+ All Categories
Home > Documents > DEVELOPMENT OF A DYNAMIC FREQUENCY HOPPING …psasir.upm.edu.my/416/1/1600464.pdf · SYSTEM FOR...

DEVELOPMENT OF A DYNAMIC FREQUENCY HOPPING …psasir.upm.edu.my/416/1/1600464.pdf · SYSTEM FOR...

Date post: 23-Jul-2019
Category:
Upload: phamcong
View: 212 times
Download: 0 times
Share this document with a friend
21
DEVELOPMENT OF A DYNAMIC FREQUENCY HOPPING CODE SYSTEM FOR OPTICAL CODE DIVISION MULTIPLE ACCESS COMMUNICATIONS MOHAMMAD MAHMOUD NAJI AHMAD HAMARSHEH DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2006
Transcript

DEVELOPMENT OF A DYNAMIC FREQUENCY

HOPPING CODE SYSTEM FOR OPTICAL CODE

DIVISION MULTIPLE ACCESS

COMMUNICATIONS

MOHAMMAD MAHMOUD NAJI AHMAD

HAMARSHEH

DOCTOR OF PHILOSOPHY

UNIVERSITI PUTRA MALAYSIA

2006

DEVELOPMENT OF A DYNAMIC FREQUENCY HOPPING CODE

SYSTEM FOR OPTICAL CODE DIVISION MULTIPLE ACCESS

COMMUNICATIONS

BY

MOHAMMAD MAHMOUD NAJI AHMAD HAMARSHEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,

in Fulfilment of Requirement for the Degree of Doctor of Philosophy

July 2006

2

To the future of my nation

3

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in

fulfilment of the requirement for the degree of Doctor of Philosophy

DEVELOPMENT OF A DYNAMIC FREQUENCY HOPPING CODE

SYSTEM FOR OPTICAL CODE DIVISION MULTIPLE ACCESS

COMMUNICATIONS

By

MOHAMMAD MAHMOUD NAJI AHMAD HAMARSHEH

July 2006

Chairman: Associate Professor Mohamad Khazani Abdullah, PhD

Faculty: Engineering

In this work, a novel method of optical code division multiple access (OCDMA)

communication system is proposed. This method is based on a code changes

dynamically as a function of time and frequency. Thus, the system is referred to as

dynamic frequency hopping OCDMA (DFH-OCDMA). The fundamental principles

are defined and described with implementation solutions for DFH-OCDMA system.

DFH-OCMDA system implementation based on tunable optical filter is found to be

an effective solution. Tunable optical filter is found to be able to provide a simple,

programmable, and effective solution for the encoding and decoding functions. Only

one filter at the encoder and one more at the receiver are required to implement the

proposed coding scheme. Special simple codes based on orthogonal sinusoidal

functions are also proposed for DFH-OCDMA system. These codes are generated

and used to control the tunable optical filters. The effectiveness of the new system

with the proposed special codes has been verified and demonstrated using theoretical

analysis and computer simulations. Theoretical analysis has been done using

4

MATLAB and MathCAD softwares, while Optisystem 3.0 is used for the computer

simulations. A clipping scheme at the receiver is also proposed to enhance the

performance of the system and reduce the multiple access interference.

The performance results of DFH-OCMDA system shows that the effect of all types

of noise, specifically, multiple access interference, phase induced intensity noise, and

shot noise have been reduced compared to other OCDMA systems. Thus, the signal

to noise ratio and bit error rate performance parameters are improved. For example,

at an error rate of 1110− , DFH-OCDMA can accommodate up to 80 users, whereas for

other systems, the maximum simultaneous users are 32 for spectral amplitude coding

system using Hadamard code, 52 for spectral amplitude coding system using

modified quadratic congruence code, 58 for spectral amplitude coding system using

modified frequency hopping code, and 24 for fast frequency hopping system. The

BER of the DFH-OCDMA system is increasing at a slower rate than that of the other

systems, which indicates that there is a significant improvement in performance at

large number of users. Indeed it is shown that the BER for DFH-OCDMA is better

than any other system at any number of users of more than 50. However, for less

than 50 active users, spectral amplitude coding systems gives BER better than that of

DFH-OCDMA system. It should be noted that for this range of users, the error rate is

too small (less than 1410− ).

5

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN SISTEM KOD LOMPATAN FREKUENSI DINAMIK

UNTUK KOMUNIKASI CAPAIAN PELBAGAI PEMBAHAGIAN KOD

OPTIK

Oleh

MOHAMMAD MAHMOUD NAJI AHMAD HAMARSHEH

Julai 2006

Pengerusi: Profesor Madya Mohamad Khazani Abdullah, PhD

Falkulti: Kejuruteraan

Di dalam kajian ini, suatu kaedah novel bagi sistem komunikasi optikal capaian

pelbagai pembahagian kod (OCDMA) telah di perkenalkan. Kaedah yang di gunakan

ini berasaskan perubahan kod secara dinamik sebagai fungsi antara masa dan

frekuensi. Sistem ini dikenali sebagai Frekuensi Dinamik Hoping OCDMA (DFH-

OCDMA). Prinsip asas telah di jelaskan secara terperinci beserta dengan

penyelesian penggunaan bagi sistem DFH-OCDMA ini.

Pelaksanaan sistem DFH-OCDMA berasaskan penapis bolehlaras optikal dan ini di

kenalpasti sebagai suatu penyelesian yang berkesan. Penapis bolehlaras optikal di

kenalpasti berkeupayan menyediakan suatu penyelesaian yang mudah, tersusun dan

berkesan bagi fungsi enkoder dan dekoder. Hanya satu penapis di perlukan pada

enkoder dan satu pada penerima di perlukan bagi pelaksaanan skim pengkodan yang

di cadangkan. Suatu kod mudah yang khas berasaskan fungsi sinusoidal yang

orthogonal juga di cadangkan bagi sistem DFH-OCDMA ini. Kod yang di hasilkan

ini di gunakan untuk mengawal penapis bolehlaras. Keberkesanan sistem baru ini

yang di lengkapi dengan kod baru yang telah di cadangkan telah di buktikan secara

6

analisa teoritikal dan simulasi komputer. Analisa secara teortiikal di hasilkan

mengunakan perisan MATLAB dan MathCAD dan manakala simulasi komputer

menggunakan perisian Optisystem 3.0. Kami juga mencadangkan suatu skim yang

di kenali sebagai skim pengetipan pada bahagian penerima untuk meningkat prestasi

sistem serta mengurangkan gangguan capaian pelbagai (MAI).

Keputusan prestasi bagi sistem DFH-OCDMA dapat mengurangkan kesan yang di

sebabkan oleh semua jenis ganguan hingar terutamanya adalah ganguan capaian

pelbagai (MAI), hingar PIIN dan letusan berbanding dengan sistem OCDMA yang

lain. Dengan ini prestasi nisbah isyarat-hingar (SNR) dan kadar ralat bit (BER) dapat

di tingkatkan. Sebagai contoh, pada kadar ralat bit 1110− sistem ini dapat menampung

sehingga 80 pengguna, manakala sistem lain, sistem yang mengunakan keadah

pengkodan amplitud spektra dan kod Hadamard hanya dapat menampung maksima

32 penguna, 52 pengguna untuk sistem menggunakan kod MQC, 58 pengguna untuk

sistem menggunakan kod MFH dan 24 pengguna untuk sistem FFH. Kadar ralat bit

(BER) bagi sistem. DFH-OCDMA meningkat pada kadar yang perlahan berbanding

sistem lain dan ini merupakan suatu peningkatan prestasi pada kadar pengguna yang

tinggi. Kadar ralat bit (BER) bagi sistem DFH-OCDMA lebih baik berbanding

sistem lain pada yang melebihi 50 pengguna. Walau bagaimanapun, untuk sistem

yang kurang daripada 50 pengguna kaedah pengkodan amplitud spektra memberikan

kadar ralat bit yang lebih baik daripada sistem DFH-OCDMA. Pada julat pengguna

ini, kadar ralat bit adalah terlalu rendah (kurang daripada 1410− )

7

���������������� ������������������������������ ������������������ ����! "��������#$%&�

��'��%����(�)��'*�����+,����-

I would like to deeply thank my supervisor, Associate Professor Dr. Mohammad

Khazani Abdullah for his valuable support and guidance for me through my research

studies at University Putra Malaysia. I will never forget his constant support and the

chance he gave me to do my PhD study.

I also want to thank Professor Dr. Hossam M. H. Shalaby for his valuable ideas,

comments and advices. Although we have not met but all our extensive discussions

through e-mails are very helpful to me during most phases of the work. His

experience in the field of OCDMA was very helpful for me. I hope we can meet one

day and I can do some extra research work with him.

My thanks are also extended to my supervisory committee members Associate

Professor Dr. Mohamad Adzir Mahdi and Dr. Sabira Khatun for their valuable

comments and discussions. I would like also to thank all photonics lab members who

make the study in the lab enjoyable.

I am grateful to my mother who always encourages me to get the PhD. May Allah

bless my father who was supporting me in my first degree and encouraging me to go

further. Thanks are also extended to all my brothers and sisters.

Finally, I would like to express my deepest gratitude to my wife Rasha Hamarsha for

her love, support, patience, and taking care of our baby Obada during the last few

years.

8

I certify that an Examination Committee has met on 24 July 2006 to conduct the final

examination of Mohammad Mahmoud Naji Ahmad Hamarsheh on his Doctor of

Philosophy thesis entitled "Development of a Dynamic Frequency Hopping Code

System for Optical Code Division Multiple Access Communications" in accordance

with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti

Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends

that the candidate be awarded the relevant degree. Members of the Examination

committee are as follows:

Adznan bin Jantan, PhD Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Borhanuddin bin Mohd. Ali, PhD Professor

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Sudhanshu Shekhar Jamuar, PhD Professor

Faculty of Engineering

Universiti Putra Malaysia

(Internal Examiner)

Kazuro Kikuchi, PhD Professor

Research Center for Advanced Science and Technology

University of Tokyo

(External Examiner)

__________________________________

HASANAH MOHD GHAZALI, PHD Professor/Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date :

9

This thesis submitted to the Senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee are as follows:

Mohammad Khazani Abdullah, PhD Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Chairman)

Mohamad Adzir Mahdi, PhD Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Member)

Sabira Khatun, PhD Associate Professor

Faculty of Engineering

Universiti Putra Malaysia

(Member)

__________________

AINI IDERIS, PhD Professor/Dean

School of Graduate Studies

Universiti Putra Malaysia

Date:

10

DECLARATION

I hereby declare that the thesis is based on my original work except for the quotations

and citations, which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UPM or other

institutions.

_________________________________

MOHAMMAD MAHMOUD NAJI

AHMAD HAMARSHEH

Date:

11

TABLE OF CONTENTS

DEDICATION 2

ABSTRACT 3

ABSTRAK 5

ACKNOWLEDGMENTS 7

APPROVAL 8

DECLARATION 10

LIST OF TABLES 14

LIST OF FIGURES 15

LIST OF ABBREVIATIONS 19

CHAPTER

1 INTODUCTION 21 1.1 Fiber Optic Communication 21

1.2 Problem Statement and Motivation 22

1.3 Aim and Objectives 27

1.4 Brief Methodology 28

1.5 Contribution 30

1.6 Organization of the Thesis 31

2 REVIEW ON OPTICAL CODE DIVISION MULTIPLE

ACCESS SYSTEMS 33 2.1 Multiple Access Techniques 33

2.1.1 Time Division Multiple Access 33

2.1.2 Wavelength Division Multiple Access 35

2.1.3 Code Division Multiple Access 37

2.2 Optical Code Division Multiple Access 38

2.3 Optical Code Division Multiple Access Schemes 39

2.3.1 Coherent Optical Code Division Multiple Access

Systems 40

2.3.2 Incoherent Optical Code Division Multiple Access

Systems 45

2.4 Optical Code Division Multiple Access Codes 51

2.4.1 Maximal Length Codes 52

2.4.2 Gold Codes 52

2.4.3 Prime Codes 53

2.4.4 Optical Orthogonal Codes 54

2.4.5 Hadamard Code 55

2.4.6 Modified Quadratic Congruence Code 55

2.4.7 Modified Frequency Hopping Code 57

2.5 Mathematical Models of Optical Code Division Multiple

Access Systems 59

2.5.1 Optical Direct Sequence and Fast Frequency Hopping

Systems Model 59

12

2.5.2 Spectral Amplitude Coding System Model 62

2.6 Design Issues of Optical Code Division Multiple Access

Systems 64

3 DYNAMIC FREQUENCY HOPPING OCDMA

DESCRIPTION AND IMPLEMENTATION PRINCIPLES 66 3.1 Introduction 66

3.2 Dynamic Frequency Hoping OCDMA Principle of Operation 66

3.2.1 Transmitter Description 66

3.2.2 Mathematical Model of Encoded Signal 67

3.2.3 Mathematical Model of Decoded Signal 69

3.2.4 Transmitter Configuration 71

3.3 Encoding and Decoding 73

3.3.1 Coding Based on Tunable Optical Filter 74

3.3.2 Coding Based on Chirped Fiber Bragg Grating 76

3.4 Receiver Design 78

3.4.1 Receiver Structure Based on Tunable Optical Filter 78

3.4.2 Receiver Structure Based on Chirp Fiber Bragg

Grating 79

3.5 Conclusion 80

4 ANALYTICAL MODEL OF DYNAMIC FREQUENCY

HOPPING OCDMA SYSTEM 81 4.1 Introduction 81

4.2 System Configuration 81

4.2.1 Functional Codes Construction 83

4.2.2 Bit Rate Capacity 85

4.2.3 Modulation Format 87

4.3 System Mathematical Modeling 88

4.4 Mathematical Modeling of Performance Parameters 90

4.4.1 Correlation Properties of the Codes 90

4.4.2 Noise Effect and Signal to Noise Ratio 91

4.4.3 Bit Error Rate 96

4.5 Conclusion 97

5 ANALYTICAL RESULTS AND PERFORMANCE

ANALYSIS OF DYNAMIC FREQUENCY HOPPING

OCDMA SYSTEM 98 5.1 Introduction 98

5.2 Simulation Design Parameters 98

5.3 Signal Representation 102

5.4 Performance Simulation Results 104

5.4.1 Noise Analysis and Comparison 105

5.4.2 Cross Correlation 110

5.4.3 Signal to Noise Ratio 110

5.4.4 Bit Error Rate 112

5.4.5 Effect of Tunable Optical Filter (TOF) Bandwidth 113

5.4.6 Effect of the Functional Codes Parameters 115

5.4.7 System Performance Comparison 117

5.5 Conclusion 119

13

6 PERFORMANCE ENHANCEMENT OF DYNAMIC

FREQUENCY HOPPING OCDMA BY SIGNAL CLIPPING 121 6.1 Signal Clipping 122

6.2 Mathematical Modeling 123

6.2.1 System Modeling 123

6.2.2 Performance Modeling 125

6.3 Performance Analytical Calculation Results 126

6.3.1 Multiple Access Interference 126

6.3.2 Signal to Noise Ratio 128

6.3.3 Bit Error Rate 129

6.4 Conclusion 130

7 SIMULATION RESULTS OF DYNAMIC FREQUENCY

HOPPING OCDMA SYSTEM 131 7.1 Introduction 131

7.2 System Configuration 131

7.3 Components Description 132

7.3.1 Code Generator 133

7.3.2 Encoder and Decoder 133

7.4 Simulation Results and System Comparison 134

7.4.1 Input Power Effect on the System 137

7.4.2 Effect of Bit Rate on the Performance of the System 141

7.5 Conclusion 145

8 CONCLUSION AND FUTURE WORK 146 8.1 Conclusion 146

8.2 Future Work 149

APPENDICES 150

REFERENCES 175

BIODATA OF THE AUTHOR 186

14

LIST OF TABLES

Table Page

1.1 Design and performance parameters of the proposed DFH-

OCDMA system 29

5.1 Typical parameters used in the calculations 101

15

LIST OF FIGURES

Figure Page

2.1 Frame and slot structure with basic TDMA 34

2.2 WDMA long distance fiber transmission link. 36

2.3 Block diagram of OCDMA network 38

2.4 Block diagram of the coherent DS-OCDMA system 41

2.5 Block diagram of the pulsed based temporal phase CDMA

system 42

2.6 Block diagram of an ultra-short pulse OCDMA system 44

2.7 DS-OCDMA system encoders 47

2.8 Spectral amplitude coding CDMA system 48

2.9 Optical FFH-CDMA system configuration 50

3.1 (a) DFH-OCDMA transmitter configuration (b) Data signal

and the spectrum after each device in the transmitter 67

3.2 Encoder output signal for (a) DFH-OCDMA system using

shifted sine code (b) FFH-OCDMA system using random

code of weight 6. 68

3.3 Transmitter design using tunable laser source 72

3.4 Transmitter design using tunable optical filter 72

3.5 Transmitter design using chirp fiber Bragg grating 73

3.6 Spectrum of the encoded signal 74

3.7 Decoding procedure of interfering signal (a) The optical

frequency as function of time at a point of interference (b)

The intensity of the optical signal at five different time

shots near the interference point 76

3.8 Encoding and decoding principle using chirped FBG 77

3.9 Receiver block diagram of a DFH-OCDMA system using

TOF 79

16

3.10 Receiver block diagram of a DFH-OCDMA system using

chirp FBG 80

4.1 Block diagram of dynamic OCDMA system. 82

4.2 (a) The power spectral density of one signal at the output of

one decoder using the proposed sine shifted functions

family. (b) The photocurrent at the output of the photo

detector at the same receiver. 85

4.3 TOF (a) central wavelength and (b) speed along the data bit

interval 87

5.1 Power spectral density of encoded signal 102

5.2 Power spectral density of the signal at the input of the

decoder 103

5.3 Power spectral density of an optical signal at the output of

the decoder for “101” transmitted data bit stream 103

5.4 Photocurrent as function of time for “101” transmitted data

bit stream 104

5.5 Different noises as function of average received power 105

5.6 Comparison of noise effect on DFH-OCDMA and its

relation to the number of active users 106

5.7 Effect of the number of users on SNR considering only

MAI 107

5.8 PIIN comparison with SAC-OCDMA system at different

values of received power 107

5.9 PIIN comparison with SAC-OCDMA system at different

number of simultaneous users 108

5.10 Effect of received power on shot noise in DFH and SAC-

OCDMA systems 109

5.11 Shot noise as function of number of users 109

5.12 Cross correlation function between two different SSC

codes 110

5.13 SNR as function of the number of simultaneous active

users 111

5.14 SNR against received power at different numbers of active

users 111

5.15 Bit error rate as function of simultaneous active users 112

17

5.16 Probability of error versus effective power from each user

when K=110 113

5.17 The effect of TOF bandwidth on DFH-OCDMA system

performance 114

5.18 Signal and noise power at the receiver of DFH system as

function of TOF bandwidth 115

5.19 The effect of SSC phase shift on the BER of DFH-

OCDMA system 116

5.20 Effect of SSC code frequency on the BER of DFH-

OCDMA system 116

5.21 BER performance of DFH-OCDMA as function of SSC

code amplitude 117

5.22 DFH-OCDMA BER performance comparison 118

5.23 DFH-OCDMA BER comparison as function of received

power 119

6.1 Schematic diagram of DFH-OCDMA system with signal

clipper 122

6.2 Signal clipping at the output of the photocurrent (a) The

photocurrent signal before clipping (b) The photocurrent

signal after clipping 123

6.3 MAI of clipped system compared with MAI of unclipped

system 127

6.4 The effect of received power on the MAI for both clipped

and unclipped systems 127

6.5 SNR for both clipped and unclipped DFH-OCDMA system 128

6.6 SNR against received power for both clipped and unclipped

systems 128

6.7 BER as function of simultaneous users for both clipped and

unclipped systems 129

6.8 BER as function of average received power for both

clipped and unclipped systems 130

7.1 Configuration of DFH-OCDMA system simulated with

Optisystem 3.0 software. 132

7.2 Input of the code generator (solid line) and the functional

code output (dashed lines). 133

18

7.3 Eye pattern of the dynamic frequency hopping system at -

10 dBm input power and 155 Mbps bit 134

7.4 SAC-OCDMA system using Hadamard code simulated

with Optisystem 3.0 software. 135

7.5 Configuration of SAC-OCDMA system using MFH code

simulated with Optisystem 3.0 software. 135

7.6 Eye pattern of the spectral amplitude coding system using

Hadamard code at 155Mbps 136

7.7 Eye pattern of the spectral amplitude coding system using

MFH code at 155Mbps. 137

7.8 Effect of input power on the bit error rate of the DFH-

OCDMA system 138

7.9 Effect of input power on the eye opening of DFH eye

diagram 139

7.10 Effect of input power on the quality factor of DFH

compared with SAC systems 140

7.10 Effect of input power on the output optical power of the

DFH and SAC systems 141

7.11 Effect of bit rate on the bit error rate of the DFH and SAC

systems 142

7.12 Effect of bit rate on the eye opening of DFH and SAC

systems 143

7.13 Effect of bit rate on the quality factor of DFH and SAC

systems 143

7.14 Effect of bit rate on the output power of the DFH and SAC

systems 144

19

LIST OF ABBREVIATIONS

ASE Amplified Spontaneous Emission

ASK Amplitude Shift Keying

AWG Array Waveguide

BER Bit Error Rate

CDMA Code Division Multiple access

DCF Dispersion Compensating Fiber

DFH Dynamic Frequency Hoping

DS Direct Sequence

EDFA Erbium Doped Fiber Amplifier

ERFC Error Function Complementary

FBG Fiber Bragg Grating

FFH Fast Frequency Hoping

FH Frequency Hopping

FWHM Full Wave Half Maximum

Gbps Giga bit per second

GF Galois Field

IM/DD Intensity Modulation/Direct Detection

LAN Local Area Network

LED Light Emitting diode

MAI Multiple Access Interference

Mbps Mega bit per second

MFH Modified Frequency Hoping

MQC Modified Quadratic Congruence

20

NRZ Non Return to Zero

OCDMA Optical Code Division Multiple access

OOC Optical Orthogonal Code

OOK On-Off Keying

PIIN Phase Induced Intensity Noise

PIN Positive Intrinsic Negative

PRBS Pseudo Random Binary Sequence

PSD Power Spectral Density

RF Radio Frequency

SAC Spectral Amplitude Coding

SLM Spatial Light Modulator

SMF Single Mode Fiber

SNR Signal to Noise Ratio

SOA Semiconductor Optical Amplifier

SONET Synchronous Optical Network

SSC Sine Shifted Code

TDM Time Division Multiplexing

TDMA Time division Multiple Access

TLS Tunable Laser Source

TOF Tunable Optical Filter

WDMA Wavelength Division Multiple access


Recommended