+ All Categories
Home > Documents > Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling...

Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling...

Date post: 21-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
26
©Copyright JASSS Ju-Sung Lee a , Tatiana Filatova a , Arika Ligmann-Zielinska b , Behrooz Hassani- Mahmooei c , Forrest Stonedahl d , Iris Lorscheid e , Alexey Voinov a , Gary Polhill f , Zhanli Sun g and Dawn C. Parker h (2015) a University of Twente, The Netherlands; b Michigan State University, United States; c Monash University, Australia; d Augustana College, United States; e Hamburg University o Technology, Germany; f The James Hutton Institute, United Kingdom; g Leibniz Institute of Agricultural Development in Transition Economies, Germany; h University of Waterloo, Canada The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 <http://jasss.soc.surrey.ac.uk/18/4/4.html> DOI: 10.18564/jasss.2897 Received: 28-Apr-2015 Accepted: 29-Jun-2015 Published: 31-Oct-2015 Abstract The proliferation of agent-based models (ABMs) in recent decades has motivated model practitioners to improve the transparency, replicability, and trust in results derived from ABMs. The complexity of ABMs has risen in stride with advances in computing power and resources, resulting in larger models with complex interactions and learning and whose outputs are often high-dimensional and require sophisticated analytical approaches. Similarly, the increasing use of data and dynamics in ABMs has further enhanced the complexity of their outputs. In this article, we offer an overview of the state-of-the-art approaches in analysing and reporting ABM outputs highlighting challenges and outstanding issues. In particular, we examine issues surrounding variance stability (in connection with determination of appropriate number of runs and hypothesis testing), sensitivity analysis, spatio-temporal analysis, visualization, and effective communication of all these to non-technical audiences, such as various stakeholders. Keywords: Agent-Based Modelling, Methodologies, Statistical Test, Sensitivity Analysis, Spatio-Temporal Heterogeneity, Visualization Introduction 1.1 Agent-based models (ABMs) have been gaining popularity across disciplines and have become increasingly sophisticated. The last two decades have seen excellent examples of ABM applications in a broad spectrum of disciplines including ecology (Grimm & Railsback 2005; Thiele & Grimm 2010), economics (Kirman 1992; Tesfatsion & Judd 2006), health care (Effken et al. 2012), sociology (Macy & Willer 2002; Squazzoni 2012), geography (Brown & Robinson 2006), anthropology (Axelrod & Hammond 2003), archaeology (Axtell et al. 2002), bio-terrorism (Carley et al. 2006), business (North & Macal 2007), education (Abrahamson et al. 2007), medical research (An & Wilensky 2009), military tactics (Ilachinski 2000), neuroscience (Wang et al. 2008), political science (Epstein 2002), urban development and land use (Brown et al. 2005), and zoology (Bryson et al. 2007). This methodology now also penetrates organizational studies (Carley & Lee 1998; Lee & Carley 2004; Chang & Harrington 2006), governance (Ghorbani et al. 2013), and is becoming actively employed in psychology and other behavioural studies, exploiting data from laboratory experiments and surveys (Duffy 2006; Contini et al. 2007; Klingert & Meyer 2012). 1.2 ABMs produce a rich set of multidimensional data on macro phenomena, comprising a myriad of details on micro-level agent choices and their dynamic interactions at various temporal and spatial resolutions. Despite significant progress made in empirically grounding ABM mechanisms and agent attributes (Robinson et al. 2007; Windrum et al. 2007; Smajgl et al. 2011), ABMs continue to harbour a considerable amount of subjectivity and hence degrees of freedom in the structure and intensity of agents' interactions, agents' learning and adaptation, and any potential thresholds affecting switching in strategies. The increasing complexity of ABMs has been further stimulated by improvements in computing technology and wider availability of http://jasss.soc.surrey.ac.uk/18/4/4.html 1 25/01/2016
Transcript
Page 1: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

©CopyrightJASSS

Ju-SungLeea,TatianaFilatovaa,ArikaLigmann-Zielinskab,BehroozHassani-Mahmooeic,ForrestStonedahld,IrisLorscheide,AlexeyVoinova,GaryPolhillf,ZhanliSungandDawnC.Parkerh(2015)aUniversityofTwente,TheNetherlands; bMichiganStateUniversity,UnitedStates; cMonashUniversity,Australia; dAugustanaCollege,UnitedStates; eHamburgUniversityofTechnology,Germany;fTheJamesHuttonInstitute,UnitedKingdom; gLeibnizInstituteofAgriculturalDevelopmentinTransitionEconomies,Germany; hUniversityofWaterloo,Canada

TheComplexitiesofAgent-BasedModelingOutputAnalysis

JournalofArtificialSocietiesandSocialSimulation 18(4)4<http://jasss.soc.surrey.ac.uk/18/4/4.html>DOI:10.18564/jasss.2897

Received:28-Apr-2015Accepted:29-Jun-2015Published:31-Oct-2015

Abstract

Theproliferationofagent-basedmodels(ABMs)inrecentdecadeshasmotivatedmodelpractitionerstoimprovethetransparency,replicability,andtrustinresultsderivedfromABMs.ThecomplexityofABMshasriseninstridewithadvancesincomputingpowerandresources,resultinginlargermodelswithcomplexinteractionsandlearningandwhoseoutputsareoftenhigh-dimensionalandrequiresophisticatedanalyticalapproaches.Similarly,theincreasinguseofdataanddynamicsinABMshasfurtherenhancedthecomplexityoftheiroutputs.Inthisarticle,weofferanoverviewofthestate-of-the-artapproachesinanalysingandreportingABMoutputshighlightingchallengesandoutstandingissues.Inparticular,weexamineissuessurroundingvariancestability(inconnectionwithdeterminationofappropriatenumberofrunsandhypothesistesting),sensitivityanalysis,spatio-temporalanalysis,visualization,andeffectivecommunicationofallthesetonon-technicalaudiences,suchasvariousstakeholders.

Keywords:Agent-BasedModelling,Methodologies,StatisticalTest,SensitivityAnalysis,Spatio-TemporalHeterogeneity,Visualization

Introduction1.1 Agent-basedmodels(ABMs)havebeengainingpopularityacrossdisciplinesandhavebecomeincreasinglysophisticated.The

lasttwodecadeshaveseenexcellentexamplesofABMapplicationsinabroadspectrumofdisciplinesincludingecology(Grimm&Railsback2005;Thiele&Grimm2010),economics(Kirman1992;Tesfatsion&Judd2006),healthcare(Effkenetal.2012),sociology(Macy&Willer2002;Squazzoni2012),geography(Brown&Robinson2006),anthropology(Axelrod&Hammond2003),archaeology(Axtelletal.2002),bio-terrorism(Carleyetal.2006),business(North&Macal2007),education(Abrahamsonetal.2007),medicalresearch(An&Wilensky2009),militarytactics(Ilachinski2000),neuroscience(Wangetal.2008),politicalscience(Epstein2002),urbandevelopmentandlanduse(Brownetal.2005),andzoology(Brysonetal.2007).Thismethodologynowalsopenetratesorganizationalstudies(Carley&Lee1998;Lee&Carley2004;Chang&Harrington2006),governance(Ghorbanietal.2013),andisbecomingactivelyemployedinpsychologyandotherbehaviouralstudies,exploitingdatafromlaboratoryexperimentsandsurveys(Duffy2006;Continietal.2007;Klingert&Meyer2012).

1.2 ABMsproducearichsetofmultidimensionaldataonmacrophenomena,comprisingamyriadofdetailsonmicro-levelagentchoicesandtheirdynamicinteractionsatvarioustemporalandspatialresolutions.DespitesignificantprogressmadeinempiricallygroundingABMmechanismsandagentattributes(Robinsonetal.2007;Windrumetal.2007;Smajgletal.2011),ABMscontinuetoharbouraconsiderableamountofsubjectivityandhencedegreesoffreedominthestructureandintensityofagents'interactions,agents'learningandadaptation,andanypotentialthresholdsaffectingswitchinginstrategies.TheincreasingcomplexityofABMshasbeenfurtherstimulatedbyimprovementsincomputingtechnologyandwideravailabilityof

http://jasss.soc.surrey.ac.uk/18/4/4.html 1 25/01/2016

Page 2: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

advancedcomputingresources.Thesequalitiesdemandacomprehensive(oratleastsufficient)explorationofthemodel'sbehaviour.

1.3 Tocomplicatemattersfurther,anABMistypicallyastochasticprocessandthusrequiresMonteCarlosampling,inwhicheachexperiment(orparametersetting)ismultiplyperformedusingdistinctpseudo-randomsequences(i.e.,differentrandomseeds)inordertoachievethestatisticalrobustnessnecessaryfortestinghypothesesanddistinguishingmultiplescenariosundervaryingexperimentalorparametersettings.By"randomseed",wemeantheseedfortherandomnumbergenerator.Thus,anABMdeliversahighvolumeofoutputdatarenderingtheidentificationofsalientandrelevantresults(suchastrends)andtheassessmentofmodelsensitivitiestovaryingexperimentalconditionsachallengingproblem.

1.4 AllthesecomplicationsapplynotonlytotheanalysisofABMoutputdatabutalsotothemodel'sdesignandimplementation.Themassivediversityinoutputs,oftenexhibitingtemporalandspatialdimensions,necessitatesjudiciousmodeldesign,planning,andapplication.Poororunstructureddesignmayleadtounnecessarilylargeroutputstoreachthesame(orevenless)preciseconclusionsthatonemayinferfromoutputsofwell-designedmodelsandexperimentation.ThestandardsemployedintheABMfield,suchasODD(Overview,Designconcepts,andDetails)(Grimmetal.2006,2010;Mülleretal.2013)andDOE(designofexperiments)(Fisher1971),havesignificantlyimprovedtransparency,replicability,andtrustinABMresults.However,thefieldcontinuestolackspecificguidanceoneffectivepresentationandanalysisofABMoutputdata,perhapsduetothisissue'shavinglesspriorityinABMsocialscienceresearchorduetotechnicalbarriers.Furthermore,convergingonuniversalstandardsremainselusivepartlyduetothebroadspectrumofresearchfieldsemployingABMs.Domain-relevantmetrics,analyticaltechniques,andcommunicationstylesarelargelydrivenbyeachdiscipline'stargetaudience.

1.5 Yet,therearecommonmethodologicalchallengesfacingABMmodellersintheirpathtowardunderstanding,refining,anddistillingthemostrelevantandinterestingresultsfromanearly-endlessseaofoutputdata.WhileamodellerinvestsasignificantamountoftimeandeffortinthedevelopmentofanABMitself,acomprehensiveorcompellinganalysisoftheABMoutputdataisnotalwaysconsideredasdeservingthesameresource-intensiveattention.Properoutputanalysisandpresentationarevitalfordevelopingadomain-specificmessagecontaininginnovativecontributions.

1.6 Thispaperaimstoprovideanoverviewofthestate-of-the-artinhowagent-basedmodellerscontendwiththeirmodeloutputs,

theirstatisticalanalysis,andvisualizationtechniques.[1]Wediscusschallengesandofferexamplesforaddressingthem.Thefirsttopicdealswithseveralissuessurroundingthestudyofvarianceinthemodeloutputs(i.e.,stability)anditsimpactonbothmodeldesign(e.g.,simulationrunsor"samples")andanalysis(e.g.,hypothesistesting).Thenextoneaddressesthestateofsensitivityanalysisandthecomplexitiesinherentintheexplorationofthespacethatencapsulatesboththeparametersandtheoutcomes.Thethirdtopicfocusesontheanalysisandpresentationofspatial(includinggeospatial)andtemporalresultsfromABMs.

1.7 Wealsosurveytheroleofeffectivevisualizationasamediumforbothanalysisandexpositionofmodeldynamics.Commentsonvisualizationappearwithineachmaintopicasvisualizationstrategiestendtobestronglydefinedandconstrainedbythetopicmatter.Finally,weoutlineoutstandingissuesandpotentialsolutionswhicharedeemedasfutureworkforourselvesandotherresearchers.

DeterminingMinimumSimulationRunsandIssuesofHypothesisTesting2.1 ABMresearchersstrivetoexposeimportantandrelevantelementsintheirmodels'outputsandconsequentlytheunderlying

complexdynamicsinbothquantitativeandqualitativeways.CompellingstatementsaboutanABM'sbehavioursmaybedrawnfromdescriptivestatisticsofdistinctoutcomes(e.g.,meanandstandarddeviation)orstatisticaltestsinwhichoutcomesarecompared(e.g.,t-test),predicted(inthestatisticalsense,e.g.,multipleregression),orclassified(e.g.,clusteringorprincipalcomponentanalysis).GiventhestochasticnatureofmostABMs,theseanalyticalexercisesrequireanoutcomepooldrawnfromasufficientnumberofsamples(i.e.,simulationruns).

2.2 ThequantityofABMoutputsampleshasseveralramificationstoexperimentaldesignandthequalityoftheanalysis.ForthoselargeandcomplexABMswhoselongerruntimesprohibittheproductionoflargesamples,therelevantquestionistheminimumnumberofrequiredruns.Conversely,expedientABMsofferthetemptationofproducingfargreatersamplecountstherebyincreasingthesensitivityofstatisticaltestspossiblytothepointofabsurdity.Thatis,onemightproducesomanysamplessuchthattraditionaltestsexposeextremelysmallandcontextuallyinconsequentialdifferences.Wefocusourdiscussiononthemethodsforthedeterminingthenumberofminimumruns.ImplicationsofhavingtoomanysamplesarediscussedinAppendixB.

MinimumSampleSize(NumberofRuns)

2.3 Thedeterminationoftheminimumsamplesizepartlyreliesontheanalyticalobjective.Onecommonobjectiveisastatisticaldescriptionoftheoutcomestypicallyintheformofmeansandstandarddeviations(oralternatively,variances).Sincetheshapeofamodel'soutputdistributionsareusuallyaprioriunknown,thepointorsamplesizeatwhichoutcomemeanandvariancereachesrelativequiescenceorstabilityiscrucialtoaccuratereportingofthedescriptivestatistics.Otherwise,thestatisticswouldharbourtoomuchuncertaintytobereliable.Unfortunately,allofthedifferentcriteriafordeterminingthispointofstabilitysuffersfromsomedegreeofsubjectivity,andthusitfallsontheanalysttowiselymaketheselection.Furthermore,theseapproachesappeartoremaineitherunderusedorunknowntomanyABMresearchers(Hamill2010).Infact,asurveyofsomeofABMliteraturerevealssamplesizestobetoolow,convenientlyselected(samplesizesof100orlessarecommon),orexorbitantly

http://jasss.soc.surrey.ac.uk/18/4/4.html 2 25/01/2016

Page 3: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

high(Angus&Hassani-Mahmooei2015).

VarianceStability

2.4 Assessingvariancestabilityrequiresametrictomeasuretheuncertaintysurroundingthevariance(orthevarianceofvarianceifyouwill).LawandKelton(2007)andLorscheidetal.(2012)offersuchmetricsbothofwhichrelyonsomefunctionalratiobetweenthevarianceandthesamplemean.Law&Kelton'sapproachseeksasamplesizeinwhichthevariabilityremainswithinsomepredefinedproportionoftheconfidenceintervalaroundthemean(confidenceintervalboundvariance),thusitisboundtotheassumptionsofnormality,namelythatthemeanhasaGaussiandistribution.Hence,theresearchermustselectthisproportionfromoutputsofatrialsetofruns.Lorscheidetal.'smethodeschewsthoseassumptionsbyemployingthecoefficientofvariationandafixedepsilon(E)limitofthatmetric.Whilethesearedimensionlessmetrics,theiruseisproblematicforsimulationstudiesinwhichmultivariateoutcomesfromparametereffectsareanalyzed.

2.5 Thecoefficientofvariationissimplytheratioofthestandarddeviationofasample(σ)toitsmean(μ):

cV =

σμ

2.6 Thisscalingoffersasimilarinterpretationastheconfidenceinterval(C.I.):cV→ 0isequivalenttot(0 ∉ C. I. ) → ∞andthep-valueapproaches0.Thatis,whenthestandarddeviationshrinksrelativetothemean,theprobabilityoftheconfidenceintervalspanningacrossthevalueof0dropsprecipitously.Thecoefficientofvariation(cV)willexhibitsubstantialvarianceforsmallsamplesizesjustlikethestandarderrorofthemean.Forexample,thecVofasingleABMoutcomeobtainedfromasetoffiverunswillvarymorewiththesamemetricstakenfromothersetsoffiverunsthanifeachsetcontainedfarmoreruns,say100.Lorscheidetal.comparethecV'sofdifferentlysizedsetsofruns(e.g.,thecVfrom10runs,then100,500,andsoforth).ThesamplesizeatwhichthedifferencebetweenconsecutivecV'sfallsbelowacriterion,E,andremainssoisconsideredaminimumsamplesizeorminimumnumberofABMruns.Forexample,ifanoutcomedrawnfromrunsofdifferentsamplesizes,n ∈ {10, 500, 1000, 5000, 10000},yieldsthecV's(roundedto1/100){0.42, 0.28, 0.21, 0.21, 0.21}andweselectE = 0.01,wewouldconsiderthethirdsamplesize(n = 1000)asthepointofstability.ThesecVstabilitypointsareobtainedforallABMoutcomesofinterest(inamultivariatesetting),andthustheminimumnumberofrunsfortheABMisthemaximumofthesepoints:

nmin = argmaxn |cx ,nV − c

x ,mV | < E, ∀xand∀m > n

wherenmin istheestimatedminimumsamplesize;xisadistinctoutcomeofinterest;andmissomesamplesize > nforwhichthecV(ofeachoutcome)ismeasured.

2.7 However,thefixedEfavorsthoseμsufficientlylargerthan0andalsolargerthanitscorrespondingσandpenalizesnmin foroutcomeswithμcloserto0.Thatis,themorelikelyanoutcome'sconfidenceintervalencompasses0,theerroneouslylargertheestimationofnmin willbe.Conversely,thefixedErenderstheproceduretooeffectiveandresultsinanunderestimationofnmin forthoseC.I.'sthatresidefarfrom0,relativetoσ.Therefore,weurgesomecautioninusingcVtodeterminetheminimumsamplesizeandapplyingitonlytoABMsforwhichtheoutcomesofinterestareprejudicedagainstattainingavalueof0.Assuch,Lorscheidetal.'sapproachdeterminesaminimumsamplesizenotjustbasedonvariancestabilitybutalsothelikelihoodanoutcome'sconfidenceintervalcontains0.

2.8 Alternatively,onemightconsiderjustvariancestabilitywithoutanyconsiderationofthemeanvalue.FollowingLorscheidetal.'sstrategyofassessingstabilityfrommetricsonanoutcomeforasequenceofsamplesizes,wetrackthewindowedvarianceofsimpleoutcomesfromseveralcanonicalstatisticaldistributionsaswellasanABMmodel.Thedistributionsweemployherefor

demonstrationpurposesarethenormal(orGaussian),uniform,exponential,Poisson,χ2,andtdistributions.[2]WhileABMoutputsdonotalwaysconformtooneoftheseparametricdistributions,theonesweexamineherearedistinctenoughtoprovideuswithasenseofvariancestabilityforaspectrumofdistributions.ThesedistributionswillserveasproxiesforABMs'outcomesand,forourpurposes,havebeenparameterizedsothattheirtheoreticalvarianceσ2 ≈ 1.WealsoincludeanoutcomefromasimpleABMmodelofBirthRates(Wilensky1997).ThisABMentailstwodynamicallychangingpopulations(labelled"red"and"blue").Here,ouroutcomeisthesizeofthe"red"population.Forfurtherdetails,seeFigure17inAppendixC.

2.9 InFigure1a,weoffervariancesforvaryingsizedsamplesofGaussianvariates(i.e.,scalarsdrawnfromtheGaussiandistributionparameterizedtohaveavarianceof1).Atlowsamplesizes,thereisconsiderablevariancesurroundingthesamplevarianceitselfasevidencedbythe"noisiness"ofthevariancefromonesamplesizetothenext.Afteracertainpoint(roughlyn = 400),thisoutervarianceappearstostabilizeandcontinuestofurtherconvergeto0albeitslowly.

2.10 Theoutervarianceateachsamplesizecanthenbemeasuredusingthevarianceofproximalsamplesizes.Forexample,theoutervarianceforn = 10iscalculatedfromvarianceofthesamplevariancesofn ∈ {10, …, 10 + (W − 1)g},whereWissome

http://jasss.soc.surrey.ac.uk/18/4/4.html 3 25/01/2016

Page 4: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

predeterminedsizeofthewindowandgisoursamplesizeincrement;weselectg = W = 10,andwesoconsidern ∈ {10, 20, …, 100}forthevariancesurroundingn = 10.Notationally,thisoutervariancemaybeexpressedasσ2(s2)butgivenitsestimationusingwindows,weassignitω2n,wherenisthesamplesize.InFigure1,wecharttheω2nrelativetoitsmaximumvalue

(

ω2n

maxω2 )foreachdistribution.

Figure1.SampleSizevs.VarianceStability.Thecoloursintherightplotdenotethedistribution:normal,uniform,

exponential,Poisson,χ2,Student'st,andBirthRateABM.

2.11 Thecoloursdistinguishthesevendistributions.Thegrey,dashedhorizontallineexpressesoursemi-subjectivecriterion(of0.20)underwhichtherelativeω2nmustresideinorderforntobedeemeda"minimumsamplesize".Thespeedatwhichthisconditionismetvariesconsiderablyamongthedistributions,highlightingtheneedtoforegodistributionalassumptionsregardingonesABMoutputsinvariance-basedminimumsamplesizedetermination,unlessthedistributionalshapesarewell-identified.Thisapproachforassessingvariancestabilitybearstwoelementsoffurthersubjectivity.Firstly,thepointofstabilitymaybeidentifiedbyeitherthefirstnatwhichthecriterionconditionismetorthefirstnatwhichallfurthersamplesizesmeetthecondition.TheredandgreenverticallinesinFigure1arespectivelydenotethesepointsofstabilityfortheGaussiandistribution.Secondly,theoutervariancecouldhavebeenassessedusingalargerpoolofvariatesateachnratherthanestimatedunderwindows.However,inkeepingwiththestrategyofminimizingthenumberoftestsimulationrunsnmin ,wereportthefindingsofwindow-basedω2ratherthanσ2(s2).

EffectSize

2.12 Intraditionalstatisticalanalysis,thecommonapproachfordeterminingminimumsamplesizerequiresonetofirstselectthesizeofadetectableeffect(i.e.,astatisticsuchasthemeanordifferenceofmeansscaledbyapooledstandarddeviation).ThisapproachalsorequiresaselectionofacceptablelevelsofthetypeIandtypeIIerrors.AtypeIerroriscoarselytheprobability(inthefrequentistsense)thatthenullhypothesisisrejectedwheninfactitistrue.ThetypeIIerroristheconverse:thelikelihoodthatthenullhypothesisisretainedwhenthealternativehypothesisistrue.Forexample,onemightcomparethemeansoftwoABMoutcomeseachfromseparatesetsofsampleofruns.Theseoutcomesmaybeborneofdistinctmodelparameterizations(anecessarythoughnotsufficientconditionforyieldingatruedifference)andmeasuredtobesignificantlydifferentunderarudimentaryt-test.However,asmallsamplesizewillpenalizethetestwhichmaynotreportastatisticallysignificantdifferencebetweenmeansofthoseoutcomes:atypeIIerror.Alternatively,theseoutcomesmayarisefromidenticalparameterizationsyetthet-testerroneouslyrevealsasignificantdifference:atypeIerror.TheratesoftypeIandIIerrorsareexpressedasαandβ.TheconverseofthetypeIIerror(1 − β)iscalledthe"power"level.

2.13 Theminimumsamplesizenmin canthenbecomputedas

nmin ≥ 2

s2

δ (tV,1 −α / 2 + tV,1 −β/ 2)2

wheresisthestandarddeviationoftheoutcomeorthepooledstandarddeviationoftwooutcomes,δislowerboundontheabsolutedifferenceinmeansthatistobeclassifiedassignificantlydifferent;tisthet-statistic(orthequantilefunctionofthetdistribution);νisthedegreesoffreedom(herenmin − 1),andαandβarethelevelsoftypeIandIIerrorsrespectively.Inlayterms,theminimumsamplesizeoccursatthepointatwhichbothtypeIandtypeIIerrorsoccuratthedesiredcriticallevelsasdeterminedbythet-test,hencetheemploymentofthetdistribution.ThisapproachhasbeensuggestedintheABMliterature(e.g.,Radax&Rengs2010).Asnmin appearsonbothsidesoftheequation,trial-and-errororalgorithmiciterationscanusually

http://jasss.soc.surrey.ac.uk/18/4/4.html 4 25/01/2016

Page 5: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

convergeonnmin .Asimilarequationisemployedwhentheoutcomeisaproportion∈ [0, 1].Thenon-centraltdistributioncanalsobeusedforsamplesizedetermination(asintheRstatisticalpackage).

2.14 Acloseinspectionofthisapproachrevealstestsensitivitytotheoutcomedistribution'sdeparturefromthenormal.InTable1,weempiricallymeasurethepowerlevel(andhencetheleveloftypeIIerror)bydrawingpairsofvariatesetsfromsometypical

distributionsandtheBirthRatemodel,parameterizedsuchthatidenticaleffectsizesof0.5.[3]Thus,aninsignificantt-testcomparisonforapairofvariatesetsistantamounttoatypeIIerror.Foreachdistributiontypeandsamplesizen,thecomparisonwasperformedfor5000pairsofvariatesetseachofsizen.Eachsetpairwascompared,andwemonitortheproportionofpairsofthesesetsthatyieldedasignificantp-value:anempirically-derivedpowerlevel.TheempiricalpowerlevelsforarangeofsamplesizesnaregraphicallyshowninFigures15and16inAppendixA.

Table1:MinimumSampleSizesforOutcomeDistributions.nt,ne,andnWarethetheoretically-derived,empirically-derived,andWilcox-test-basedminimumsamplesizes,nmin .

Distr. nt ne nW ne − nt nW− nt

Normal 64 65 68 1 4Exponential 64 59 78 −5 14Poisson 65 61 64 −4 −1

BirthRate 64 65 70 1 6BirthRate(d = 1.0) 18 19 26 1 8

2.15 Weobserveincongruitiesbetweenthetheoreticalnmin (nt)andtheempirically-derivedne.Infact,thepowercalculationoverestimatesnmin fortheskeweddistributions(i.e.,theexponentialandthePoisson).Whilethedifferencesinthesenmin arerelativelyminor,theycouldhaveamaterialbenefitforlargescaleABMsforwhicheachruniscostly.However,inthesecases,usingthet-testforexposingapredeterminedeffectsizehastobedeemedappropriate.Forthesesurveyeddistributiontypes,theempiricaldistributionsofthemeansthemselvesfrequentlypasstheShapirotestofnormalityhenceallowingfortheuseofthet-test.

2.16 Giventhesensitivityofthetraditionalt-testtodistributionalskewnessaswellastheuncertaintyofthedistributionalshapeinABMoutcomes,onemightturntoamoreconservativetest,theWilcoxonrankedsumtest (alsoknownastheMann-Whitneytest);thenWcolumnreportsthistest'ssuggestedminimumsamplesizes.Interestingly,themoreefficientWilcoxontestappearstoproposealowerminimumsizeforthePoissondistribution.

2.17 Whenweassesstheefficiencyofcalculatingnmin fortheBirthRateABM,wefindthat,despitetheflatnessplusbimodalityoftheoutcomedistribution,thecalculationofnmin isalmostaccurate,andtheWilcoxtestismodestlyconservativecomparedtotheexponentialdistribution.

MultivariateStability

2.18 SincemostABMstypicallyproducemultipleoutcomes,thecalculationoftherequiredsamplesizewouldhavetoconsideralloutcomesofinterest.Furthermore,analysisofABMsoftenentailsanexplorationofparametersettings(ortheparameterspace)inordertounderstandthedependenciesbetweenkeyinputparametersandtheiroutcomesincludingtheirvariability.GiventhecomplexityofABMs,theoutcomes'variancemayormaynotbeconstant(i.e.,homoskedastic)acrosstheparametersettings.Hence,thetaskofunderstandingmodeloutputsensitivitytodifferentexperimentalconditionsthatarerelevanttotheresearchquestionisvital.Whilethetopicofsensitivityanalysisisfurtherelaboratedin3.1,wediscussitherebrieflygivenitsroleindeterminingtheadequaterunsamplesizeapplicabletoallthechosenparametersettings.Well-structuredDOE(describedfurtherinSection3)canbeveryhelpfultocomprehensivelyexploremodelvariabilitiescorrespondingtomultiplemodelparameters.

Visualizationforstatisticalissues

2.19 OnevisualizationapproachforexaminingunivariateABMoutcomedistributionsistheviolinplotwhichcombineselementsofaboxplotandakerneldensityplot,withasmoothedestimationofoutcomes'variancesacrosstherangesoffactors/parameters(see,e.g.,Kahl&Hansen2015).Figure2illustratesthemultifacetedinfluenceofsixvariables(eachwith3valuesfollowinga3k

factorialdesign)ontheoutputmeasure("compensationpayment").DetailsmaybefoundinLorscheid(2014).

http://jasss.soc.surrey.ac.uk/18/4/4.html 5 25/01/2016

Page 6: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure2.Violinplotsforaunivariateanalysisofpotentialcontrolvariables.Source:Lorscheid(2014)

2.20 Thegreyareaindicatesthedispersionofvalues.Thewhitedotintheplotindicatesthemedianofthedataset.Theblacklineabovethemedianistheareaofthesecondquartile,andtheblacklinebelowthemedianisthethirdquartileofthedataset.ForadetaileddescriptionofviolinplotsseeHintzeandNelson(1998).

Solutionspaceexplorationandsensitivityanalysis3.1 Thereareavarietyoftopicsthatmaybegatheredunderthebroadheadingofparameterorinput-outputspaceexploration,

includingoptimization,calibration,uncertaintyanalysis,sensitivityanalysis,aswellasthesearchforspecificqualitativemodelfeaturessuchas"regimeshifts"and"tippingpoints".Inallcases,thegoalistoprovideadditionalinsightintothebehaviouroftheABMthroughtheexaminationofcertainparametersettingsandtheircorrespondingoutputmeasures.

3.2 Wewillfirstdiscuss"exploration"inabroadsense,followedbyamoredetaileddiscussionofavarietyofmethodsforperformingoneparticularlyimportantexplorationtask:sensitivityanalysis.

Input/OutputSolutionSpaceExploration

3.3 Oneofthemostcommonformsofparameterspaceexplorationismanual(orhuman-guided)exploration(alsocalledthe"trial-and-errormethod"or"educatedguessing").Thisapproachcanbecomputationallyefficientifguidedbyanindividualfamiliarwiththemodel'sdynamicsand/oroutputs.Theintuitionsofamodel'sauthor/developer,adomainexpert,orastakeholdercaninformparsimonious,iterativeparameterselectioninsuchawayastogenerateandtestrelevanthypothesesandminimizethenumberofregionssearchedorthenumberofrequiredsimulationruns.However,thisexplorationstrategyisvulnerabletohumanbiasandfatigueleadingtoadisproportionateamountofattentionpaidtothetargetphenomenaandtheneglectoflargeportionsofthemodel'sbehaviourspace.Distributingtheburdenoftheexplorationtask(e.g.,crowdsourcing)mayaddresssomeofitslimitations.Nevertheless,moresystematic,automated,andunbiasedapproachesarerequiredtocomplementtheshortcomingsofsolelyhuman-guidedsearching,whichwillalwaysplayaroleinspaceexploration,especiallyinitspreliminarystages.

3.4 Thesimplestofthesystematicexplorationapproachesfallundertheclassofregularsamplingtechniquesinwhichtheparametersarechosen(orsampled)inasystematicmannertoensuretheirhavingcertainstatisticalorstructuralproperties.Someofthesetechniquesarerandom,quasirandom,gridded/factorial,Latinhypercube,andsphere-packing.Samplingmaygloballyconsidertheentireparameterspaceorfocuslocallyonaparticularregion(e.g.,alteringoneparameteratatimefor"univariatesensitivityanalysis").Thewell-establishedmethodologicalhistoryofDOEandtherecentliteratureondesignandanalysisofsimulationexperiments(e.g.,Sacksetal.1989)canguidethesamplingstrategy.However,thecomplexityofABMs(andtheiroutputs)canrenderclassicDOEinappropriateasnotedbySanchezandLucas(2002).ClassicDOE(a)assumesonlylinearorlow-orderinteractionsamongexperimentalparameters(orfactors)andoutputs,(b)makeslittleornoprovisionfortheiterativeparameterselectionprocess(i.e.,sequentialvirtualexperiments),and(c)alsoassumestypicalerror(Gaussianandunimodal)intheoutput.Anexampleofmulti-modalABMoutputispresentedinAppendixC.Thus,traditionalDOEmethods,whileusefulforABMs,oughttobeimplementedwithcautionandconsiderationforappropriatemethodsthataddresscomplexitiesintheoutput.ResearchintoDOEmethodsforABMsisstillevolving(Kleinetal.2005;Kleijnenetal.2005;Ankenmanetal.2008;Lorscheidetal.2012).

3.5 Researchintomoresophisticatedexplorationtechniqueshasbeeninformedbymeta-heuristicsearching,optimizationalgorithms,andmachinelearning.Researchersproposetheuseofgeneticalgorithms(GA)(Holland1975)forawiderangeofexplorationtasksincludingdirectedsearchesforparametersthatyieldspecificemergentbehaviours(Stonedahl&Wilensky2011),parameteroptimization(Stonedahletal.2010),calibration/parameterestimation(Calvez&Hutzler2006;Heppenstalletal.2007;Stonedahl&Rand2014)andsensitivityanalysis(Stonedahl&Wilensky2010).Thequery-basedmodelexploration(QBME)paradigmprovidedbyStonedahlandWilensky(2011)expandsMiller's(1998)applicationofGAinABMoutputexploration.InQBME,parametersproducinguser-specifiedmodelbehavioursarediscoveredthroughautomationsuchasGAs,thusinvertingthetraditionalworkflow(seeFigure3).StonedahlandWilensky(2011)demonstrateQBMEforidentifyingconvergence,divergence,temporalvolatility,andgeometricformationsinmodelsofcollectiveanimalmotion(i.e.,flocking/swarming).

http://jasss.soc.surrey.ac.uk/18/4/4.html 6 25/01/2016

Page 7: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure3.Query-BasedModelExploration(QBME).ThisframeworkforexploringABMparameter-spacesexploitsgeneticalgorithms(orothermeta-heuristicsearchalgorithms)toefficientlysearchforparametersthatyieldadesiredmodelbehaviour.

Source:StonedahlandWilensky(2011)

Sensitivityanalysis:Approachesandchallenges

3.6 Sensitivityanalysis(SA)isavariationofparameter/input-outputspaceexplorationthatfocusesonmodelresponsetochangesintheinputparameters(Figure4).Specifically,theresearcherseekstoidentifyparametersforwhichsmallvariationsmostimpactthemodel'soutput.

Figure4.Uncertaintyandsensitivityanalysisaspartofthemodellingprocess.Source:Ligmann-Zielinskaetal.(2014)

3.7 Thisdiscoverycanaidinprioritizingprospectivedatacollectionleadingtoimprovedmodelaccuracy,reductionofoutputvariance,andmodelsimplification(Ligmann-Zielinskaetal.2014).Modelinsensitiveparametersmayevenberelegatedtomerenumericalconstantstherebyreducingthedimensionalityoftheinputparameterspaceandpromotingmodelparsimony;thissimplificationprocessisreferredtoas"factorfixing"(Saltellietal.2008).Ignoringthesenon-influentialinputparameterscanhaveill-effectsonthemodelbyincreasingitscomputationalcostandalsoonitsreceptionwhentheseparametersarecontroversialforstakeholdersnotinvolvedwiththemodel'sdevelopment(Saltellietal.2008).

3.8 TheproliferationofvariousSAmethodsstemsfromthevarietyofABMstylesandresearchproblemsABMsaddressaswellasfromtheavailabilityofincreasingcomputationalcapacity(Hamby1994;Saltellietal.2000).Currently,theABMpracticeofSAhasentailedoneormoreofthefollowingmethods:one-parameter-at-a-time,elementaryeffects,standardizedregressioncoefficients,meta-modelling,andvariance-baseddecomposition(Thieleetal.2014;tenBroekeetal.2014).Below,webriefly

http://jasss.soc.surrey.ac.uk/18/4/4.html 7 25/01/2016

Page 8: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

discusseachofthese,theiradvantages,anddrawbacks,inthecontextofABMs.

3.9 Inone-parameter-at-a-time(OAT),eachinputparameterinturnisexaminedoverasetofvalues(definedeitherexantetotheSAordynamicallyduringSA)andinisolationbyholdingtheotherparametersataconstantbaseline.Meanwhile,theeffectsofthesemarginal(i.e.,one-at-at-time)parameterchangesaremonitored,andrepeatediterationsincreasetheprocedure'srobustness.Hassani-MahmooeiandParris(2013),forexample,appliedOATtotheirABMofmicro-levelresourceconflictstoidentifypreferableinitialconditionsandtoevaluatetheinfluenceofstochasticityonthemodel;thesimilarityofoutcomeswithinathresholddemonstratedthemodel'sinsensitivitytorandomness.OAT'ssimplicitywhileattractivealsoexposesitslimitationsinABMSA(Ligmann-Zielinska2013).Forone,theimpactfulandrelevantvaluesforeachinputparametermaybeaprioriunknownthusrenderinganyprioritizationofparametersdifficultandthesearchforkeyparametricdriversinefficient.Also,themarginalnatureoftheparametersearchspacesurroundingthebaselineobscuresparameterinteractionsandseverelyshrinkstheinputhypercubewithlargerparametersets.Forexample,withasfewas10inputparameters,OATcoversonly0.25%oftheinputspace(forageometricproof,seeSaltelliandAnnoni(2010)).

3.10 Elementaryeffects(EE)expandsonOATbyrelinquishingthestrictbaseline.Thatis,achangetoaninputparameterismaintainedwhenexaminingachangetothenextinputratherthanresumingthebaselinevalue(asdoneinOAT).Passingovertheparametersetismultiplyrepeatedwhilerandomlyselectingtheinitialparametersettings.TheseperturbationsintheentireparameterspaceclassifyEEasglobalSA(Saltellietal.2008).OriginallyproposedbyMorris( 1991)andimprovedbyCampolongoetal.(2000),EEissuitedforcomputationallyexpensivemodelshavinglargeinputsetsandcanscreenfornon-influentialparameters.

3.11 GlobalSAmayalsobeperformedthroughestimationofstandardizedregressioncoefficients(SRC),whichinitsbasicformsuccinctlymeasuresthemaineffectsoftheinputparametersprovidedtherelationshipsbetweentheparametersandtheoutcomesareprimarilylinear.Astandardizedregressioncoefficientexpressesthemagnitudeandsignificanceoftheserelationshipsaswellastheexplainedvariance.Moreprecisely,thesquareofthecoefficientisthevarianceexplained.

3.12 OneglaringlimitationofSRCisitsabilityhandlespatialinputs(ofspatialABMs)unlessasmallsetofscalarsorindicescansufficientlyserveasproxiesforentiremaps(Lilburne&Tarantola2009).Also,SRCcanexposelower-ordereffectsbutnotcomplexinterdependencies(Happeetal.2006).

3.13 Meta-modelling(oremulation)canaddressthelow-orderlimitationsofSRC.Ameta-model(emulator,amodelofamodel)isthesurrogaterepresentationofthemorecomplexmodel(likeABM)createdinordertoreducethecomputationaltimeofthesimulationsnecessaryforSA.Forexample,Happeetal.2006collatedmodelresponsesfroma2kfactorialdesignonarelativelysmallsetofparametersandfittedasecond-orderregression.Meta-modellingcanbecomputationallyefficientandnotnecessarilyrequirelargeamountsofdata.Forevenhigherordereffects,meta-modellingmethodssuchasGaussianprocessemulatorsarerequired(Marreletal.2011).

3.14 Variance-basedSA(VBSA)isconsideredthemostprudentapproachforevaluatingmodelsensitivitiesasitdoesnotassumelinearity(Ligmann-Zielinska&Sun2010;Fonoberovaetal.2013;Tang&Jia2014).InVBSA,thetotalvarianceofagivenoutputisdecomposedandapportionedtotheinputparametersincludingtheirinteractions(Saltellietal.2000;Lilburne&Tarantola2009).Twoindicesperinput(i)aredrawnfromthepartialvariances:afirst-order(maineffects)indexSiandatotaleffectsindexSTi.Siistheratioofi'spartialvariancetothetotalvariance.STiisthesumofallnon-iindices(∑S − i)andcapturesinteractionsbetweeniandtheotherinputs(Homma&Saltelli1996).Sialoneissufficientfordecomposingadditivemodels,soVBSAisunnecessaryformodelsknowntoproducelargelylinearoutputascalculationoftheindexpairsiscomputationallyexpensiverequiringlargesamplesizes(Ligmann-Zielinska&Sun2010);forexample,VBSAforkparametersrequiresM(k + 1)modelrunswhereM > 1000.Thiscomputationalloadmaybereducedthroughparameter(orfactor)grouping(Ligmann-Zielinska2013;Ligmann-Zielinskaetal.2014),parallelization(Tang&Jia2014),orquasi-randomsampling(Tarantola&Zeitz2012).Situationsinwhichinputsareexogenouslycorrelatedmayresultinnon-uniqueVBSA(Mara&Tarantola2012).Whilerecentmethodsaddressingthesedependencieshavebeendeveloped(Kucherenkoetal.2012;Mara&Tarantola2012;Zunigaetal.2013),theystillrequireelaborateDOEcoupledwithaverylargesamplesizeandalgorithmiccomplexity.

3.15 Geneticalgorithms(GAs)mayalsobeusedforSA(Stonedahl&Wilensky2010).Parametersarealteredunderthegeneticparadigmofreproductioninwhichpairsof"fitter"parametersetsexchangesubsets.Thefitness(orobjective)functionmaybetailoredtoexposemodelsensitivitiestoitsparameters(asopposedtocalibration).Forexample,StonedahlandWilensky(2010)allowedGAstosearchthrough12parametersofthe"ArtificialAnasazi"ABM(Deanetal.2000;Janssen2009)inordertoinduceresponsesdepartingfarfromtheempirical,historicalvalues,whileconstrainingthesearchtoalimitedrange( ± 10%oftheircalibratedsettings).SeeFigure18inAppendixDforaplotoftheoutlierresults.

3.16 TherelianceonmeanandvariancefordistributionalinformationinmanyofthepracticedmethodsofSAisinsufficientformorecomplexdistributions.Futureresearchshouldinvestigatemoment-independentmethods(Borgonovo2007;Baucells&Borgonovo2013).

Visualizationinsensitivityanalysis

3.17 Visualizationsoftheinputparameter-outputrelationshipsareanintegralpartofSA.Inscatter-plots,theserelationshipsaredirectlyandsimplyplottedpotentiallyrevealingdependencies(seeFigure5).WeusedthesimpleSchellingsegregationmodel

http://jasss.soc.surrey.ac.uk/18/4/4.html 8 25/01/2016

Page 9: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

(Schelling1969)ofredandgreenagentsona100x100gridimplementedinAgentAnalyst(http://resources.arcgis.com/en/help/agent-analyst/).Themodelcontainsfouruniformparameters(lowerandupperboundsinparentheses):numberofagents(3000,6000;discrete),tolerancetoagentsofdifferentcolour(0.2,0.5),randomseed(1,10000;discrete),andpercentofgreenagents(10,50).Wemeasuredagentmigration(totalnumberofagentmovesduringmodelexecution)forN = 1280modelruns.

Figure5.Sensitivityanalysiswithscatterplots.Scatterplotsoftotalmigrationversusthefourmodelinputsatt = 100;notethatnumberofagentshasmoreinfluenceonthevariabilityoftotalagentmigrationthantheotherinputs.

3.18 Typically,they-axisandx-axis(foratwo-dimensionalscatterplot)expressvaluesforanoutputandaninputparameter,respectively.Scatterplotsareespeciallyusefulwhenthedependenciesarestructured,theoutputisascalar,andthenumberofmodelparametersislimitedallowingforanunencumberedenumerationofparametersandoutputcombinationsinseparatescatterplots.Morecomplexmodelbehavioursrequirealternativevisualizationstylessuchaspiechartstodisplayvariancepartitions(seeFigure6).

Figure6.Sensitivityindicesobtainedfromdecompositionofmigrationvarianceatt = 100.Notethatalmost30%ofmigrationvarianceiscausedbyinteractionsamonginputs–mainlytoleranceandnumberofagents.

3.19 Asnapshotofvariancedecompositionattheendofthemodelrun(e.g.,Figure6)maybeinsufficientinassessingtheimportanceofparametersandconsequentlytheirprioritization(Ligmann-Zielinska&Sun2010).Thus,visualizingvariancedecompositiontemporallywillrevealparameterstabilityoverthecourseofthemodelrun(seeFigure7).Spatialoutputssuchaslandusechangemapsmayalsoreceivesimilartreatmenttorevealtheextentofoutcomeuncertaintyinregions(orclusters)duetospecificparameters(Ligmann-Zielinska2013).

http://jasss.soc.surrey.ac.uk/18/4/4.html 9 25/01/2016

Page 10: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure7.Timeseriesofsensitivityindicesobtainedfromdecompositionofmigrationvariancemeasuredovertime.Theexampledemonstratesthatparametersensitivitiescanconsiderablyvaryduringsimulation,withnumberofagentsdominatingthe

varianceatt = 10,andtolerancedominatingthevarianceatt = 100.

3.20 SAformultipleoutcomevariablesinanABMincursadditionalchallengesduetodifferencesineachparameter'simpactontheoutcomes(seeFigure4).Thisissueisofparticularconcernformodelsimplificationanddemandseitheronesingle,well-chosenoutcomethatisadequatelyrepresentativeofthemodel'sbehaviourormoreconservatively,thedifficulttaskofundergoingSAacrossthewholespectrumofoutputs:scalars,time-andspace-dependentmeasures.

Spatio-TemporalDynamics

TemporalandspatialdimensionsofABMoutputdata:challenges

4.1 Asastochasticprocess,anABMgenerates(oriscapableofgenerating)timeseries(TS)data.Toaslightlylesserextent,ABMsalsooperatewithintopologicalboundariesoftenexpressedasaspatiallandscape,whetherempirical(e.g.,Parkeretal.2002;Bousquet&LePage2004;Heppenstalletal.2012;Filatova2014)orstylized(e.g.,earlyusebySchelling1969,1978;Epstein&Axtell1996).SimilartootherABMoutcomes,boththeTSandspatialdataareborneoutofcomplexendogenousdynamicsoverwhichthemodellerexertsfullcontrol.Thus,itisrarelythecasethattheoutputdataisproducedbyasinglecomponentofthemodel.Instead,mostofABMTSandspatialoutputrecordedembodythelonglistofuniquefeaturesthatABMsexhibitsuchasemergenceratherthanaggregationatthemacro-level,interactionratherthanreactionatthemeso-level,andnon-linearityratherthanlinearityofprocessesanddecision-makingatthemicro-level.SpatialmapsgeneratedbyABMsmayalsocaptureeventualspatialexternalities,path-dependencies,andtemporallageffects.ThesecharacteristicsrendertheanalysisofABMoutputsless

appropriateformoretraditionaltools.TheseissuesderivefromthereasonsABMareusedinthefirstplace.[4]WeconsiderthischallengingnatureofTSandspatialoutputanalysisinthefollowingsections.

Time:approachesandvisualizationtechniques

TimeseriesgeneratedbyABMs(ABMTS)representamyriadoftemporaloutcomes,suchasevolvingagentcharacteristics(e.g.,sociodemographics,utility,opinions);agentbehaviours/decisions(e.g.,strategies,movements,transformations);ormeasuresdescriptiveofthemodelstate(e.g.,agentpopulationorsubpopulationcounts).Alltheseareoftenpresentedassimplelinegraphsrepresenting1)outcomesofindividualagentsofspecialinterest(Squazzoni&Boero2002,Fig.9)or2)aggregatedstatistics(suchasmeanormedian)overtheentireagentpopulation,subgroups,oranindividual(withmeasurementsoverseveralruns)undervaryinglevelsoftemporalgranularity(e.g.,amovingwindowcoveringseveraltimepoints)(Izquierdoetal.2008).ComparisonsofmultipleTSareoftenfacilitatedbytheinclusionofconfidenceintervals(Raczynski2004,Fig.4)andoccasionallyperformedagainstexperimental/empirical(Richiardietal.2006;Boeroetal.2010,Fig.1)ortheoretical(Takahashi&Terano2003,Fig.4)outcomesorexpectations(Angus&Hassani-Mahmooei2015).TScomparisonshavealsobeenperformedforcalibrationpurposes(Richiardietal.2006).

4.2 DespitetheproliferationofABMs,effectiveTSanalyticaltechniquesremainunder-used(Grazzini&Richiardi2015).AngusandHassani-Mahmooei(2015)surveyedover100ABMpublicationsinJASSSandfoundveryfewinstancesofadditional(statistical)modellingofTSdata.Onlyinagent-basedfinancialmarketresearchdoesonefindrelevantTSstatisticalandeconometricanalysis(Yamada&Terano2009;Chenetal.2012;Neri2012).

4.3 Inthissection,wediscusselementsofTSanalysisinthecontextofABMsandpresentsomebasicandsomecompellingexamples,whilestoppingshortofexpoundingformalTSmodellingsuchasauto-regressivemodels.

http://jasss.soc.surrey.ac.uk/18/4/4.html 10 25/01/2016

Page 11: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

4.4 AmongthetechniquesforanalysingABMTS,weconsidertimeseriesdecompositiontobeoneofthemoreusefulmethods.DecompositionentailspartitioningaTSintofourcomponents:trend,cyclical,seasonal,andrandomcomponents.Theprominenttrendisthemoststructuredofthesecomponentsanddepictsthelong-termlinearornon-linearchangeintheTSdata.Theseasonalcomponentexhibitsregularperiodicityduetosomefixedexternalcyclesuchasseasons,months,weeks,ordaysoftheyear.Exogenousmodeleventssuchasregularadditionsofafixedcountofagentstotheagentpoolarealsoconsideredseasonal.Cycleshavingirregularperiodicityconstitutethecyclicalcomponent.Finally,theresidualorrandomcomponentcapturestheunexplainedvariationremainingafterthepriorthreecomponentsarefilteredfromtheTS.

4.5 ThespectrumofTSanalysistechniquesrunsfromthecalculationofmovingaveragesandlinearfiltering(seeFigures8aand8b)tothemoresophisticatedexponentialsmoothingandautoregressivemodelling.Furthermore,ABMrelevantergodicitytestsmaybeappliedtoinferstationarityofstatisticalmoments(e.g.,mean,variance,skewness,kurtosis,etc.)henceequilibriumofthosemomentsacrossapoolofsimulationruns(Grazzini2012).

4.6 ForanexampleofABMTSanalysis,weexaminetheoutputofthewell-knownEl-Farol"barpatron"game-theoreticABM(Rand&Wilensky2007).Theinitialconditionsare:memorysize=5,numberofstrategies=10,overcrowdingthreshold=50.Thenumberagentsincreasesby2%every52steps.Figure8apresentstheoriginaldataanditslinearincreasingtrend(inred).SubtlestructureintheTSisexposedwhenweplotamovingaveragealongwithitsdecomposedtrend(obtainedviaexponentialsmoothing)(Figure8b).

(a)Lineartrend(b)Movingaverage

http://jasss.soc.surrey.ac.uk/18/4/4.html 11 25/01/2016

Page 12: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

(a)Lineartrend(b)MovingaverageFigure8.TimeSeriesofBarAttendanceinElFarolABM.Theblackandgreyseriesrepresenttheoriginaldata;theredlineisthelinearfit(left)ordecomposedtrend(right);andthebluelineisamovingaverage.Theuppersubfiguresarelabelled(a)and

(b).Thelowersubfiguresare(c)and(d).

4.7 Themodelbehaviourisaugmentedtoincludeanarbitrary,one-timeincreaseinpopulationincreasewhilethegradualincreaseisreducedto0%.Whilethelineartrendforthenewresults(Figure8c)coarselycapturesthepopulationincrease,thesuddenchangeismadestarklyvisibleusingamovingaverage(plusdecomposedtrend)(Figure8d).

4.8 ComparisonsbetweenTSdrawnfromdistinctmodelparameterizationscanbeeasilyperformedthroughdirect(albeitnaïve)

visualcomparisonofthetwoseries,plottingthedifferences,orcalculatingtheirEuclideandistance[5]orcrosscorrelation.However,thesecomparisonapproachesareappliedtoexacttemporalpairwisedataandthusfailtoaccountforthecomplexitiesofABMsthatmayproduceTSthataredissimilaronlythroughinterspersedlags.InadditiontoRichiardi's(2012)suggestionsforrobustTScomparison,weadvocatetheuseofdynamictimewarping(DTW)toaddresstheabovecomplication(Keogh&Ratanamahatana2005).DTWisnowextensivelyusedinareassuchasmotionandspeechrecognition.UsingastylizedpairofTS,Figure9depictstheeffectivenessofDTW,whichidentifiescomparablepairsofdataoccurringatdifferingtimescales.

Figure9.Comparingdistance(similarity)measurementmethodsbetweenEuclideanDistance(left)andDTW(right)

4.9 TofurtherdemonstrateDTW'seffectiveness,wecompare40distinctparametersettingsinEpstein'sABMofcivilviolence(Epstein2002;Wilensky2004).Theprimarydistinctionistheinitialcopdensitywhichrangesfrom4.05and5.00inincrementsof0.05%andresultsinvariedsizesofthepopulationofquietcitizens,ouroutcomemeasureofinteresthere.Weobtain10TSsamples(i.e.,modelruns)underNetLogoeachhavingadurationof200ticks/timepoints.InFigure10,wepresentfourindividualrunsinordertohighlightthedifficultyofdirectvisualcomparison.

http://jasss.soc.surrey.ac.uk/18/4/4.html 12 25/01/2016

Page 13: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure10.ComparingTimeSeriesfromDistinctParameterizationsofQuietCitizensofCivilViolenceABM

4.10 Whiletheoutcomesareinitiallysimilar,theyrapidlydivergesharingonlythecharacteristicoftheoutcomes'exhibitingsomefluctuation.Thetworunsunderthesameparametersetting(4.1%)naturallydivergeduetodistinctrandomsequences(fromaRNGusingdistinctrandomseeds).

4.11 ComparisonsofallpairsoftheexperimentalconditionsarepresentedinFigure11.Thesecomparisonsareperformedonnormalizedoutcomesaveragedoverthesuiteofruns.ThedistancemeasurementsintheleftmatrixaredirectcorrelationsandEuclideandistancesintherightmatrix.ThecellsintheuppertriangleofeachmatrixcorrespondtodirectcomparisonoftheTSwhilethoseinthelowertriangleindicatesthemeasurementsunderDTW.Therowandcolumnsdenoteincreasingcopdensities.

Figure11.ComparingDTWagainstnon-DTWforcorrelationandEuclideandistance

4.12 ThefiguresillustratethesuperiorityofDTWincapturingTSdifferencesunderthesemeasurements,overthedirectuseofexacttemporalpairs.DTWclearlyexposesgreatersimilarityoftheoutcomes'TSwhentheexperimentalparameters(copdensity)arealsosimilarwhereasthedirectmeasurementsdonot.Thisrelationshipislargelymonotonicasonewouldexpect.Thus,DTWisappropriateformodelsforwhichtheoutcomeTS'sstructure(specifically,bothitsseasonalandirregularperiodicities)isgreatlyaffectedbytheexperimentalconditions.

4.13 Finally,TSanalysisprovidesahighlyinformativeopportunitytopreciselyestimatetheimpactofchangesintheinputvariablesontheoutputsofanABMmodel.Techniquessuchaspaneldata(orlongitudinal)analysis,whichtakeintoaccountbothTSandcrosssectionalcomponentsofthedata,canenabletheagent-basedmodellerstouncoverrobustevidenceonhowmodelbehavioursareassociatedwiththechangesinthevariablesoftheagentsand/orthemodelovertime.OtherprominentcomponentsofTSanalysis(suchasforecasting,classificationandclustering,impulseresponsefunction,structuralbreakanalysis,laganalysis,andsegmentation)mayalsobeusedalongwithestimationandauto-regressivemethodsinordertoprovideabetterunderstandingofseriesgeneratedbyABMs.

ProcessingspatialABMoutput:approachesandvisualizationtechniques

4.14 ThespatialenvironmentinABMsvaryfromcellulargrids(inwhichonlyinter-agentdistancematter)torasterorvectorrepresentationsofmultiplelayersofarichGISdata.LocationsinaspatialABMmayrelatetooutputmetricsattheindividualoraggregatedagentlevel(e.g.,income,opinion,orastrategy)orotherspatialqualities(e.g.,land-usecategories).ItischallengingtoseekpatternsandtocompareacrossexperimentalconditionsinasearchforacompellingnarrativewhilescreeningthroughhundredsofmapsproducedbyanABM.SpatialABManalysisisofteninformedbymethodsfromgeographyandspatialstatistics/econometrics.Here,wereviewsomespatialmetricsandvisualizationapproachesforspatialanalysis.

4.15 QuantitativeindicessuchastheKappaindexofagreement(KIAorCohen'sκ)havebeenwidelyemployedforcell-by-cellcomparisonofABMoutcomesonspatialmaps(Manson2005).Morerecentworksuggestalternativestotheκsuchasamovingwindowalgorithm(Kuhnertetal.2005)andexposeitslimitations(Pontius&Millones2011).Pontius(2002)proposesmorecomprehensivemethodsandmeasuresfortrackinglandusechangesandcomparingmapsundermultipleresolutions(fromcoarsetofine).

4.16 Variousspatialmetricsareoftenusedtomeasureland-usechangeanddetectspatialpatternssuchasfragmentationandsprawl(Parker&Meretsky2004;Torrens2006;Liu&Feng2012;Sunetal.2014).Thesemetricsincludemerecountingofland-usecategories,landscapeshapeindex,fractaldimension,edgedensity,aswellasadjacency,contiguity,andcentralityindexes.Moran'sIisanotherspatialautocorrelationstatisticindicatingtheextentofdispersionorclustering(Wu2002).Millingtonetal.(2008)usedacontagionindexalongwithbasicpatchcountmetricstoidentifyfragmentation.Griffithetal.(2010)usedGetis-OrdGi*"hotspot"analysistoidentifystatisticallysignificantspatialclusteringofhigh/lowvalueswhileanalysingthespatialpatternsofhominids'nestingsites.ZinckandGrimm(2008)usedspatialindices(shapeindex,edgeindex)andbasicmetrics(countsandareasofdiscrete"island"regions)tosystematicallycompareempiricaldatatosimulationresultsfromtheclassicDrossel-

http://jasss.soc.surrey.ac.uk/18/4/4.html 13 25/01/2016

Page 14: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

SchwablforestfirecellularautomataABM.SoftwareofferingthesemetricsincludeC++Windows-based'FRAGSTATS'andthe'SDMTools'package(fortheplatform-independentR),thefunctionalityofwhichmaybeaugmentedbyBio7andImageJforimageprocessing.

4.17 Inanotherexample,Sunetal.(2014,Table6)reportedbasicstatistics(i.e.,meanandstandarddeviation)onninespatialmetricsestimatedovermultipleparametersettingsforvaryinglevelsoflandmarketrepresentationintheirurbanABM.Thesignificanceofmeandifferences(acrossconditions)wereassessedwiththeWilcoxonsignedranktest.Meansofthemetricswerejointlyvisualizedacrossallparametersettingsinalinegraphstylecalled"comprehensiveplotting"(Sunetal.2014,Figures5–8),whichthenallowsforidentificationofconditionsproducingoutlyingbehaviourfacilitatingvisualsensitivityanalysis.

4.18 Obviously,statisticalmodelssuchasregressionsandANOVAsmaybeemployedtorelatemodelparametersandoutcomestospatialoutcomes(e.g.,Filatovaetal.2011).However,dependenciesamongspatiallydistributedvariablesrequirespecialtreatmentintheformofaweightedmatrixincorporatedintoaspatialregressionmodelasapredictororaspartoftheerrorterm.Localesmaybedisambiguatedfurtherinstatisticalpredictionthroughgeographicallyweightedregression(GWR).Thesemethodsalsofallundertheauspicesofspatialeconometrics.

ReportingandvisualizingABMresultsovertimeandspace

4.19 Typically,spatialABMoutputisrenderedastwo-dimensionalmaps.Acollectionofthesecanhighlightmodeldynamism/progressionorallowforcomparisonofmetricsandexperimentalconditions(Parry&Bithell2012,Figure14.11)orexposekey,informativetrajectories(e.g.,Barros2012,Figure28.3).3Dviewsarealsousedtoportrayoutputsparticularlyinevacuationandcommuting(Patel&Hudson-Smith2012).Often,visualinspectionofthedataoffersfacevalidationandhigh-levelinference.Forexample,aspatialoverlayiscommonlyusedtoanalyserasteroutputsandevaluatethespatialdistributionofmultiplemodelbehavioursandoutcomes.

4.20 ThespatialdistributionofoutcomesissubjecttothestochasticandpathdependentnatureofABMsandoftendemandaggregationforeffectivepresentationofmodelbehaviour(Brownetal.2005).Naturally,ameanwithaconfidenceintervalforanoutcomeineachspatiallocationcanbesufficientforreportingasetofmaps(overtimeoracrossexperimentalconditions)(e.g.,Tameneetal.2014).Alternatively,afrequencymapforasingleparametersettingrevealseachlocation'sstatetransitionprobabilities(asaproportionoftotalsimulationruns)(Brownetal.2005).Thesetransitionsmayeasilybeportrayedasacolour-gradientmap(e.g.,Magliocca2012).PlantingaandLewis(2014)warnagainstconstructingdeterministictransitionrulesoutoftheseprobabilities.Brownetal.(2005)alsosuggestdistinguishingareasofnon-transition(orinvariantregions)fromvariantregions;themethodforidentifyingtheseareasiscalledthevariant-invariantmethod.

4.21 Judiciousselectionofatemporalsequenceofmapscanrevealmodeldynamics.Softwaresuchasa"mapcomparisonkit"(RIKSBV2010)canperformautomatedteststoidentifytheextenttowhichtworastermapsaredifferent.Pontiusetal.(2008)extendsthecomparisonexercisetoincludethreemapswhileconsideringpixelerrorandlocationerror.Comparisonsincludeallpairsofsimulationoutputsattimes1and2,a"true",referencemapattime2,andallthreemapsjointly.

4.22 WhileshowcasingamapasanoutputofanABMisalwaysappealing,supplementingitwithsummarystatisticsofspatialpatternsallowsfordeeperunderstandingofexperimentaleffectsandconsequentlythemodel'sbehaviour.Inadditiontothespatialmetricsdiscussedin4.3,quantitiesoflanduseandconversionsmaybereportedashistogramsacrossdifferentscenariosandland-usetypesovertime(e.g.,Figure4inVillamoretal.(2014)).

4.23 Color-gradientsinlandscapevisualizationscanbeusedtorepresenttemporalchangesinametricofinterest.Filatova(2014)employsthesespatio-temporalchangegradientstopresentlandpricechanges(duetomarkettradesinanABMfocusingoncoastalproperties)betweentwopointsintimeinanempiricallandscape(Figure12).

Figure12.Changesinpropertypricesovertime

4.24 Theblueandredgradientscorrespondtothevalenceofthechange(i.e.,fallingandrisingprices,respectively);theirdarknessor

http://jasss.soc.surrey.ac.uk/18/4/4.html 14 25/01/2016

Page 15: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

intensityindicatelevelofchange.Suchvisualizationsmayoffereasyidentificationofclustersandboundaries.

4.25 AnotherobviouswaytodepictthedifferencesinspatiallydistributedABMoutputdataistovisualizein3Dplots.The3rddimensionclearlypermitstheinclusionofadditionalinformationsuchastimeoroneofagents'innerattributes.Forexample,Huangetal.(2013)employed3Dcoloredbarplots(Figure13)inwhichthe2Dlayoutcorrespondstophysicallocation.

4.26 Such3DvisualizationsofferinsightsintotheABM'sdynamicsorhighlightvitalstructuraldifferencesacrossexperiments.Forexample,DeardenandWilson(2012)usea3DsurfacetoplotthemacrometricsofinterestoftheirretailABMasafunctionofdifferentvaluesofthetwomostcriticalparametersaffectingagents'choices.3Dsurfacesoverdifferentparametersspacescanalsobecomparedwitheachother,asdemonstratedbyDeardenandWilsonintheircomparisonsofactivitywithinconsumerandretaileragentclasses.

Figure13.Priceoflandandsequenceoftransactionsundervariousmarketconditionswhenagentshaveheterogeneous

preferencesforlocation.Left:Allocationoflandonthismarketisonlypreferencedriven.Right:Landallocationhappensthroughcompetitivebidding.Thehigherthebar,thehigherthelandprice.coloursdenotethetimewhenlandwasconvertedintourban

use.Source:Huangetal.(2013)

4.27 Inthisexample,thecoloraddsafourthdimension(timeofanevent)totheconveyedinformation.Furthermore,functionalshapesaremoreeasilydiscerniblein3D;inthiscase,theuppersectionofFigure13bmightbefittedtoaparaboloidorasimilarsolidofrevolution.

4.28 Anotherefficientuseof3DvisualizationforABMswithgeo-spatialelementsisshowninFigure14.Malleson'smodelofburglaryinthecontextofurbanrenewal/regenerationcomprisesagentswhotraveltocommitcrimeinanurbanlandscape(Mallesonetal.2013).

Figure14.Spatio-temporalTrajectoriesofBurglars.Source:NicolasMalleson.http://nickmalleson.co.uk/research

4.29 Thecolored,segmentedlinesinthefigurewhenoverlaidontothe2Dcitymapdepictthetrajectoriesofburglaragentsseekingtargetswhilethez-axisdenotesthetemporaldimensiontotheirjourney.Thisjointportrayaloftimeandspacesuccinctlycommunicatesimportantfeaturessuchaskeylocationsofactivityfortheagents(i.e.,wherelinesappearvertical)aswellastheoriginoftheagentanditsdestination,inthiscaseapresumably"safe"location.

4.30 Finally,giventhedynamicnatureofABMs,theirspatialandtemporaloutputsareappropriatefordynamicpresentationmodalities.Interactive3Dvisualizationsoffertheabilitytoexaminethedatafromalternativeperspectives.Increasingly,video(oranimation)hasbeenusedtocaptureABMbehaviourasameanstocommunicateABMoutputtobothpractitionersaswellasthe

http://jasss.soc.surrey.ac.uk/18/4/4.html 15 25/01/2016

Page 16: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

broaderlay-audience.[6]ModelbehaviourmayalsobecapturedasanimatedGIFfiles,thesmallsizesofwhichfacilitatetheiruseinpresentationsandwebpages(Lee&Carley2004;Lee2004).

Discussionandconclusions5.1 WhileABMasatechniqueoffersmanyexcitingopportunitiestoopenresearchfrontiersacrossarangeofdisciplines,therearea

numberofissuesthatrequiresrigorousattentionwhendealingwithABMoutputdata.ThispaperhighlightstheoutstandingcomplexitiesintheABMoutputdataanalysisandconsolidatescurrently-usedtechniquestotacklethesechallenges.Inparticular,wegrouptheminto3themes:(i)Statisticalissuesrelatedtodefiningthenumberofappropriaterunsandhypothesistesting,(ii)Solutionspaceexplorationandsensitivityanalysis,and(iii)ProcessingABMoutputdataovertimeandspace.WealsobrieflydiscussstakeholderinvolvementinABMresearch (iv)below.

5.2 Statisticalissuesrelatedtodefininganumberofrunsandhypothesistesting:ForanalysingABMs,thecalculationofstatisticsfrommodeloutcomesacrossmultiplesimulationrunsisrequired.However,thestatisticalmethodsarechallengedbybothaplethoraofABMoutputdataforwhichtraditionalstatisticaltestswillexposeminuteeffectsandcomplexABMsforwhichrunsarecostly.Intheformerscenario,statisticalmethodsneedtobetempered(e.g.,amorecriticalp-value)oranacceptableceilingonthenumbersamples(orruns)shouldbeenforced.Forthelattercase,apredeterminationoftestsensitivity(e.g.,effectsize)mustbemadebeforecalculatingaminimumnumberofruns.However,thestabilityofoutcomevarianceneedstobesecured,andwedemonstrateandreviewapproachesforestimatingthepointatwhichthisisachieved.WealsorevealthatthetraditionalapproachtodeterminingminimumsamplesizeissensitivetotheshapeofthedistributionandwesuggestempiricalestimationofthepowerleveloruseofthemoreconservativeWilcoxonranksumtest.Anotherchallengeistheanalysisofmanyinfluencingvariables.Theanalysisofcomplexinterdependencieswithinasimulationmodelcanbeaddressedbysystematicdesignofexperimentprinciples,andunivariateanalysismaysupporttheanalysisbypre-definingparameterranges.Overall,ABMresearchersshouldbeawareofthestatisticalpitfallsintheanalysisofsimulationmodelsandofthemethodsdescribedtoaddressthesechallenges.

5.3 Solutionspaceexplorationandsensitivityanalysis:AnABMcannotbeproperlyunderstoodwithoutexploringtherangeofbehavioursexhibitedunderdifferentparametersettingsandthevariationofmodeloutputmeasuresstemmingfrombothrandomandparametricvariation.Accordingly,itisimportantforABManalystsandresearcherstobefamiliarwiththerangeofmethodsandtoolsattheirdisposalforexploringthesolutionspaceofamodel,andfordetermininghowsensitivemodeloutputsaretodifferentinputvariables.ABMsposeparticularchallengesforSA,duetothenonlinearityofinteractions,thenon-normalityofoutputdistributions,andthestrengthofhigher-ordereffectsandvariableinterdependence.Whilesomemodelanalysesmayfindsuccessusingsimple/classicSAtechniques,practitionerswoulddowelltolearnaboutsomeofthenewerandmoresophisticatedapproachesthathavebeen(andarebeing)developedinanefforttobetterservetheABMcommunity.

5.4 ProcessingABMoutputdataovertimeandspace:WhileeveryABMhasthepotentialtoproducehighresolutionpaneldataonaggregatedandagent-levelmetricsoverlongtimeperiods,thestandardtimeseriestechniquesarerarelyapplied.WearguethattheuseoftimeseriestechniquessuchasdecompositionandmovingaveragesanalysisnotonlyimprovethescientificvalueofABMresultsbutalsohelpgainingvaluableinsights–e.g.,theemergenceofthetworegimesinthedataovertime–thatarelikelytobeomittedotherwise.TheuseofEuclideandistancesimilaritymeasurementanddynamictimewarpingoffershighutilityespeciallywhentemporallyvaryingoutputsneedtobecomparedbetweenexperimentsorinasensitivityanalysisexercise.Whendealingwithspatialdataanalysis,ABMresearchersactivelyusemethodsdevelopedingeographysuchasspatialindexes,mapcomparisontechniques,seriesof2Dor3Dmaps,2Dhistograms,andvideos.Inaddition,ABM-specificmethodsarebeingactivelyproposed–suchas3Dhistogramsreflectingtemporalchangesoveraspatiallandscape,spatio-temporaloutputvariablechangegradients,aswellasoverlayingtemporalABMdynamicsovera2Dmap.

5.5 CommunicatingABMresultstostakeholders:TheutilityandeffectivenessofmanyABMsandtheiroutputsareoftenjudgedbythemodel'sconsumers:theuser,thestakeholder,ordecision-maker.Thus,aqualitativeunderstandingofthemodelisessentialasmodelacceptanceandadoptiondependstronglyonsubjective,qualitativeconsiderations(Bennettetal.2013).

5.6 TheclarityandtransparencyofABMmechanismsfacilitatestakeholderinvolvementinthemodellingprocess.Thisparticipatorymodellingisapowerfulstrategytofacilitatedecision-making,management,andconsensusbuilding(Voinov&Bousquet2010).IncontrasttoothertechniquessuchasSystemDynamics(SD),ComputationalGeneralEquilibrium,orIntegratedAssessmentModelling,ABMrulesareexplicit,directlyembeddedinthemodel,anddonotnecessarilyhavetobeaggregatedorproxiedbyobscureequations.Thus,ABMshavebeenhistoricallyattheforefrontofparticipatorymodelling.Communicativegraphicaluserinterfaces(GUIs)inplatformssuchasNetLogoandCormashavealsocontributedtotheclarityinpresentationandeaseofinterpretation(astheyhavedoneforSD'sStellaorVensim).AcloneofparticipatorymodellingwithABMsconceivedbyFrenchmodellersbecameknownascompanionmodelling(Bousquetetal.1999;Barreteauetal.2003;Étienne2014)andisappliedgloballyparticularlyindevelopingnations(Becuetal.2003;Campoetal.2010;Worrapimphongetal.2010).Asthefocusisonthemodelasaprocessratherthanaproduct(Voinov&Bousquet2010),co-learningbetweenstakeholdersandmodellersresultsinexpedientcyclesofmodelling,outputpresentationanddiscussion,andsubsequentamendmentofthemodel.

5.7 Moss(2008)notesthatevidenceshouldprecedetheory,whenevermodellingbecomesembeddedinastakeholderprocess.Thus,interpretationofmodeloutputsrequiresmorethanmerequantitativeevaluationandinterpretation,andthenecessarytaskofweighingmodeloutputsagainstvaluesandperceptionsofbothstakeholdersandmodellersalikecontinuestochallengeus

http://jasss.soc.surrey.ac.uk/18/4/4.html 16 25/01/2016

Page 17: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

(Voinovetal.2014).

5.8 Directionsforfutureresearch:Mostofthechallengesandtechniquesconsideredinthispaperarequitecomputationallyintensive.Yet,thefactthatananalysisofABMoutputdataoftenrequiresmoretimeandattentionthanthedesignandcodingofanABMitselfisstilllargelyunderestimatedespeciallybyamateursintheABMfield.Thus,user-friendlysoftwareproductsthat

supportdesignofexperiments(e.g.,theAlgDesignpackageinR(Wheeler2011)),[7]parameterspaceexploration,sensitivityanalysis,temporalandspatialdataexplorationareinhighdemand.Forexample,theMEMEsoftwareisonesteptowardthisgoalandisavaluabletoolsforABMresearchers.ABMswouldideallysupportrealworlddecision-making,henceefficient,user-friendlyABMplatforms,supportingdataanalysisandvisualization,wouldreinforceuseofABMinparticipatorymodelling.Moreover,insightsintoadvancedstatisticaltechniquescouldassistinresolvingsomeofthestatisticalissuesdiscussedinSection2.

AcknowledgementsThismaterialisbaseduponworksupportedbyNWODIDMIRACLE(640-006-012),NWOVENIgrant(451-11-033),andEUFP7COMPLEX(308601).Furthermore,ourthanksgotoallparticipantsofWorkshopG2duringtheiEMSs2014ConferenceinSanDiego.

Notes

1Thispaperwasinspiredbyaworkshopatthe2014iEMSsconference:theG2workshop"AnalyzingandSynthesizingResultsfromComplexSocio-ecosystemModelswithHigh-dimensionalInput,Parameter,andOutputSpaces".Duringthatworkshop,severalkeyissuesfacingtoday'ssimulationmodellerswereidentifiedanddiscussed.Theonesdeemedtobemoreexigenthavebecomethefocusofthispaper.

2ThenormalorGaussiandistributionalsoknownasthe"bell-curve"isthemosteasilyrecognizedempiricaldistributioncontainingasinglemodeandoftencapturesmanynaturallyobservedoutcomes.Theuniformdistributionisaflat,artificialdistributionandcanbeconsideredtoserveasthecontroldistributionamongthisset.Theexponentialisoftenusedtomodelfailureratesandisamodalandskewed.ThePoissonexpressestheprobabilityofagivennumbereventsoccurringwithinaknowninterval.Theχ2(chi-squared)istypicallyemployedinstatisticaltestsaswellastheStudent'stdistribution.Weincludethesetwoastheyarereadilyrecognizablebymanypractitionersofappliedstatistics.

3TheeffectsizecalculationweemployisCohen'sd(Cohen1988):d =

μ1 −μ2spooled .

4LeBaronetal.(1999,p.1512),forexample,notethattheirartificialstockmarkethastimeseriescapturingphenomenaobservedinrealmarkets,includingweakforecastabilityandvolatilitypersistence.

5

Euclideandistance =

n

∑i =1(xi − yi)2

wherenisthenumberofdatapointsineachvector.

6Forexamples,weciteEpstein&Axtell(1996)andthecorrespondingvideo:https://www.youtube.com/watch?v=SAXWoRcT4NMandHelbingetal.(2005)andthecorrespondingvideo:https://www.youtube.com/watch?v=yW33pPius8E.

7FurtheroptionsinRforDOEmaybefoundathttp://cran.r-project.org/web/views/ExperimentalDesign.html.

AppendixA:MinimumSampleSizeforDistributions

http://jasss.soc.surrey.ac.uk/18/4/4.html 17 25/01/2016

Page 18: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure15.MinimumSampleSizeforThreeDistributions

Theblackcurvedenotestheempiricalpowerlevel.Theredlinedenotesthedesiredpowerlevel:1 − β = 0.80.Thesolidgreenverticallinedenotestheminimumsamplesizederivedfromthepowercalculationwhilethedottedgreenlineshowstheempirically-derivedsize.ThebluecurveandlinedenotethepowerandminimumsizeaccordingtothetwosampleMann-Whitney-Wilcoxontest.

Figure16.MinimumSampleSizesforBirthRateABM

Theredlinedenotesthedesiredpowerlevel:1 − β = 0.80.Thesolidgreenverticallinedenotestheminimumsamplesizefromthepowercalculation;thedottedgreenlineshowstheempirically-derivedsize;andthebluecurveandverticallinedenotethepowerandminimumsamplesizeaccordingtotheMann-Whitney-Wilcoxontest.

AppendixB:IssuesofHypothesisTestingThereexistsanongoingdebateovertheemphasisresearchersshouldplaceonsignificancetests.Alargesamplesizecaneasilyclassifyaminutedifferenceasbeingsignificant.Thus,many(intheABMfieldandoutside)argueforgreaterattentionpaidtowardstheeffectsizeitself(whetheritisCohen'sdorastandardizedregressioncoefficient)asthebenchmarkfora"significant"finding(Coe2002;Ziliak&McCloskey2008,2009;Sullivan&Feinn2012;Whiteetal.2013;Troitzsch2014).Infact,recentlythejournalofBasicandAppliedSocialPsychologyhasimplementedpolicytoremovep-valuesfromtheirpublications.Alternatively,researchersmayturntomethodsandmeasuresthatpenalize(orminimizetheimpactof)largesamplessizes.Rouderetal.(2009)demonstratetheeffectivenessofsuchpenaltiesinmeasuressuchastheBayesianinformationcriterionandtheJSZBayesfactor.CameronandTrivedi(2005,p.279)suggestusing√lognasamorestringent,criticalt-statistic.AnearliersuggestionbyGood(1982,1984,1992)entailsadjustingthecriticalp-valueusingasamplesizeofn = 100asareferencepointratherthanleavingitfixed(e.g.,p < 0.05)forallsamplesizes.Furthermore,theestimatedminimumsamplesizemaybereducedthroughvariancereductionbycontrolvariateswhichareoutcomeshavingknownmeanandvarianceandaresufficientlycorrelatedwithotheroutcomesofinterestforwhichthemeanandvarianceareunknown.ThistechniqueisdiscussedinthecontextofsimulationmodelsbyLawandKelton(2007).Finally,samplesizedeterminationforlargesimulationswhicharecostlytorun(i.e.,demandingheavycomputingresourcesandincurringlongexecutiontimes)maybeaddressedthroughbootstrappingofasmallersetofoutcomesforestimatingtheirvariance(Lee&Carley2013).

AppendixC:Multi-ModalABMOutputofBirthRateABMMulti-modalityintheoutputmayindicateseparateattractorsinthephasespacebridgedbytippingpoints.Forexample,theoutputdistribution(asubpopulation)ofasimple,populationgeneticsABM(Wilensky1997,1999)underasingleparametersettingexhibitsclearbimodality(Figure17).Thecarryingcapacitywassetto200;thefertilityrateforbothredandbluepopulationswas2.0;and10000runsof300stepswereperformed.

http://jasss.soc.surrey.ac.uk/18/4/4.html 18 25/01/2016

Page 19: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

Figure17.BirthRateABMOutputDistribution.Histogramofthe"red"populationafter300timessteps,fittedtoaGaussiancurve(fromtheNetLogoSimpleBirthRatesModel(Wilensky1997))

Interpretingthemeanredagentpopulationof100.5(withalargedegreeoferror)asbeingsingularlyandtrulydescriptiveofthestochasticprocesswouldbegrosslyinaccurateandoverlookthesalientbifurcationinwhichtheredagentpopulationtendstoeitherdiminishtoextinction(0)ordominate(around200).ThisexampleillustrateshowABMstochasticitymayproducenon-normallydistributedoutputthatcannotbesensiblydescribedbymerelyitsmeanandvariance.

AppendixD:AnasaziModelOutliers

Figure18.Sensitivityanalysisexample.Source:StonedahlandWilensky(2010)

Theredlinedenotesthehistoricaldataandtheblacklinesrepresentoutcomesfrom100simulatedrunsparameterized(viaaGAsearch)toproduceoutputtime-seriesthatmaximallydifferfromthehistoricaldata.

ReferencesABRAHAMSON,D.,Blikstein,P.&Wilensky,U.(2007).Classroommodel,modelclassroom:Computer-supportedmethodologyforinvestigatingcollaborative-learningpedagogy.ProceedingsoftheComputerSupportedCollaborativeLearning(CSCL)Conference,8(1),46–55.[doi:10.3115/1599600.1599607]

AN,G.&Wilensky,U.(2009).Fromartificiallifetoinsilicomedicine:Netlogoasameansoftranslationalknowledge

http://jasss.soc.surrey.ac.uk/18/4/4.html 19 25/01/2016

Page 20: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

representationinbiomedicalresearch.In:Artificiallifemodelsinsoftware(Adamatzky,A.&Komosinski,M.,eds.).Berlin:Springer-Verlag.

ANGUS,S.D.&Hassani-Mahmooei,B.(2015)."Anarchy"Reigns:AQuantitativeAnalysisofAgent-BasedModellingPublicationPracticesinJASSS,2001-2012.JournalofArtificialSocietiesandSocialSimulation,18(4),16http://jasss.soc.surrey.ac.uk/18/4/16.html

ANKENMAN,B.,Nelson,B.L.,&Staum,J.(2008).Stochastickrigingforsimulationmetamodelling.In:Proceedingsofthe40thConferenceonWinterSimulation.WinterSimulationConference,pp.362–370.

AXELROD,R.&Hammond,R.A.(2003).Theevolutionofethnocentricbehaviour.In:MidwestPoliticalScienceConvention,Chicago,IL.

AXTELL,R.L.,Epstein,J.S.,J.M.andfDean,Gumerman,G.J.,Swedlund,A.C.,Harburger,J.,Chakravartya,S.,Hammond,R.,Parker,J.&Parker,M.(2002).PopulationgrowthandcollapseinamultiagentmodeloftheKayentaAnasaziinlonghousevalley.In:ProceedingsoftheNationalAcademyofSciences,vol.99(suppl3),7275–7279.[doi:10.1073/pnas.092080799]

BARRETEAU,O.etal.(2003).Ourcompanionmodellingapproach.JournalofArtificialSocietiesandSocialSimulation6(2),1.http://jasss.soc.surrey.ac.uk/6/2/1.html.

BARROS,J.(2012).Exploringurbandynamicsinlatinamericancitiesusinganagent-basedsimulationapproach.In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).Netherlands:Springer,pp.571–589..

BAUCELLS,M.&Borgonovo,E.(2013).Invariantprobabilisticsensitivityanalysis.ManagementScience,59(11),2536–2549.[doi:10.1287/mnsc.2013.1719]

BECU,N.,Perez,P.,Walker,A.,Barreteau,O.&LePage,C.(2003).AgentbasedsimulationofasmallcatchmentwatermanagementinnorthernThailand:DescriptionoftheCATCHSCAPEmodel.EcologicalModelling,170(2–3),319–331.[doi:10.1016/S0304-3800(03)00236-9]

BENNETT,N.,Croke,B.,Guariso,G.,Guillaume,J.H.,Hamilton,S.H.,Jakeman,J.&Marsili-Libelli,S.(2013).Characterisingperformanceofenvironmentalmodels.EnvironmentalModelling&Software,40,1–20.http://www.sciencedirect.com/science/article/pii/S1364815212002435.[doi:10.1016/j.envsoft.2012.09.011]

BOERO,R.,Bravo,G.,Castellani,M.&Squazzoni,F.(2010).Whybotherwithwhatotherstellyou?Anexperimentaldata-drivenagent-basedmodel.JournalofArtificialSocietiesandSocialSimulation,13(3),6.http://jasss.soc.surrey.ac.uk/13/3/6.html

BORGONOVO,E.(2007).Anewuncertaintyimportancemeasure.ReliabilityEngineering&SystemSafety,92(6),771–784.[doi:10.1016/j.ress.2006.04.015]

BOUSQUET,F.,Barreteau,O.,LePage,C.,Mullon,C.&Weber,J.(1999).Anenvironmentalmodellingapproach:Theuseofmultiagentsimulations.In:Advancesinenvironmentalandecologicalmodelling(Blasco,F.,ed.).Paris:Elsevier,pp.113–122.

BOUSQUET,F.&LePage,C.(2004).Multi-agentsimulationsandecosystemmanagement:areview.Ecologicalmodelling,176,313–332.[doi:10.1016/j.ecolmodel.2004.01.011]

BROWN,D.G.,Page,S.,Riolo,R.,Zellner,M.&Rand,W.(2005).Pathdependenceandthevalidationofagent-basedspatialmodelsoflanduse.InternationalJournalofGeographicalInformationScience,19(2),153–174..[doi:10.1080/13658810410001713399]

BROWN,D.G.&Robinson,D.T.(2006).Effectsofheterogeneityinresidentialpreferencesonanagent-basedmodelofurbansprawl.EcologyandSociety,11(1).

BRYSON,J.J.,Ando,Y.&Lehmann,H.(2007).Agent-basedmodellingasscientificmethod:Acasestudyanalysingprimatesocialbehaviour.PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,362(1485),1685–1698.

CALVEZ,B.&Hutzler,G.(2006).Automatictuningofagent-basedmodelsusinggeneticalgorithms.In:Multi-AgentBasedSimulationVI,LectureNotesinComputerScience(Sichman,J.&Antunes,L.,eds.).Berlin/Heidelberg:Springer,pp.41–57.

CAMERON,A.C.&Trivedi,P.K.(2005).Microeconomics:MethodsandApplications.Cambridge:CambridgeUniversityPress.

CAMPO,P.,Bousquet,F.&Villanueva,T.(2010).Modellingwithstakeholderswithinadevelopmentproject.EnvironmentalModelling&Software,25(11),1302–1321.http://www.sciencedirect.com/science/article/pii/S1364815210000162.[doi:10.1016/j.envsoft.2010.01.005]

CAMPOLONGO,F.,Kleijnen,J.&Andres,T.(2000).Screeningmethods.In:SensitivityAnalysis(Saltelli,A.,Chan,K.&Scott,E.M.,eds.).UK:Chichester:Wiley-Interscience,pp.65–80.

CARLEY,K.,Fridsma,D.,Casman,E.,Yahja,A.,Altman,N.,Chen,L.,Kaminsky,B.&Nave,D.(2006).Biowar:Scalableagent-basedmodelofbioattacks.IEEETransactionsonSystems,ManandCybernetics,PartA,36(2),252–265.

http://jasss.soc.surrey.ac.uk/18/4/4.html 20 25/01/2016

Page 21: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

[doi:10.1109/TSMCA.2005.851291]

CARLEY,K.M.&Lee,J.-S.(1998).Dynamicorganizations:Organizationaladaptationinachangingenvironment.In:AdvancesinStrategicManagement:DisciplinaryRootsofStrategicManagement,vol.15.Greenwich,CT:JAIPress,pp.269–297.

CHANG,M.-H.&Harrington,J.E.(2006).Agent-basedmodelsoforganizations.In:Handbookofcomputationaleconomicsvolume2:Agent-basedcomputationaleconomics(Tesfatsion,L.&Judd,K.L.,eds.).Amsterdam:ElsevierB.V.,pp.949–1011.

CHEN,S.-H.,Chang,C.-L.&Du,Y.-R.(2012).Agent-basedeconomicmodelsandeconometrics.TheKnowledgeEngineeringReview,27(2),187–219.[doi:10.1017/S0269888912000136]

COE,R.(2002).It'stheeffectsize,stupid:Whateffectsizeisandwhyitisimportant.In:AnnualConferenceoftheBritishEducationalResearchAssociation.UniversityofExeter,England.

COHEN,J.(1988).StatisticalPowerAnalysisforthebehaviouralSciences.LawrenceErlbaumAssociates.

CONTINI,B.,Leombruni,R.&Richiardi,M.(2007).Exploringanewexpace:Thecomplementaritiesbetweenexperimentaleconomicsandagent-basedcomputationaleconomics.JournalofSocialComplexity,3(1),13–22.

DEAN,J.S.,Gumerman,G.J.,Epstein,J.M.,Axtell,R.L.,Swedlund,A.C.,Parker,M.T.&McCarroll,S.(2000).UnderstandingAnasaziculturechangethroughagent-basedmodelling.In:Dynamicsinhumanandprimatesocieties:Agent-basedmodellingofsocialandspatialprocesses(Kohler,T.&Gumerman,G.,eds.).Oxford,UK:OxfordUniversityPress,pp.179–205.

DEARDEN,J.&Wilson,A.(2012).Therelationshipofdynamicentropymaximisingandagent-basedapproachesinurbanmodelling.In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).SpringerNetherlands,pp.705–720..

DUFFY,J.(2006).Agent-basedmodelsandhumansubjectexperiments.In:Handbookofcomputationaleconomicsvolume2:Agent-basedcomputationaleconomics(Tesfatsion,L.&Judd,K.L.,eds.).Amsterdam:ElsevierB.V.,pp.949–1011.

EFFKEN,J.A.,Carley,K.M.,Lee,J.-S.,Brewer,B.B.&Verran,J.A.(2012).SimulatingNursingUnitPerformancewithOrgAhead:StrengthsandChallenges.ComputersInformaticsNursing,30(11),620–626.[doi:10.1097/NXN.0b013e318261f1bb]

EPSTEIN,J.M.(2002).modellingcivilviolence:Anagent-basedcomputationalapproach.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,99(Suppl3),7243–7250.[doi:10.1073/pnas.092080199]

EPSTEIN,J.M.&Axtell,R.(1996).Growingartificialsocieties:Socialsciencefromthebottomup.Washington,DC:BrookingsInstitutionPress.

ÉTIENNE,M.(2014).CompanionModelling.Springer.http://link.springer.com/10.1007/978-94-017-8557-0.[doi:10.1007/978-94-017-8557-0]

FILATOVA,T.(2014).Empiricalagent-basedlandmarket:Integratingadaptiveeconomicbehaviourinurbanland-usemodels.Computers,EnvironmentandUrbanSystemshttp://www.sciencedirect.com/science/article/pii/S0198971514000714.

FILATOVA,T.,Parker,D.C.&vanderVeen,A.(2011).TheImplicationsofSkewedRiskPerceptionforaDutchCoastalLandMarket:InsightsfromanAgent-BasedComputationalEconomicsModel.AgriculturalandResourceEconomicsReview,40(3),405–423.http://ideas.repec.org/a/ags/arerjl/120639.html.

FISHER,R.A.(1971).TheDesignofExperiments.Hafner.

FONOBEROVA,M.,Fonoberov,V.A.&Mexic,I.(2013).Globalsensitivity/uncertaintyanalysisforagent-basedmodels.ReliabilityEngineering&SystemSafety,118(0),8–17.[doi:10.1016/j.ress.2013.04.004]

GHORBANI,A.,Bots,P.,Dignum,V.&Dijkema,G.(2013).Maia:Aframeworkfordevelopingagent-basedsocialsimulations.JournalofArtificialSocietiesandSocialSimulation,16(2),9.http://jasss.soc.surrey.ac.uk/16/2/9.html

GOOD,I.J.(1982).Standardizedtail-areaprobabilities.JournalofStatisticalComputationandSimulation,16,65–66.[doi:10.1080/00949658208810607]

GOOD,I.J.(1984).C191.howshouldtail-areaprobabilitiesbestandardizedforsamplesizeinunpairedcomparisons?JournalofStatisticalComputationandSimulation,19(2),174–174.

GOOD,I.J.(1992).TheBayes/non-Bayescompromise:Abriefreview.JournaloftheAmericanStatisticalAssociation,87(419),597–606.[doi:10.1080/01621459.1992.10475256]

GRAZZINI,J.(2012).Analysisoftheemergentproperties:Stationarityandergodicity.JournalofArtificialSocietiesandSocialSimulation,15(2),7.http://jasss.soc.surrey.ac.uk/15/2/7.html

GRAZZINI,J.&Richiardi,M.(2015).Estimationofergodicagent-basedmodelsbysimulatedminimumdistance.JournalofEconomicDynamicsandControl,51,148–165.[doi:10.1016/j.jedc.2014.10.006]

http://jasss.soc.surrey.ac.uk/18/4/4.html 21 25/01/2016

Page 22: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

GRIFFITH,C.S.,Long,B.L.&Sept,J.M.(2010).HOMINIDS:Anagent-basedspatialsimulationmodeltoevaluatebehaviouralpatternsofearlyPleistocenehominids.EcologicalModelling,221,738–760.[doi:10.1016/j.ecolmodel.2009.11.009]

GRIMM,V.,Berger,U.,Bastiansen,F.,Eliassen,S.,Ginot,V.,Giske,J.,Goss-Custard,J.,Grand,T.,Heinz,S.K.,Huse,G.,Huth,A.,Jepsen,J.U.,Jørgensen,C.,Mooij,W.M.,Müller,B.,Pe'er,G.,Piou,C.,Railsback,S.F.,Robbins,A.M.,Robbins,M.M.,Rossmanith,E.,Rüger,N.,Strand,E.,Souissi,S.,Stillman,R.A.,Vabø,R.,Visser,U.&DeAngelis,D.L.(2006).Astandardprotocolfordescribingindividual-basedandagent-basedmodels.EcologicalModelling,198(1–2),115–126.[doi:10.1016/j.ecolmodel.2006.04.023]

GRIMM,V.,Berger,U.,DeAngelis,D.L.,Polhill,J.G.,Giske,J.&Railsback,S.F.(2010).Theoddprotocol:Areviewandfirstupdate.EcologicalModelling,221(23),2760–2768.[doi:10.1016/j.ecolmodel.2010.08.019]

GRIMM,V.&Railsback,S.(2005).Individual-basedmodellingandecology.PrincetonUniversityPress.[doi:10.1515/9781400850624]

HAMBY,D.M.(1994).Areviewoftechniquesforparametersensitivityanalysisofenvironmentalmodels.EnvironmentalMonitoringandAssessment,32(2),135–154.[doi:10.1007/BF00547132]

HAMILL,L.(2010).Agent-basedmodelling:Thenext15years.JournalofArtificialSocietiesandSocialSimulation,13(4),7.http://jasss.soc.surrey.ac.uk/13/4/7.html

HAPPE,K.,Kellermann,K.&Balmann,A.(2006).Agent-basedanalysisofagriculturalpolicies:AnillustrationoftheagriculturalpolicysimulatorAgriPoliS,itsadaptation,andbehaviour.EcologyandSociety,11(1).

HASSANI-MAHMOOEI,B.&Parris,B.W.(2013).Resourcescarcity,effortallocationandenvironmentalsecurity:Anagent-basedtheoreticalapproach.EconomicModelling,30,183–192.[doi:10.1016/j.econmod.2012.08.020]

HELBING,D.,Buzna,L.,Johansson,A.&Werner,T.(2005).Self-organizedpedestriancrowddynamics:Experiments,simulations,anddesignsolutions.TransportationScience,39(1),1–24.[doi:10.1287/trsc.1040.0108]

HEPPENSTALL,A.J.,Crooks,A.T.,See,L.M.&Batty,M.(eds.)(2012).Agent-BasedModelsofGeographicalSystems.SpringerNetherlands.[doi:10.1007/978-90-481-8927-4]

HEPPENSTALL,A.J.,Evans,A.J.&Birkin,M.H.(2007).Geneticalgorithmoptimisationofanagent-basedmodelforsimulatingaretailmarket.EnvironmentandPlanningB:PlanningandDesign,34,1051–1070.[doi:10.1068/b32068]

HINTZE,J.L&Nelson,R.D.(1998).Violinplots:Aboxplot-densitytracesynergism.TheAmericanStatistician,52(2),181–184.

HOLLAND,J.(1975).AdaptationinNaturalandArtificialSystems.AnnArbor,MI:UniversityofMichiganPress.

HOMMA,T.&Saltelli,A.(1996).Importancemeasuresinglobalsensitivityanalysisofnonlinearmodels.ReliabilityEngineering&SystemSafety,52(1),1–17.[doi:10.1016/0951-8320(96)00002-6]

HUANG,Q.,Parker,D.C.,Sun,S.&Filatova,T.(2013).Effectsofagentheterogeneityinthepresenceofaland-market:Asystematictestinanagent-basedlaboratory.Computers,EnvironmentandUrbanSystems,41,188–203.http://www.sciencedirect.com/science/article/pii/S0198971513000616.[doi:10.1016/j.compenvurbsys.2013.06.004]

ILACHINSKI,A.(2000).Irreduciblesemi-autonomousadaptivecombat(isaac):Anartificiallifeapproachtolandcombat.MilitaryOperationsResearch,5(3),29–46.[doi:10.5711/morj.5.3.29]

IZQUIERDO,S.S.,Izquierdo,L.R.&Gotts,N.M.(2008).Reinforcementlearningdynamicsinsocialdilemmas.JournalofArtificialSocietiesandSocialSimulation,11(2),1.http://jasss.soc.surrey.ac.uk/11/2/1.html

JANSSEN,M.A.(2009).UnderstandingartificialAnasazi.JournalofArtificialSocietiesandSocialSimulation,12(4),13.http://jasss.soc.surrey.ac.uk/12/4/13.html

KAHL,C.H.&Hansen,H.(2015).Simulatingcreativityfromasystemsperspective:CRESY,18(1),4.

KEOGH,E.&Ratanamahatana,C.A.(2005).Exactindexingofdynamictimewarping.KnowledgeandInformationSystems,7(3),358–386.[doi:10.1007/s10115-004-0154-9]

KIRMAN,A.P.(1992).Whomorwhatdoestherepresentativeindividualrepresent?JournalofEconomicPerspectives,6(117–136).

KLEIJNEN,J.P.C.,Sanchez,S.M.,Lucas,T.W.&Cioppa,T.M.(2005).Ausersguidetothebravenewworldofdesigningsimulationexperiments.INFORMSJournalonComputing,17(3),263–289.[doi:10.1287/ijoc.1050.0136]

KLEIN,F.,Bourjot,C.&Chevrier,V.(2005).Dynamicaldesignofexperimentwithmastoapproximatethebehaviourofcomplexsystems.Multi-AgentsformodellingComplexSystems(MA4CS'05)SatelliteWorkshopoftheEuropeanConferenceonComplexSystems(ECCS'05),Nov2005,Paris/France.

http://jasss.soc.surrey.ac.uk/18/4/4.html 22 25/01/2016

Page 23: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

KLINGERT&Meyer(2012).Effectivelycombiningexperimentaleconomicsandmulti-agentsimulation:Suggestionsforaproceduralintegrationwithanexamplefrompredictionmarketsresearch.ComputationalandMathematicalOrganizationTheory,18(1),63–90.http://link.springer.com/article/10.1007\%2Fs10588-011-9098-2\#page-1.[doi:10.1007/s10588-011-9098-2]

KUCHERENKO,S.,Tarantola,S.&Annoni,P.(2012).Estimationofglobalsensitivityindicesformodelswithdependentvariables.ComputerPhysicsCommunications,183(4),937–946.[doi:10.1016/j.cpc.2011.12.020]

KUHNERT,M.,Voinov,A.&Seppelt,R.(2005).Comparingrastermapcomparisonalgorithmsforspatialmodellingandanalysis.PhotogrammetricEngineering&RemoteSensing,71(8),975–984.[doi:10.14358/PERS.71.8.975]

LAW,A.M.&Kelton,W.D.(2007).SimulationmodellingandAnalysis.Boston:McGrawHill.

LEBARON,B.,Arthur,W.&Palmer,R.(1999).Timeseriespropertiesofanartificialstockmarket.JournalofEconomicDynamicsandControl,23(9–10),1487–1516.http://www.sciencedirect.com/science/article/pii/S0165188998000815.[doi:10.1016/S0165-1889(98)00081-5]

LEE,J.-S.(2004).GeneratingFriendshipNetworksofIllegalDrugUsersUsingLargeSamplesofPartialEgo-NetworkData.In:ProceedingsoftheNorthAmericanAssociationforComputationalSocialandOrganizational(NAACSOS).Pittsburgh,PA.

LEE,J.-S.&Carley,K.M.(2004).OrgAhead:AComputationalModelofOrganizationalLearningandDecisionMaking[Version2.1.5].Tech.Rep.CMU-ISRI-04-117,CarnegieMellonUniversity.

LEE,J.-S.&Carley,K.M.(2013).Bootstrappingsimulationresultstoassessadequatenumberofreplications.Tech.Rep.TBD,CarnegieMellonUniversity.

LIGMANN-ZIELINSKA,A.(2013).Spatially-explicitsensitivityanalysisofanagent-basedmodeloflandusechange.InternationalJournalofGeographicalInformationScience,27(9),1764–1781.[doi:10.1080/13658816.2013.782613]

LIGMANN-ZIELINSKA,A.,Kramer,D.B.,Cheruvelil,K.S.&Soranno,P.A.(2014).Usinguncertaintyandsensitivityanalysesinsocioecologicalagent-basedmodelstoimprovetheiranalyticalperformanceandpolicyrelevance.PloSOne,9(10),e109779.[doi:10.1371/journal.pone.0109779]

LIGMANN-ZIELINSKA,A.&Sun,L.(2010).Applyingtimedependentvariance-basedglobalsensitivityanalysistorepresentthedynamicsofanagent-basedmodeloflandusechange.InternationalJournalofGeographicalInformationScience,24(12),1829–1850.[doi:10.1080/13658816.2010.490533]

LILBURNE,L.&Tarantola,S.(2009).Sensitivityanalysisofspatialmodels.InternationalJournalofGeographicalInformationScience,23(2),151–168.[doi:10.1080/13658810802094995]

LIU,Y.&Feng,Y.(2012).Alogisticbasedcellularautomatamodelforcontinuousurbangrowthsimulation:Acasestudyofthegoldcoastcity,Australia.In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).SpringerNetherlands,pp.643–662..

LORSCHEID,I.(2014).LAMDA–Learningagentsformechanismdesignanalysis.Unpublisheddissertation.

LORSCHEID,I.,Heine,B.-O.&Meyer,M.(2012).Openingthe'blackboxofsimulations:Increasedtransparencyandeffectivecommunicationthroughthesystematicdesignofexperiments.ComputationalandMathematicalOrganizationTheory,18,22–62.[doi:10.1007/s10588-011-9097-3]

MACY,M.W.&Willer,R.(2002).Fromfactorstofactors:Computationalsociologyandagent-basedmodelling.AnnualReviewofSociology,28,143–166.[doi:10.1146/annurev.soc.28.110601.141117]

MAGLIOCCA,N.(2012).Exploringcoupledhousingandlandmarketinteractionsthroughaneconomicagent-basedmodel(chalms).In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).SpringerNetherlands,pp.543–568..

MALLESON,N.,Heppenstall,A.,See,L.&Evans,A.(2013).Usinganagent-basedcrimesimulationtopredicttheeffectsofurbanregenerationonindividualhouseholdburglaryrisk.EnvironmentandPlanningB:PlanningandDesign,40(3),405–426.[doi:10.1068/b38057]

MANSON,S.M.(2005).Agent-basedmodellingandgeneticprogrammingformodellinglandchangeinthesouthernYucatanpeninsularregionofMexico.Agriculture,Ecosystems&Environment,111(1),47–62.[doi:10.1016/j.agee.2005.04.024]

MARA,T.A.&Tarantola,S.(2012).Variance-basedsensitivityindicesformodelswithdependentinputs.ReliabilityEngineering&SystemSafety,107(0),115–121.[doi:10.1016/j.ress.2011.08.008]

MARREL,A.,Iooss,B.,Jullien,M.,Laurent,B.&Volkova,E.(2011).Globalsensitivityanalysisformodelswithspatiallydependentoutputs.Environmetrics,22(3),383–397.[doi:10.1002/env.1071]

MILLER,J.(1998).Activenonlineartests(ANTs)ofcomplexsimulationmodels.ManagementScience,44(6),820–830.[doi:10.1287/mnsc.44.6.820]

http://jasss.soc.surrey.ac.uk/18/4/4.html 23 25/01/2016

Page 24: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

MILLINGTON,J.,Romero-Calcerrada,R.,Wainwright,J.&Perry,G.(2008).Anagent-basedmodelofMediterraneanagriculturalland-use/coverchangeforexaminingwildfirerisk.JournalofArtificialSocietiesandSocialSimulation,11(4),4.http://jasss.soc.surrey.ac.uk/11/4/4.html

MORRIS,M.D.(1991).Factorialsamplingplansforpreliminarycomputationalexperiments.Technometrics,33(2),161–174.[doi:10.1080/00401706.1991.10484804]

MOSS,S.(2008).Alternativeapproachestotheempiricalvalidationofagent-basedmodels.JournalofArtificialSocietiesandSocialSimulation,11,(1),5http://jasss.soc.surrey.ac.uk/11/1/5.html.

MÜLLER,B.,Bohn,F.,Dreßler,G.,Groeneveld,J.,Klassert,C.,Martin,R.,Schlüter,M.,Schulze,J.,Weise,H.&Schwarz,N.(2013).Describinghumandecisionsinagent-basedmodels–ODD+D,anextensionofthe{ODD}protocol.EnvironmentalModelling&Software,48(0),37–48.[doi:10.1016/j.envsoft.2013.06.003]

NERI,F.(2012).Learningpredictivemodelsforfinancialtimeseriesbyusingagentbasedsimulations.In:TransactionsonComputationalCollectiveIntelligenceVI(Nguyen,N.T.,ed.),vol.7190.SpringerBerlinHeidelberg,pp.202–221.

NORTH,M.&Macal,C.(2007).Managingbusinesscomplexity:Discoveringstrategicsolutionswithagent-basedmodellingandsimulation.USA:OxfordUniversityPress.[doi:10.1093/acprof:oso/9780195172119.001.0001]

PARKER,D.C.,Berger,T.&Manson,S.M.(2002).Agent-basedmodelsofland-useandland-coverchange:Reportandreviewofaninternationalworkshop.LUCCReportSeriesBloomington,LUCC.

PARKER,D.C.&Meretsky,V.(2004).Measuringpatternoutcomesinanagent-basedmodelofedge-effectexternalitiesusingspatialmetrics.Agriculture,Ecosystems&Environment,101(2–3),233–250.[doi:10.1016/j.agee.2003.09.007]

PARRY,H.R.&Bithell,M.(2012).Largescaleagent-basedmodelling:Areviewandguidelinesformodelscaling.In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).SpringerNetherlands,pp.271–308..

PATEL,A.&Hudson-Smith,A.(2012).Agenttools,techniquesandmethodsformacroandmicroscopicsimulation.In:Agent-BasedModelsofGeographicalSystems(Heppenstall,A.J.,Crooks,A.T.,See,L.M.&Batty,M.,eds.).SpringerNetherlands,pp.379–407..

PLANTINGA,A.J.&Lewis,D.J.(2014).Landscapesimulationswitheconometric-basedlandusemodels.In:TheOxfordHandbookofLandEconomics(Duke,J.M.&Wu,J.-J.,eds.),chap.15.OxfordUniversityPress.http://www.oxfordhandbooks.com/10.1093/oxfordhb/9780199763740.001.0001/oxfordhb-9780199763740-e-013.

PONTIUS,R.G.,Jr.(2002).Statisticalmethodstopartitioneffectsofquantityandlocationduringcomparisonofcategoricalmapsatmultipleresolutions.PhotogrammetricEngineeringandRemoteSensing,68(10),1041–1050.

PONTIUS,R.G.,Jr.,Boersma,W.,Castella,J.-C.,Clarke,K.,deNijs,T.,Dietzel,C.,Duan,Z.,Fotsing,E.,Goldstein,N.,Kok,K.,Koomen,E.,Lippitt,C.D.,McConnell,W.,MohdSood,A.,Pijanowski,B.,Pithadia,S.,Sweeney,S.,Trung,T.N.,Veldkamp,A.T.&Verburg,P.H.(2008).Comparingtheinput,output,andvalidationmapsforseveralmodelsoflandchange.TheAnnalsofRegionalScience,42(1),11–37..[doi:10.1007/s00168-007-0138-2]

PONTIUS,R.G.,Jr.&Millones,M.(2011).Deathtokappa:Birthofquantitydisagreementandallocationdisagreementforaccuracyassessment.InternationalJournalofRemoteSensing,32(15),4407–4429..[doi:10.1080/01431161.2011.552923]

RACZYNSKI,S.(2004).Simulationofthedynamicinteractionsbetweenterrorandanti-terrororganizationalstructures.JournalofArtificialSocietiesandSocialSimulation7(2),8http://jasss.soc.surrey.ac.uk/7/2/8.html.

RADAX,W.&Rengs,B.(2010).Prospectsandpitfallsofstatisticaltesting:Insightsfromreplicatingthedemographicprisoner'sdilemma.JournalofArtificialSocietiesandSocialSimulation,13(4),1.http://jasss.soc.surrey.ac.uk/13/4/1.html.

Rand,W.&Wilensky,U.(2007).NetLogoElFarolmodel.CenterforConnectedComputer-Basedmodelling,NorthwesternUniversity,Evanston,IL.

RICHIARDI,M.,Leombruni,R.,Saam,N.&Sonnessa,M.(2006).Acommonprotocolforagent-basedsocialsimulation.Journalofartificialsocietiesandsocialsimulation,9(1),15http://jasss.soc.surrey.ac.uk/9/1/15.html.

RICHIARDI,M.G.(2012).Agent-basedcomputationaleconomics:Ashortintroduction.TheKnowledgeEngineeringReview,27(2),137–149.[doi:10.1017/S0269888912000100]

RIKSBV(2010).MapComparisonKitUserManual.Maastricht,TheNetherlands:RIKSBV,3.2.1ed.http://mck.riks.nl/.

ROBINSON,D.T.,Brown,D.,Parker,D.C.,Schreinemachers,P.,Janssen,M.A.&Huigen,M.(2007).Comparisonofempiricalmethodsforbuildingagent-basedmodelsinlandusescience.JournalofLandUseScience,2(1),31–55.[doi:10.1080/17474230701201349]

ROUDER,J.N.,Speckman,P.L.,Sun,D.,Morey,R.D.&Iverson,G.(2009).Bayesianttestsforacceptingandrejectingthe

http://jasss.soc.surrey.ac.uk/18/4/4.html 24 25/01/2016

Page 25: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

nullhypothesis.PsychonomicBulletin&Review,16(2),225–37.http://www.ncbi.nlm.nih.gov/pubmed/19293088.[doi:10.3758/PBR.16.2.225]

SACKS,J.,Welch,W.,Mitchell,T.&Wynn,H.(1989).Designandanalysisofcomputerexperiments.StatisticalScience,4(4),409–422.[doi:10.1214/ss/1177012413]

SALTELLI,A.&Annoni,P.(2010).Howtoavoidaperfunctorysensitivityanalysis.EnvironmentalModelling&Software,25(12),1508–1517.[doi:10.1016/j.envsoft.2010.04.012]

SALTELLI,A.,Chan,K.&Scott,E.M.(eds.)(2000).SensitivityAnalysis.UK:Chichester:Wiley-Interscience.

SALTELLI,A.,Ratto,M.,Andres,T.,Campolongo,F.,Cariboni,J.,Gatelli,D.,Saisana,M.&Tarantola,S.(2008).GlobalSensitivityAnalysis:ThePrimer.UK:Chichester:Wiley-Interscience.

SANCHEZ,S.M.&Lucas,T.W.(2002).Exploringtheworldofagent-basedsimulations:Simplemodels,complexanalyses.In:WSC2002:Proceedingsofthe34thWinterSimulationConference.

SCHELLING,T.C.(1969).Modelsofsegregation.AmericanEconomicReview,59(2),488–493.

SCHELLING,T.C.(1978).MicromotivesandMacrobehaviour.London,UK:W.W.Norton&Co.

SMAJGL,A.,Brown,D.G.,Valbuena,D.&Huigen,M.G.A.(2011).Empiricalcharacterisationofagentbehavioursinsocio-ecologicalsystems.EnvironmentalModelling&Software,26(7),837–844.[doi:10.1016/j.envsoft.2011.02.011]

SQUAZZONI,F.(2012).Agent-BasedComputationalSociology.Chichester:Wiley.[doi:10.1002/9781119954200]

SQUAZZONI,F.&Boero,R.(2002).Economicperformance,inter-firmrelationsandlocalinstitutionalengineeringinacomputationalprototypeofindustrialdistricts.JournalofArtificialSocietiesandSocialSimulation,5(1),1http://jasss.soc.surrey.ac.uk/5/1/1.html.

STONEDAHL,F.&Rand,W.(2014).Whendoessimulateddatamatchrealdata?comparingmodelcalibrationfunctionsusinggeneticalgorithms.In:AdvancesinComputationalSocialScience:TheFourthWorldCongress(Tai,C.,Chen,S.,Ternao,T.&Yamamoto,R.,eds.),vol.11ofAgent-BasedSocialSystems.Springer-Verlag,pp.297–313.

STONEDAHL,F.,Rand,W.&Wilensky,U.(2010).Evolvingviralmarketingstrategies.In:Proceedingsofthe12thAnnualConferenceonGeneticandEvolutionaryComputation(GECCO10).July7–11.Portland,OR.

STONEDAHL,F.&Wilensky,U.(2010).EvolutionaryrobustnesscheckingintheartificialAnasazimodel.In:ProceedingsoftheAAAIFallSymposiumonComplexAdaptiveSystems:Resilience,Robustness,andEvolvability.Arlington,VA.

STONEDAHL,F.&Wilensky,U.(2011).Findingformsofflocking:Evolutionarysearchinabmparameter-spaces.In:Multi-Agent-BasedSimulationXI(Bosse,T.,Geller,A.&Jonker,C.,eds.),vol.6532ofLectureNotesinComputerScience.SpringerBerlinHeidelberg,pp.61–75..

SULLIVAN,G.M.&Feinn,R.(2012).Usingeffectsize–orwhythepvalueisnotenough.JournalofGraduateMedicalEducation,4(3),279–282.[doi:10.4300/JGME-D-12-00156.1]

SUN,S.,Parker,D.C.,Huang,Q.,Filatova,T.,Robinson,D.T.,Riolo,R.L.,Hutchins,M.&Brown,D.G.(2014).Marketimpactsonland-usechange:Anagent-basedexperiment.AnnalsoftheAssociationofAmericanGeographers,104(3),460–484..[doi:10.1080/00045608.2014.892338]

TAKAHASHI,H.&Terano,T.(2003).Agent-basedapproachtoinvestors'behaviourandassetpricefluctuationinfinancialmarkets.JournalofArtificialSocietiesandSocialSimulation,6(3),3http://jasss.soc.surrey.ac.uk/6/3/3.html.

TAMENE,L.,Le,Q.B.&Vlek,P.L.(2014).Alandscapeplanningandmanagementtoolforlandandwaterresourcesmanagement:Anexampleapplicationinnorthernethiopia.WaterResourcesManagement,28(2),407–424..[doi:10.1007/s11269-013-0490-1]

TANG,W.&Jia,M.(2014).Globalsensitivityanalysisofalargeagent-basedmodelofspatialopinionexchange:Aheterogeneousmulti-GPUaccelerationapproach.AnnalsoftheAssociationofAmericanGeographers,104(3),485–509.[doi:10.1080/00045608.2014.892342]

TARANTOLA,W.B.,S.&Zeitz,D.(2012).Acomparisonoftwosamplingmethodsforglobalsensitivityanalysis.ComputerPhysicsCommunications,183(5),1061–1072.[doi:10.1016/j.cpc.2011.12.015]

TENBROEKE,G.,vanVoorn,G.&Ligtenberg,A.(2014).Sensitivityanalysisforagent-basedmodels:Alowcomplexitytest-case.In:10thAnnualMeetingoftheEuropeanSocialSimulationAssociation(ESSA).Barcelona,Catalonia,Spain.

TESFATSION,L.&Judd,K.L.(2006).HandbookofComputationalEconomicsVolumeII:Agent-BasedComputationalEconomics.ElsevierB.V.

http://jasss.soc.surrey.ac.uk/18/4/4.html 25 25/01/2016

Page 26: Determining Minimum Simulation Runs and Issues of ... · The Complexities of Agent-Based Modeling Output Analysis Journal of Artificial Societies and Social Simulation 18 (4) 4 ...

THIELE,J.C.&Grimm,V.(2010).NetLogomeetsR:Linkingagentbasedmodelswithatoolboxfortheiranalysis.EnvironmentalModelling&Software,25(8),972–974.[doi:10.1016/j.envsoft.2010.02.008]

THIELE,J.C.,Kurth,W.&Grimm,V.(2014).Facilitatingparameterestimationandsensitivityanalysisofagent-basedmodels:AcookbookusingNetLogoand'R'.JournalofArtificialSocietiesandSocialSimulation,17(3),11http://jasss.soc.surrey.ac.uk/17/3/11.html.

TORRENS,P.M.(2006).Simulatingsprawl.AnnalsoftheAssociationofAmericanGeographers,96(2),248–275..[doi:10.1111/j.1467-8306.2006.00477.x]

TROITZSCH,K.G.(2014).SimulationExperimentsandSignificanceTests.In:ArtificialEconomicsandSelfOrganization(Leitner,S.&Wall,F.,eds.),vol.669ofLectureNotesinEconomicsandMathematicalSystems.SpringerInternationalPublishing,pp.17–29.http://link.springer.com/10.1007/978-3-319-00912-4.

VILLAMOR,G.B.,Le,Q.B.,Djanibekov,U.,vanNoordwijk,M.&Vleka,P.L.(2014).Biodiversityinrubberagroforests,carbonemissions,andrurallivelihoods:Anagent-basedmodelofland-usedynamicsinlowlandsumatra.EnvironmentalModelling&Software,61,151–165.[doi:10.1016/j.envsoft.2014.07.013]

VOINOV,A.&Bousquet,F.(2010).Modellingwithstakeholders.EnvironmentalModelling&Software,25(May),1268–1281.http://linkinghub.elsevier.com/retrieve/pii/S1364815210000538.[doi:10.1016/j.envsoft.2010.03.007]

VOINOV,A.,Seppelt,R.,Reis,S.,E.M.S.Nabel,J.&Shokravi,S.(2014).Valuesinsocio-environmentalmodelling:Persuasionforactionorexcuseforinaction.EnvironmentalModelling&Software,53(March),207–212.http://linkinghub.elsevier.com/retrieve/pii/S1364815213003083.[doi:10.1016/j.envsoft.2013.12.005]

WANG,J.,Dam,G.,Yildirim,S.,Rand,W.,Wilensky,U.&Houk,J.(2008).Reciprocitybetweenthecerebellumandthecerebralcortex:Nonlineardynamicsinmicroscopicmodulesforgeneratingvoluntarymotorcommands.Complexity,14(2).[doi:10.1002/cplx.20241]

WHEELER,B.(2011).AlgDesign:AlgorithmicExperimentalDesign.Rpackageversion1.1-7ed.

WHITE,J.W.,Rassweiler,A.,Samhouri,J.F.,Stier,A.C.&White,C.(2013).Ecologistsshouldnotusestatisticalsignificanceteststointerpretsimulationmodelresults.Oikos,123(4),385–388.[doi:10.1111/j.1600-0706.2013.01073.x]

WILENSKY,U.(1997).Netlogosimplebirthratesmodel.CenterforConnectedLearningandComputer-Basedmodelling,NorthwesternUniversity,Evanston,IL.,http://ccl.northwestern.edu/netlogo/models/SimpleBirthRates.

WILENSKY,U.(1999).Netlogo.CenterforConnectedLearningandComputer-Basedmodelling,NorthwesternUniversity,Evanston,IL,http://ccl.northwestern.edu/netlogo/.

WILENSKY,U.(2004).NetlogoRebellionmodel.CenterforConnectedLearningandComputer-Basedmodelling,NorthwesternUniversity,Evanston,IL.

WINDRUM,P.,Fagiolo,G.&Moneta,A.(2007).Empiricalvalidationofagent-basedmodels:Alternativesandprospects.JournalofArtificialSocietiesandSocialSimulation,10(2),8http://jasss.soc.surrey.ac.uk/10/2/8.html.

WORRAPIMPHONG,K.,Gajaseni,N.,Page,C.L.&Bousquet,F.(2010).Acompanionmodellingapproachappliedtofisherymanagement.EnvironmentalModelling&Software,25(11),1334–1344.http://www.sciencedirect.com/science/article/pii/S1364815210000599.[doi:10.1016/j.envsoft.2010.03.012]

WU,F.(2002).Calibrationofstochasticcellularautomata:Theapplicationtorural-urbanlandconversions. InternationalJournalofGeographicalInformationScience,16(8),795–818..[doi:10.1080/13658810210157769]

YAMADA,T.&Terano,T.(2009).Fromthesimplestpriceformationmodelstoparadigmofagent-basedcomputationalfinance:Afirststep.In:Agent-BasedApproachesinEconomicandSocialComplexSystems(Terano,V.T.,Kita,H.,Takahashi,S.&Deguchi,H.,eds.),vol.6.SpringerJapan,pp.219–230.

ZILIAK,S.T.&McCloskey,D.N.(2008).TheCultofStatisticalSignificance:HowtheStandardErrorCostsUsJobs,Justice,andLives.UniversityofMichiganPress.

ZILIAK,S.T.&McCloskey,D.N.(2009).Thecultofstatisticalsignificance.In:JointStatisticalMeetings.Washington,DC.

ZINCK,R.&Grimm,V.(2008).Morerealisticthananticipated:Aclassicalforest-firemodelfromstatisticalphysicscapturesrealfireshapes.OpenEcologyJournal,1,8–13.[doi:10.2174/1874213000801010008]

ZUNIGA,M.M.,Kucherenko,S.&Shah,N.(2013).Metamodellingwithindependentanddependentinputs.ComputerPhysicsCommunications,184(6),1570–1580.[doi:10.1016/j.cpc.2013.02.005]

Processingmath:100%

http://jasss.soc.surrey.ac.uk/18/4/4.html 26 25/01/2016


Recommended