+ All Categories
Home > Documents > Design of Viscoelastic Auxetic Materials Through Machine ...Design of Viscoelastic Auxetic Materials...

Design of Viscoelastic Auxetic Materials Through Machine ...Design of Viscoelastic Auxetic Materials...

Date post: 26-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
23
Design of Viscoelastic Auxetic Materials Through Machine Deep Learning Chun-Wei Liu, Pei-Chen Cheng, Jyun-Ping Wang and Yun-Che Wang AI Materials Lab Civil Engineering Dept, NCKU, Taiwan(R.O.C.)
Transcript
  • Design of Viscoelastic

    Auxetic Materials Through Machine

    Deep LearningChun-Wei Liu, Pei-Chen Cheng, Jyun-Ping

    Wang and Yun-Che Wang

    AI Materials LabCivil Engineering Dept, NCKU, Taiwan(R.O.C.)

  • Outline

    2

    AN EMBRYONIC THOUGHT

    THE MACHINE LEARNING MODEL

    METHODOLOGY

    RESULTS

    APPLICATIONS

    QUESTIONS

    APPENDIX

  • What if we start from random samples?And let them just evolve, in case we may discover more potential paradigms.

    Design the mechanical properties we desire, with constraints.

    3An Embryonic Thought

  • 4The machine learning model

  • The Oracle

    Youngs Modulus

    Shear Modulus

    Poisson’s Ratio

    Loss Tangent tan 𝛿𝛿

    Complex elastic modulus 𝐸𝐸∗

    Bulk Modulus

    Ground Truth Labels

    Samples

    Predicted Labels

    𝑦𝑦 = 𝑊𝑊𝑊𝑊 + 𝑏𝑏

    5The machine learning model

  • Artificial Neural Network

    Input Layer Convolution and Pooling Layers Output and Loss Layer

    6The machine learning model

  • VGG1990% classification

    accuracy.

    ImageNet Large Scale Visual Recognition Competitionover 10 million image data and 1000 classes

    7The machine learning model

  • Loss and Optimizer

    Ground Truth 𝐸𝐸𝑥𝑥 = 150 𝐺𝐺𝐺𝐺𝐺𝐺

    1st Prediction𝐸𝐸𝑥𝑥 = 20 𝐺𝐺𝐺𝐺𝐺𝐺

    2nd Prediction𝐸𝐸𝑥𝑥 = 120 𝐺𝐺𝐺𝐺𝐺𝐺

    Nth Prediction𝐸𝐸𝑥𝑥 = 149 𝐺𝐺𝐺𝐺𝐺𝐺

    𝑀𝑀𝑀𝑀𝐸𝐸 =1𝑁𝑁�𝑖𝑖=1

    𝑁𝑁

    𝑦𝑦𝑖𝑖 − �𝑦𝑦 2

    𝑀𝑀𝑀𝑀𝐸𝐸 =1𝑁𝑁�𝑖𝑖=1

    𝑁𝑁

    𝑦𝑦𝑖𝑖 − �𝑦𝑦

    Update the Weights in the Oracle

    Loss Function

    Adam Optimizer

    𝑊𝑊 ← 𝑊𝑊 −�𝑚𝑚𝑡𝑡�𝑣𝑣𝑡𝑡 + 𝜀𝜀

    8The machine learning model

  • Flow Chart

    9Methodology

  • Samples

    Solid Boundary Smooth Angle

    10Methodology

  • Methodology

  • Linear Elastic MaterialThe Navier Equation

    12

    For isotropic elasticity, the Navier equation is to be solved for displacement fields u.

    or

    or

    In index notation

    With the engineering strain, Stress tensor can be found.

    With the coefficients

    The volume-averaged stress and strain are defined by

    When viscoelastic properties are considered, the Boltzmann superposition leads to the following constitutive relation in time domain.

    Methodology

  • FEM Calculations for Elastic or Viscoelastic PropertiesLoss tangent tan 𝛿𝛿

    Complex Modulus 𝐸𝐸∗

    13Results

  • Data DistributionVoid Ratio 𝐸𝐸𝑦𝑦 Loss tangent tan 𝛿𝛿

    Poisson’s Ratio Pure Shear Modulus Complex Modulus 𝐸𝐸∗

    GPa

    GPa Pa

    14Results

  • Results

    0.91550227%*

    2.06561051%*0.75872028%*1.18200427 %* 0.75519656%*

    1.94843323%*1.36850339%* 1.04467757%*

    *Error Percentage

    Ground Truth

    Prediction

    𝐸𝐸𝑥𝑥 𝐸𝐸𝑦𝑦 Bulk Shear

    Pure ShearPoisson’s RatioBulk Modulus

    Loss tangent tan 𝛿𝛿

    Complex Modulus 𝐸𝐸∗

    15

  • Application

    Raspbian Pi Deployment

    Lower computation cost when scale up.Fast and easy to deploy with high accuracy.Implies a convenient path to the topology optimization process.

    ClassicalMachine Learning

    16Applications

    Quick DEMO

  • 17

    Summary

    • VGG network architecture was introduced to design materials for desired elastic or viscoelastic properties.

    • Well-trained DNN may provide lower computational cost, without loosing prediction accuracy, as oppose to full FEM calculations.

  • Questions or Comments

    18

  • 19

    Appendix

  • Appendix

  • Viscoelastic Material Model for high damping rubber• Bulk modulus (K=400 MPa) is assumed to

    be purely elastic• Generalized Maxwell model for shear

    modulus with the elastic branch G=58.6 kPa

    2

    21

    21

    ( )'( )1 ( )

    ''( )1 ( )

    Nm

    mm m

    Nm

    mm m

    G G G

    G G

    ωτωωτ

    ωτωωτ

    =

    =

    = ++

    =+

    1) 13.3[MPa] 1e-7[sec]2) 286[MPa] 1e-6[sec]3) 291[MPa] 3.16e-6[sec]4) 212[MPa] 1e-5[sec]5) 112[MPa] 3.16e-5[sec]6) 61.6[MPa] 1e-4[sec]7) 29.8[MPa] 3.16e-4[sec]8) 16.1[MPa] 1e-3[sec]9) 7.83[MPa] 3.16e-3[sec]10) 4.15[MPa] 1e-2[sec]11) 2.03[MPa] 3.16e-2[sec]12) 1.11[MPa] 1e-1[sec]13) 0.491[MPa] 3.16e-1[sec]14) 0.326[MPa] 1[sec]15) 0.0825[MPa] 3.16[sec]16) 0.126[MPa] 10[sec]17) 0.0373[MPa] 100[sec]18) 0.0118[MPa] 1000[sec]

    Parameters for the 18-branch shear modulus to realistically describe a high damping viscoelastic material

    Appendix

  • Viscoelastic Spectra of the Models

    |G*| |G*|

    tan δ tan δ

    3-parameter SLS 18 branch

    K=83.33 MPa, G=38.46 MPaG1=G, τ=0.1 s

    Frequency (Hz)

    Frequency (Hz)Appendix

  • Boundary, Loading Conditions and Elastic Constants

    Bi-axial shear modeUniaxial mode Bi-axial bulk mode

    Roller

    Poisson’s ratioAppendix

     Design of Viscoelastic Auxetic Materials Through Machine Deep LearningOutline投影片編號 3投影片編號 4The OracleArtificial Neural NetworkVGG19Loss and OptimizerFlow Chart投影片編號 10投影片編號 11Linear Elastic Material�The Navier Equation投影片編號 13Data DistributionResults投影片編號 16SummaryQuestions or CommentsAppendix投影片編號 20Viscoelastic Material Model for high damping rubber投影片編號 22Boundary, Loading Conditions and Elastic Constants


Recommended