+ All Categories
Home > Documents > Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount...

Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount...

Date post: 30-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
37
Design Optimization Process for 3D Printed Designs
Transcript
Page 1: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Design Optimization Process for 3D Printed Designs

Page 2: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

PIDOProcess Integration & Design Optimization

Aerodynamical calculations

Parameters

Mechanicalcalculations

Post‐processingPost‐processing

Page 3: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Types of Optimization

The available design space

TOPOLOGICAL OPTIMIZATION

The best topology

STRUCTURAL OPTIMIZATION

Structure optimized topologically and structurally

Page 4: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Topological Optimization

Available design space Early stage of iterative solution

Final stage of iterative solution ( the best topology ) The best topology translated into a real life design

Page 5: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Topological Optimization

The allowable design space; before topological optimization

The final result shown using iso-surfaces (same density); optimal topology solution

Page 6: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Frame Lattice Generation• Lightweight structural panels, energy absorption 

devices, thermal insulation, porous implants• Infill / Conformal Lattices: PTC AM, ANSYS 

SpaceClaim, Materialise Magics, Simpleware, Paramount Industries,  NetFabb / Autodesk Within 

• Mature Topology Optimization codes use element mesh to generate lattice structures

• We need smart lattice generation coupled to Topology optimization– Lattice element size based on the density field– Node repositioning / rezoning base on density field– Smooth transition between solid & lattice

Page 7: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Frame Lattice Generation

Page 8: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Smooth transition for Frame Lattices

Page 9: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use
Page 10: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Infill with Minimal Surfaces 

Page 11: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use
Page 12: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

New 2 ½ D Lattice feature in CREO 4 

Page 13: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

New 2 ½ D Lattice feature in CREO 4 

Gear

Page 14: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Solid 2 ½ D Lattice feature for solid meshing and 3D printingFull Geometry Option

cube2

Page 15: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Simplified 2 ½ D Lattice feature for shell meshingSimplified Geometry Option

Page 16: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Solid 3D Lattice feature for solid meshing and 3D printingFull Geometry Option

cube2

Page 17: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Solid 3D Lattice feature for solid meshing and 3D printingFull Geometry Option

thermal2

Page 18: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

How do I Design today for Additive Manufacturing (DfAM)? 

Creo 4 Lattice Feature

Page 19: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 1: Homogenization – Cell size & configuration • Find the effective

property of the cellular structure using Creo Simulate

• Average of physical & mechanical properties of cell (ρ,ν,E)

• You could estimate without regard to the cellular geometry itself with volumetric scaling

• You could use experimental data by power law curve fitting Eeff=c*E*(Vcell/V)^n

• Homogenized material properties can be used in topology optimization 

Page 20: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 1: Homogenization using CREO Simulate

Page 21: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 2: Establish Design Space and Performance Requirements (Safety Factors, displacement limits, ω, etc.) 

Page 22: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

• Output of Topology Optimization is an organic shape .stl file.

• There is a need to create geometries out of our topology optimization results

• Sub‐divisional surface modeling such as CREO free style is a practical solution

• The challenge is to identify all the segments / subdivisions and the potential unions of the free style primitives

Step 3: Setup and run Topology Optimization with all Performance Requirements 

Page 23: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 3: Use CREO FreeStyle Primitives to “Reconstruct” the Topology Optimization suggested geometry

Page 24: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 4: Use Lattice feature to generate the lattice structureUse simplified option for beam generation in Creo Simulate 

Page 25: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Review Simplified Lattice Structure Representation

Page 26: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Step 5: Use Creo Simulate to specify loads, boundary conditions and generate mesh with beam and solid elements   

Page 27: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Review the Simplified Beam Element Representation of the Lattice Structure 

Page 28: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Review the displacement Distributions and Validate performance Requirements

Page 29: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Review the Simplified Beam Element Representation Results of the Lattice Structure 

Page 30: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Redefine Lattice Feature with the  “Full Geometry” Option

Page 31: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Lattice Feature with the  “Full Geometry” Option

Page 32: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

BMX can also be used to Optimize Designs where closed form solution is available

• Generate Analysis features of relevant information (i.e. Areas, Moment of Inertia, etc.)

• Create relation or Mathcad Prime features to compute performance attributes (safety margins, stress, deflections, buckling loads, natural frequencies, etc.)

• Perform sensitivity analysis to evaluate the feasibility of the design and establish design limits of design variables

• Perform Design Optimization to select lattice structures’ dimensions

• If contradicting performance requirements are essential use multi‐objective design study with pareto optimization

• If Design For Six Sigma (DFSS) requirements are essential use Statistical Design Studies to generate a robust Design

Page 33: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Any parameter that defines the lattice can be used as design variablein BMX, Creo Simulate or Mechanism Dynamics Optimization

Page 34: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Lattice Structure inside Base with a Parabolic Beam 

Page 35: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Lattice Structure with a Straight & Parabolic Beams 

Page 36: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Geometry / FEM• CAD Part with PMI• Lattice Structure• Support Structure• FEM Mesh• Physics definitions

3D Printer• Control Software• Printability Checks• Layer thickness• Disposition path• Build orientation• Print Preview• …

Material Selection• Alloy composition• Powder diameter• Powder compaction• Service active trace elements• …

Multi Physics Simulation for Characterization 

of Additive Manufacturing 

Materials

Material Performance Field• Modulus of elasticity Ex(x,y,z)• Poisson’s ratio• Coefficient of thermal expansion• Density• Yield strength• Ultimate strength• Fatigue strength• Residual stress distribution• Distortion of the part• Damping• Thermal conductivity• etc. 

Processes Settings • Laser power• Pulse rate• Spot size• Velocity• Spacing

Fundamental Challenge Characterization of Additive Manufacturing Materials

Page 37: Design Optimization Process 3D - PTC User · SpaceClaim, MaterialiseMagics, Simpleware, Paramount Industries, NetFabb / Autodesk Within • Mature Topology Optimization codes use

Short Course by AES on:Design Optimization Process for 3D Printed Designs

• Is your organization ready to unleash the full potential of Additive Manufacturing?

• A three day course on Design Optimization Process for 3D Printed Designs

• Learn how to:– Create in CREO parametric 2 ½ D and 3D Lattice Features– Learn how to size and generate Lattice Structures– Optimize Lattice Structures using Behavioral Modeling– Use topology optimization to find the best distribution of material 

for stiffness or compliance with homogenization techniques– How to reconstruct the CAD geometry from the optimization 

results (Nurbification)– Design for additive manufacturing and practice the validation and 

verification steps required for Aerospace & Defense applications– Use topology optimization for light weight heat exchangers– Synthesize Metamaterials using Topology Optimization & Lattices


Recommended