inertia ofthe attachment and whose width-to-height ratio isthe same must be determined The neutral axis isthe rotating axis of the lug passing through thecentroid

7 Stiffening effects due to proximity to major stiff-ening elements though desirable have beenneglected in this procedure

8 Assume effects of radial loads as additive to thosedue to internal pressure even though the loadingsmay be in the opposite directions Althoughconservative they will account for the highdiscontinuity stresses immediately adjacent to thelugs

9 In general the smaller the diameter of the vesselthe further the distribution of stresses in thecircumferential direction In small diametervessels the longitudinal stresses are confined toa narrow band The opposite becomes true forlarger-diameter vessels or larger Rmt ratios

10 If shell stresses are excessive the followingmethods may be utilized to reduce the stressesa Add more lugsb Add more gussetsc Increase angle q between gussetsd Increase height of lugs he Add reinforcing pads under lugs

238 Pressure Vessel Design Manual

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

f Increase thickness of shell course to which lugsare attached

g Add top and bottom plates to lugs or increasewidth of plates

h Add circumferential ring stiffeners at top andbottom of lugs

Procedure 4-8 Seismic Design ndash Vessel on Skirt [123]

Notation

T frac14 period of vibration secSI frac14 code allowable stress tension psiH frac14 overall height of vessel from bottom of base

plate fthx frac14 height from base to center of section or eg

of a concentrated load fthi frac14 height from base to plane under consider-

ation fta b g frac14 coefficients from Table 4-20 for given plane

based on hxHWx frac14 total weight of section kipsW frac14 weight of concentrated load or mass kipsWo frac14 total weight of vessel operating kipsWh frac14 total weight of vessel above the plane under

consideration kipswx frac14 uniformly distributed load for each section

kipsftFx frac14 lateral force applied at each section kipsV frac14 base shear kipsVx frac14 shear at plane x kipsMx frac14 moment at plane x ft-kipsMb frac14 overturning moment at base ft-kipsD frac14 mean shell diameter of each section ft or inE frac14 modulus of elasticity at design temperature

106 psiEl frac14 joint efficiencyt frac14 thickness of vessel section inPi frac14 internal design pressure psiPe frac14 external design pressure psi

Da Dg frac14 difference in values of a and g from top tobottom of any given section

lx frac14 length of section ftsxt frac14 longitudinal stress tension psisxc frac14 longitudinal stress compression psiRo frac14 outside radius of vessel at plane under

consideration inA frac14 code factor for determining allowable

compressive stress B

B frac14 code allowable compressive stress psiF frac14 lateral seismic force for uniform vessel kipsCh frac14 horizontal seismic factor

Cases

Case 1 Uniform Vessels For vessels of uniform crosssection without concentrated loads (ie reboilerspacking large liquid sections etc) weight can beassumed to be uniformly distributed over the entireheight

Wo frac14H frac14D frac14t frac14

T frac14 00000265

HD

2ffiffiffiffiffiffiffiffiffiffiWoDHt

r

Note POV may be determined from chart in Figure4-6 H and D are in feet t is in inches

V frac14 ChWo

F frac14 V

Mb frac14 2=3ethFHTHORN

Moment at any height hj

Ma frac14 F

2H3

hi

Case 2 Nonuniform VesselsProcedure for finding period of vibration moments

and forces at various planes for nonuniform vesselsA nonuniform vertical vessel is one that varies in

diameter thickness or weight at different elevations Thisprocedure distributes the seismic forces and thus baseshear along the column in proportion to the weights of

Design of Vessel Supports 239

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

each section The results are a more accurate and realisticdistribution of forces and accordingly a more accurateperiod of vibration The procedure consists of two mainsteps

Step 1 Determination of period of vibration (POV) TDivide the column into sections of uniform weight anddiameter not to exceed 20 of the overall height Auniform weight is calculated for each section Diameterand thicknesses are taken into account through factorsa and g Concentrated loads are handled as separatesections and not combined with other sections Factor

b will proportion effects of concentrated loads Thecalculation form is completed for each section from leftto right then totaled to the bottom These totals are usedto determine T (POV) and the POV in turn is usedto determine V and Ft

Step 2 Determination of forces shears and momentsAgain the vessel is divided into major sections as inStep 1 however longer sections should be furthersubdivided into even increments For these calcula-tions sections should not exceed 10 of heightRemember the moments and weights at each planewill be used in determining what thicknesses arerequired It is convenient to work in 8 to 10 footincrements to match shell courses Piping traysplatforms insulation fireproofing and liquid weightsshould be added into the weights of each section wherethey occur Overall weights of sections are used indetermining forces not uniform weights Momentsdue to eccentric loads are added to the overall momentof the column

Notes for nonuniform vessels

1 Combine moments with corresponding weights ateach section and use allowable stresses to deter-mine required shell and skirt thicknesses at theelevation

2P

uDa and WbH are separate totals and arecombined in computation of POV

3 (D10)3 is used in this expression if kips are usedUse (D)3 if lb are used

4 For vessels having a lower section several times thediameter of the upper portion and where the lowerportion is short compared to the overall height thePOV can more accurately be determined bvfinding the POV of the upper section alone (seeFigure 438a)

5 For vessels where Rt is large in comparison tothe supporting skirt the POV calculated bythis method may be overly conservative Moreaccurate methods may be employed (seeFigure 438b)

6 Make sure to add moment due to any eccentric loadsto total moment

Figure 4-36 Typical dimensional data forces andloadings on a uniform vessel supported on a skirt (d frac14deflection)

240 Pressure Vessel Design Manual

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Figure 4-37 Nonuniform vessel illustrating a) Note 4 andb) Note 5

Figure 4-38 Typical dimensional data forces andloadings on a nonuniform vessel supported on a skirt

Design of Vessel Supports 241

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Step 1 PERIOD OF VIBRATION

Partω or W

kft hxH α Δα or βωΔα or WβH γ Δγ

10 2103 10

000Σ =

See Notes 2 and 3

γtΔ310HWβωΔα2

100HT

sumE(D )sum+sum= ⎟

⎠⎞⎜

⎝⎛

E(D10)3tΔγ Note 3

Σ =

242 Pressure Vessel Design Manual

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Step 1 PERIOD OF VIBRATION EXAMPLE

INC

LUD

E BO

TTO

M H

EAD

AN

D L

IQU

ID A

S PA

RT

3

H =

112

primendash0Prime

10primendash

0Prime 20primendash

0Prime

40primendash

0Prime16

primendash0Prime

20 T

RAY

S

2primendash

0Prime S

PAC

ING

= 4

2primendash0

Prime

8primendash0Prime 12Prime THK

38PrimeTHK

REB

OIL

ERw

=10

KPS

LIQ

UID

2prime2prime

Design of Vessel Supports 243

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Step 2 SHEAR AND MOMENTS

244 Pressure Vessel Design Manual

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245

Step 2 SHEAR AND MOMENTS EXAMPLE

hi (ft) Part Wx (kips) hx (ft)

Wxhx (ft-

kips) Fx (kips)

Vi btm

(kips) Mi (kips)0211211

12 1416 106 1501 732

100 732 4392

11 118 95 1121 54790 1279 14444

10 118 85 1003 48980 1768 29676

9 118 75 885 43270 2199 49511

8 826 65 537 26260 2461 72813

7 59 55 325 15850 2619 98215

6 278 45 1251 61040 3229 127458

5 278 35 973 47430 3704 162125

4 278 25 695 33920 3 10 20 200 098

4140 2008582 278 15 417 203

10 4344 243278

1 875 5 44 02112868256340

= = 194 8951

k = 1 for structures with periods of 05 seconds or lessk = 2 for structures with periods of 25 seconds or morek shall be linearly interpolated with perdiods between 05 and 25 seconds

1iM)ih1i(h1iV)ihx(hxFiM ++minus+++minus=

⎟⎟⎠

⎞⎜⎜⎝

sum= k

xhxWkxhxW

VxF ⎟⎟⎠

⎞⎜⎜⎝

⎛= kxhxW

8951

4365xF

0 0

12rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

H =

112

rsquondash0rdquo

10rsquondash

0rdquo10

rsquondash0rdquo

10rsquondash

0rdquo

Design of Vessel Supports 245


Recommended