+ All Categories
Home > Documents > Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

Date post: 30-May-2018
Category:
Upload: prof-prithvi-singh-kandhal
View: 217 times
Download: 0 times
Share this document with a friend

of 23

Transcript
  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    1/23

    DEVELOPMENTOFANEWTESTMETHODFORMEASURINGBULKSPECIFICGRAVITYOFFINE AGGREGATES

    By

    PrithviS.Kandhal

    RajibB.MallickMikeHuner

    PaperpublishedinTransportationResearchBoard,TransportationResearchRecord1721,2000

    277TechnologyParkway Auburn,AL36830

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    2/23

    DEVELOPMENTOFANEWTESTMETHODFORMEASURINGBULK SPECIFICGRAVITYOFFINEAGGREGATES

    By

    PrithviS.Kandhal

    AssociateDirectorNationalCenterforAsphaltTechnology

    AuburnUniversity,Alabama

    RajibB.Mallick

    AssistantProfessorWorcesterPolytechnicInstituteWorcester,Massachusetts

    MikeHunerResearchEngineer

    NationalCenterforAsphaltTechnologyAuburnUniversity,Alabama

    PaperpublishedinTransportationResearchBoard,TransportationResearchRecord1721,2000

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    3/23

    DISCLAIMER

    Thecontentsofthisreportreflecttheviewsoftheauthorswhoaresolelyresponsibleforthefactsandtheaccuracyofthedatapresentedherein.ThecontentsdonotnecessarilyreflecttheofficialviewsandpoliciesoftheNationalCenterforAsphaltTechnologyofAuburnUniversity.Thisreportdoesnotconstituteastandard,specification,orregulation.

    i

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    4/23

    ABSTRACT

    Bulkspecificgravityofthefineaggregateisusedinhotmixasphalt(HMA)volumetricmix

    design(includingSuperpave)todeterminetheamountofasphaltbinderabsorbedbytheaggregateandthepercentageofthevoidsinthemineralaggregate(VMA).Thecurrenttestmethod(AASHTOT84)usesaconemethodtoestablishthesaturatedsurfacedry(SSD)conditionofthesample,whichisnecessarytoconductthetest.Thismethoddoesnotworksatisfactorilyforfineaggregateswhichareveryangularandhaveroughsurfacetexture,and,therefore,donotslumpreadilywheninSSDcondition.

    Thisresearchprojectwasundertakentodevelopanautomatedequipmentandmethodof

    establishingtheSSDconditionofthefineaggregate.Thewetsampleofthefineaggregateisplacedinarotatingdrumandissubjectedtoasteadyflowofwarmair.ThetemperaturegradientoftheincomingandoutgoingairandtherelativehumidityoftheoutgoingairaremonitoredtoestablishtheSSDcondition.

    Twoprototypesdeviceswereconstructed.Thetestresultsobtainedwiththesecondprototypedeviceareencouragingandhavebeenreportedinthepaper.Furtherimprovementstobemadetothesecondprototypedevicetoimprovetherepeatabilityandreproducibilityofthetest,havebeenidentified.

    KEYWORDS:bulkspecificgravity,fineaggregate,saturatedsurfacedry,Superpave,hotmix

    asphalt,mixdesign

    ii

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    5/23

    Kandhal,Mallick,&Huner

    DEVELOPMENTOFANEWTESTMETHODFORMEASURINGBULKSPECIFIC

    GRAVITYOFFINEAGGREGATES

    PrithviS.Kandhal,RajibB.Mallick,andMikeHuner

    INTRODUCTIONANDOBJECTIVEBulkspecificgravityofthefineaggregateisusedinSuperpavevolumetricmixdesigncalculationstodeterminetheamountofasphaltbinderabsorbedbytheaggregateandthepercentageofthevoidsinthemineralaggregate(VMA).Thecurrenttestmethodofmeasuringthebulkspecificgravityoffineaggregate(AASHTOT84orASTMC128)doesnothavesatisfactoryreproducibility.Thismethoddoesnotworksatisfactorilyforcertainfineaggregateswhichareveryangularandhaveroughsurfacetexture.Thesematerialsdonotslumpreadilywhentestedbytheconemethodspecifiedinthesestandardteststodeterminethesaturatedsurfacedrycondition(SSD).Thislackofprecisioninobtainingthebulkspecificgravityoffine

    aggregateaffectstheSuperpavevolumetricmixdesign.Theoptimumasphaltcontentcanbeunderestimatedresultinginleanandbrittlemixture(ravelingandcracking)orcanbeoverestimatedresultinginrichandplasticmixture(flushingorrutting).Thereisanurgentneedtodevelopanaccurateandmorereproducibletestmethodfordeterminingthebulkspecificgravityofthefineaggregates.

    Thisstudywasundertakentodevelopanautomatedequipmentandmethodofdeterminingthe

    saturatedsurfacedryconditionofthefineaggregatesothatitsbulkspecificgravitycanbemeasuredwithsatisfactoryprecisionandaccuracy.

    REVIEWOFLITERATURE

    Bulkspecificgravityistheratioofweightinairofagivenvolumeofapermeablematerial

    (includingbothpermeableandimpermeablevoidsnormaltothematerial)atastatedtemperaturetotheweightinairofanequalvolumeofdistilledwateratastatedtemperature.Thebulkspecificgravityofanaggregate,asdefinedbytheASTM,equalstheoven-dryweightoftheaggregate(A)dividedbythesumoftheaggregatesolidvolume(Vs),thevolumeofthepermeablevoids(Vp),andthevolumeoftheimpermeablevoids(Vi)timestheunitweightofwater((w).Thosevoidsthatcannotbefilledwithwateraftera24-hoursoakingarereferredtoasimpermeable.Thebulkspecificgravityofanaggregateisdeterminedinthelaboratoryusingthefollowingformula:

    whereAistheoven-dryweightoftheaggregate,Bisthesaturatedsurface-dryweight(ingrams)ofthematerialinair,andCistheweight(ingrams)ofsaturatedmaterialinwater.

    Bulkspecificgravityofbothcoarseandfineaggregateareusedinhotmixasphalt(HMA)mix

    designtocalculatetheamountofasphaltbinderabsorbedbytheaggregateandthepercentageofvoidsinthemineralaggregate(VMA).Accuratedeterminationofbulkspecificgravityoftheaggregatesis,therefore,necessarytocalculatetherealisticvolumetricpropertiesofthecompactedHMAmixtures.

    1

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    6/23

    Kandhal,Mallick,&Huner

    Experiencehasshownthat,forsomematerials,theresultsofbulkspecificgravityarevery

    difficulttoreproduce.Thisismainlycausedbythepersonalelementinvolvedinjudgingthepointatwhichthewetaggregatehasdriedoutsufficientlytoreachthe"saturatedsurface-dry(SSD)condition"whichistheoreticallythepointatwhichallthesurfacemoisturehasgonefrom

    theparticlesbutwiththepermeableporesremainingcompletelyfilled.ASTMStandardMethodsC127andC128outlinemeansfordeterminingabsorptionandbulkspecificgravityofcoarseandfineaggregates,respectively.Thesestandardscallforimmersionofmaterialinwater,followedbydryinguntilthesurface-drystateisattained.Coarseaggregatesarerolledinanabsorbentclothuntilallvisiblefilmsofwateraregone.TheestablishmentoftheSSDconditionofcoarseaggregatesissimpleandreasonablyreproducible.However,thesameisnottrueforfineaggregates.

    Fineaggregatesarespreadonapanandexposedtoagentlecurrentofwarmairuntilafree-

    flowingconditionisreached.Theaggregateisthenlightlytampedintoaspecifiedconicalmold.Iftheconestandswhenthemoldisremoved,thefineaggregateisassumedtohavemoistureonits

    surface,anditisdriedfurther.Whentheconejustbeginstoslumpafterremovalofthecone,itisassumedtobeinasaturatedsurface-drystate.Inadditiontovariationcausedbyindividualjudgement,thefactthatlargeparticlestendtodrymorequicklythansmallparticlesmayleadtooverdryingofthelargerparticles,unlesstheprecautionistakenofrecognizingandhandlingtheseparticlesseparately.Thesevariationsbecomesignificantinthecaseofaggregateshavingaroughandporoussurface.

    Fornatural,well-gradedfineaggregates,thesaturatedsurface-dryconditionisusually

    reproducible.Theendpointismoreerraticforcrushedfineaggregatesbecausetheangularityoftheparticlesdoesnotpermitadefiniteslumpconditionasdotheroundedsurfacesofnaturalsands.Besides,thehigherpercentageofmaterialpassingthe0.15mm(No.100)sievealsoposesaprobleminachievingtheslumpcondition.

    Variousattemptshavebeenmadeinthepasttopinpointthesaturatedsurface-dryconditionoftheaggregatestoimprovethereproducibilityofthebulkspecificgravitytestresults.TheseincludeHoward'sglassjarmethod(1,2),Martin'swetanddrybulbtemperaturemethod(3),Saxer'sabsorptiontimecurveprocedure(4),andHughesandBahramian'ssaturatedair-dryingmethod(5).However,thevariousmodificationseitherofferlittleimprovementoraretooelaboratetobeofpracticalvalueinthefieldoraveragelaboratory.

    KandhalandLee(6)developedacolorimetricprocedure,alsomentionedinASTMC128,to

    establishtheSSDconditionofbothcoarseandfineaggregates.Thismethodinvolvessoakingtheaggregateinwatercontainingaspecialchemicaldye.Onremovalfromwater,theaggregateacquiresthecolorofthewetdye.However,thisdyechangescolorwhendry(forexample,cobaltchloridechangescolorfromredtoblue).Assoonasthefineaggregateparticleschangecolor(whensubjectedtodryingwithafan),thesaturatedsurfacedrycondition(SSD)hasbeen

    reached.However,thefollowingproblemsareassociatedwiththismethod:a.Thedyesdonotshowwellondarkcoloredaggregates;b.Anefficientmethodofmixingthefineaggregateduringthedryingoperationis

    neededsothatlargerparticlesdonotdryoutsoonerthanfinerparticles;andc.Detectionofthecolorchangeneedstobeautomatedsothatthesubjectivejudgement

    oftheoperatoriseliminated.

    DanaandPeters(7)ofArizonaDepartmentofTransportationdirectlymeasuredthesurface

    moistureconditionsofmineralaggregateusingbasicprinciplesofthermodynamics.Thewetfineaggregatesamplewasplacedinasmallrotatingdrum.Hotairwasblownintooneendofthedrumtodrythetumblingaggregateuniformly.Thermocouplesmountedintheinletandoutlettubesoftheprototyperotatingdryingdrummonitoredthetemperaturesoftheincomingand

    2

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    7/23

    Kandhal,Mallick,&Huner

    outgoinghotair.Amillivoltstripchartrecorderdisplayedthedifferenceintemperature(thermal

    gradient)ofthethermocouples.Aslongastherewasfreesurfacemoistureontheaggregateasteadyvalueofthethermalgradientwasobserved.Assoonasthesaturatedsurfacedry(SSD)conditionwasachieved,thethermalgradientreducedsuddenly.Atthattime,thesampleistaken

    outofthedrumandtested.Thepreliminaryprototypeequipmentgaveencouragingresults,however,thedevelopmentoftheequipmentwasnotfinalizedanditwasrecommendedtotestawidevarietyoffineaggregates.

    Krugler,TahmoressiandRand(8)havereportedfourprocedurestoestablishthesaturated-

    surface-dry(SSD)conditionoffineaggregates:1.Anoven-dryaggregatesampleisplacedside-by-sidewiththetestsamplewhichis

    beingdried.TheSSDconditionisdefinedasthepointwhenthetestsamplehasthesamecolorastheoven-drycomparisonsample.ItispreferredtoerronthedrysideoftheSSDconditionbecausethebulkspecificgravitydoesnotchangesignificantlywithadditionaldrying.

    2.Observehowthetestsampleslidesdownthebottomofatiltedpan.Whenthetest

    samplenolongeradherestothebottomandflowsfreely,itisjudgedtobesurfacedry.3.Observehowthetestsampleflowsoffatiltedmasonrytrowel.Whenthetestsample

    nolongeradherestothetrowelandflowsofffreelyasindividualparticles,itisconsideredsurfacedry.

    4.Useastripofpackagingtape(SupremeSuperstandardGummedPaperTape,two-inchmediumduty)attachedtoasmallblockofwood.Thetapeisplacedonthetestsampleforfivesecondsandlifted.TheSSDconditionisreachedifnotmorethanonetestsampleparticleadherestothetapeontwoconsecutivechecks.(Thewater-solubleglueofthetapeisactivatedbymoistureinthetestsample.)

    TheSSDconditionmustbeestablishedbyusingatleasttwocriteriaofthefourTexasDOT

    proceduresdescribedabove.Obviously,somesubjectivityisinvolvedinallprocedures.

    ThereviewofliteratureonestablishingtheSSDconditionofthefineaggregateindicatesthatthe

    conceptusedbytheArizonaDepartmentofTransportation(7)hadthemostpotentialofdevelopinganautomatedequipmenttoaccomplishthis.ThedifficultiesencounteredintheArizonaexperimentsarelikelytobesurmountedwiththemoderndayelectronictechnology.Itwasalsodecidedtomeasurethehumidityoftheoutgoingwarmairinadditiontothetemperaturegradientusedinthoseexperiments.Thiswasattemptedinthisstudy.

    EXPLANATIONOFTEMPERATUREANDHUMIDITYGRADIENTAPPROACH

    Ifawetsampleoffineaggregateissubjectedtodryingwithhotair,thenthefreemoistureonthesurfaceoftheaggregateevaporatesfirst,followedbytheabsorbedwater.Iftheaggregatesaredrieduniformly,paststudieshaveindicatedthatasharpbreakpointcanbeobtainedinaplotof

    timeversustemperaturedifference(gradient)ofincomingandoutgoingairatthesaturatedsurfacedrycondition(Figure1)(7).Thedifferentphasescanbeexplainedasfollows.Atthebeginningofthetestthereisasharpdifferencebetweentheincomingandoutgoingairtemperature,sincethetemperatureoftheincomingairisextremelyhigh.Inthesecondphase,theentirechamberordrumisataconstanthightemperature,andthefreewaterfromthesurfaceoftheaggregatesisdrivenoffatarelativelyconstantrate.Thisisindicatedbytherelativelyconstanttemperaturegradient.Inthethirdphasethereisanincreaseinthetemperaturegradient.Thishappensbecauseatthispointthereisaverythinlayerofsurfacewatersurroundingtheaggregateparticles,andtherateofevaporationisveryhigh,higherthanthatinPhase2.Inthefourthphase,thereisasuddenbreakinthecurve,indicatingthatthereisnomorefreesurfacewaterontheaggregate,andhencenomorehighevaporationrateandcoolingrate.Therefore,thesuddenbreakpointindicatesthepointofsaturatedsurfacedry(SSD)condition.Afterthispoint,

    3

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    8/23

    Kandhal,Mallick,&Huner

    30

    25

    20

    15

    10

    5

    0

    0 5 10 15 20 25Time(minutes)

    Figure1.TypicalTimeVersusTemperatureGradientPlot

    theaggregatesabsorbmoreheat,todriveofftheabsorbedwater,causinganincreaseinthetemperatureoftheoutgoingair.Theincreaseinthetemperatureoftheoutgoingairthereforedecreasesthetemperaturegradient.Hence,thekeythingistostopthetestwhentheaggregate

    reachesthesaturatedsurfacedrycondition,bylookingatthetemperaturegradientplotandcapturingthepeak.However,oneimportantthingisthatifthetestisstoppedatthepeak,theaggregateundergoessomeadditionaldryingwhileitisbeingtakenoutandtested.Hence,abettermethodwillbetostopthetestsufficientlyaheadofthepeak,sothattheaggregate,whentestedforweightandvolume,isatthesamestateasitwouldhavebeenatthepeakofthetemperaturegradientplot.

    AnotherpossibleapproachthatwastriedbytheresearchersoftheNationalCenterforAsphalt

    Technology(NCAT)studyistheanalysisofhumidityofoutgoingair.AnexampleofhumidityofoutgoingairversustimeplotisshowninFigure2.Itisseenthatingeneralthehumidityoftheoutgoingairishighatthebeginningofthetest,thenitdropsoffrapidlyastheaggregatelosesmoisture.Inthenextphasethehumidityincreasesslightly,andultimatelyreachesapeakandthendropsoff.Thispointwhereitdropsoffisconsideredtobethesaturatedsurfacedry

    condition.Thedifferentphasescanbeexplainedasfollows.Atthebeginningofthetest,alargeamountofmoistureisdrivenoffbecauseofthehighinletairtemperature.Thehumidityoftheoutgoingairfallsandbecomesconstantastheentirechamberheatsup,andthereisaconstantrateofevaporationfromtheentireaggregatemass.Inthenextphase,becauseofthepresenceofarelativelythinlayerofmoisturearoundaggregateparticles,therateofevaporationincreases,andtheresultanthumidityoftheoutgoingairalsoincreasesandreachesapeak,andthendropsoff.ThepeakindicatesthepointofSSD,beyondwhichthereisnofreemoistureonthesurface.

    4

    Tem

    eraturedifference

    C

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    9/23

    Kandhal,Mallick,&Huner

    70

    60

    50

    40

    30

    20

    10

    0

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0Time(minutes)

    Figure2.TypicalTimeVersusHumidityPlot

    DEVELOPMENTOFTHEFIRSTPROTOTYPETESTEQUIPMENT

    ThefirstequipmentwasdevelopedessentiallyonthebasisoftheequipmentthatwasusedbytheresearchersatArizonaDOT(7).Figure3andFigure4showaschematicandaphotooftheequipment.Basically,thedeviceconsistedofarotatingPlexiglasdrum,mountedoncasterwheels,anddrivenbyabeltthroughamotor.Airwasblownwithadryerfan(ahairdryerwasused)atoneendofthedrum,andsensorsfortemperaturewereinstalledateitherendofthedrumformeasuringtemperatureofincomingandoutgoingair.ThedrumwasmadeoutofPlexiglasforconvenienceofviewingtheaggregateinsidethedrumduringtesting.Twoflightsintherotatingdrumprovidedreasonablyconsistentdryingofthetestsample.Thisdrumalsoutilizeda"bumping"deviceinitsrollerstoreducetheamountoffinesstickingtothewallsofthedrum.Thesampleoffineaggregatewasconfinedinthedryerdrumbyutilizingscreensonboththeinletandoutletsidesofthedrum.Asampleofabout1300gramswasusedin

    allexperiments.Thisgivesatleast500gramsfordeterminingtheweightandvolumeoftheSSDsample,andatleast500gramsforobtainingtheoven-dryweightoftheSSDsample.Thetemperaturesensorsweremonitoredandrecordedona30-secondcycleduringtestingforestablishingtheSSDcondition.

    Initially,naturalsandwassubjectedtothedryingprocessinthefirstprototypeequipment.

    TemperaturegradientversustimeplotsfromtestswitheightsamplesofnaturalsandareshowninFigure5.Theplotsshowexpectedtrendsasdiscussedearlier.However,thedatawasnotveryconsistent,andthepeaksindicatingSSDconditionarenotwithinasmallrangeoftimeforthedifferentsamples.Thesamplesweretakenoutattheobservedpeakandtestedforspecificgravity.Comparisonsamplesofthesamenaturalsandweretestedwiththesandconemethod(ASTMC128)forspecificgravity.TheresultsfrombothtestsareshowninTable1(firstset).

    5

    Humidito

    foutoin

    air

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    10/23

    Kandhal,Mallick,&Huner

    6

    Fiure3.

    Schematicoft

    heFirstProtot

    eTestE

    ui

    ment

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    11/23

    Kandhal,Mallick,&Huner

    Figure4.PhotographoftheFirstPrototypeTestEquipment

    Figure5.TimeVersusTemperatureGradientPlotsforEightSamplesofNaturalSand (FirstPrototypeTestEquipment)

    7

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    12/23

    Kandhal,Mallick,&HunerTheobservationswerethatthesamplesweremostlytoowetwhentakenout,indicatingthattheSSDconditionhadnotbeenreachedyet,orthesamplesweretoodry,indicatingthatthesampleswerepastthepointofSSD.ItseemedthattheSSDconditionwasbeingaffectedbytheinletair

    temperature,andtheamountofsandthatwasstickingtothesidesoftheinsidewalloftherotatingchamber.Itwasdecidedtostopthetestatthebaseofthepeakofthetemperaturegradientplotandtakeoutthesampleandtestthem.Thecriterionfordeterminingthebaseofthepeakwasatleasta1-degreeincreaseintemperature.However,specificgravitiesandabsorptionofsamplesrunthiswaydidnotmatchwithspecificgravitiesandabsorptionrunbythesandconemethod(Table1,secondset)andinbothcasesthesampleswerefoundtobeoverdried.Theconclusionwasthattousethismethodsuccessfully,theresultsshouldbemoreconsistent,andthereshouldbearationalandpracticalmethodofidentifyingtheapproachingSSDconditionandstoppingthetestattherighttimeforspecificgravitydetermination.Fromtheresultsofthisphaseofthestudy,thefollowingconclusionsweremade:

    1.Thetemperaturegradientversustimeplot,althoughconsistentwiththeory,didnotseemtobeareliablemethodofpredictingtheSSDcondition.

    2.Therewastoomuchstickingoffineparticlesontheinsideofthedrum,whichcouldaffecttheresultssignificantlybyresultinginnon-uniformdryingofthesand.3.SomeofthesandwasbeingblownoutneartheSSDcondition,resultinginlossof

    materials.4.Thedrumhastobere-designedinsuchawaythatthesamplecanbetakenout

    immediatelyafterachievingtheSSDconditionformeasuringitsweightandvolume.Withthefirstprototype,ittook3-5minutestodisassemblethedrumandgetthesampleout.

    Table1.ComparisonofSpecificGravityandAbsorptionData(FirstPrototypeTest

    Equipment)

    Sample NewMethod(Drum) SandConeMethod Observation

    AbsorptionSpecific Absorption SpecificGravity Gravity

    FirstSet

    1 0.482 2.472 0.583 2.616 Toowet2

    3.219 2.443 0.624 2.618 Toowet3

    2.311 2.501 Toowet4 0.040 2.650Too

    dry

    5 0.664 2.605 Slightlywet

    SecondSet

    1 0.09 2.649 0.583 2.616 Toodry2

    0.10 2.649 0.624 2.618 Toodry

    8

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    13/23

    Kandhal,Mallick,&Huner

    SECONDPROTOTYPETESTEQUIPMENT

    Torectifytheproblemsencounteredwiththefirstprototypeequipment,thesecondprototype(Figures6and7)wasmadewiththefollowingchangesandmodifications:

    1.Thedryerdrumwasmadeoutofpolishedaluminumratherthanplexiglass.Gearsandrollersimprovedtherotationsystem.Thismadetheoveralldevicesturdier,moredurable,andeasiertoworkwith.

    2.Thedrumconsistedofthreesegmentswith"quick-snap"clampstoholdittogether.Also,theconfigurationofthesecondprototypedeviceallowsthedrumitselftobequicklymountedorremovedfromtheroller/dryersystem.Thesetwochangesenabletheoperatortobreakdownthesystemanddruminapproximately20-30seconds,minimizingthetimebetweenachievingSSDconditionandphysicallyobtainingtheSSDsamplefortesting.

    3.Thefirstprototypehadscreensgluedintothedrumandthesescreenscouldnotbechangedeasily.Thesecondprototypeutilizesscreeninsertsthatcanbechangedquickly.Sincethisdeviceisstillunderdevelopment,theabilitytochangescreen

    sizesisnecessary.4.A"tapping"devicecontactingtheoutsidewallofthealuminumdrumwasinstalledinthesecondprototypetoshakeofffinesstickingtotheinteriorofthedrum.Thefirstprotoypeuseda"bumping"device.Thealuminumdrumwasalsocoatedwithteflontoreducethestickingoffinestothewallofthedrum.

    5.Avariablespeedmechanismwasprovidedtovarytherotationalspeedofthedrumduringthedevelopmentalstage.

    Preliminarytestsindicatedthattherewasnosignificantstickingofsandontheinsidesurfaceof

    thenewdrum.However,therewassomesignificantblowingoffineswhichblindedthescreenresultinginariseintheairtemperatureinsidethedrum.ItwasinterestingtonotethatthescreenblindingproblemwasoccurringataboutthesametimethesamplewasachievingtheSSDcondition.Becauseoftheblindingproblem,thetestswerecompletedonplus0.6mmmaterial

    onlytoprovethattheconceptworks.

    Sincetheplotsoftemperaturegradientversustimedidnotprovideadistinctwayofidentifying

    theSSDconditioninthefirstsetoftests,itwasdecidedtoobservebothtemperaturegradientandrelativehumidityoftheoutgoingair.TypicalplotsoftimeversusrelativehumidityforfivedifferentfineaggregatesareshowninFigure8.Thedatawasanalyzed,anditwasobservedthatthetrendofthehumidityplotismoreconsistentforaparticularaggregatethanthetrendofthetemperaturegradientplot.AsTable2shows,thepointatwhichthepeakhumiditywasreachedissignificantlymoreconsistentthanthepointatwhichthepeakofthetemperaturegradientwasobserved.ASSDcriteriawasestablishedtotaketheaggregateoutwhenthereweretwosuccessivedecreasesinrelativehumidity.Themagnitudeofthesetwosuccessivedecreasesgenerallyrangedfrom1to2percentasshowninthefifthcolumnofTable2.Specificgravitieswererunwiththisaggregate,andthevalueswerecomparedtothevaluesobtainedbythesand

    conetestmethod.Tables3and4showthedataofwaterabsorptionandbulkspecificgravityofsamples,respectively,testedbythenew(drum)methodandbythesandconemethod.ComparisonsofaveragevaluesandstandarddeviationofwaterabsorptionvaluesareshowninFigures9and10,respectively.ComparisonofaveragevaluesandstandarddeviationofbulkspecificgravityvaluesfrombothtestsareshowninFigures11and12.

    9

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    14/23

    Kandhal,Mallick,&Huner

    10

    Fiure6.

    SchematicoftheSecondProtot

    eTestEu

    iment

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    15/23

    Kandhal,Mallick,&Huner

    Figure7(a).PhotooftheSecondPrototypeEquipment

    Figure7(b).PhotooftheSecondPrototypeEquipmentwiththeData AcquisitionSystem

    11

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    16/23

    Kandhal,Mallick,&Huner

    80

    70

    60

    50

    40

    30

    20

    10

    SS M10 LMS FA2 FA4 FA5 FA900.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0

    Time(minutes)

    Figure8.TypicalTimeVersusHumidityPlotforSevenDifferentAggregates(Second PrototypeEquipment)

    Table2.TimeVersusPeakHumidityandPeakTemperatureGradientData(Second

    PrototypeTestEquipment)FineAggregate

    Granite

    ShorterSand(Natural)

    Sample1

    2

    3

    4

    5

    6

    7

    8

    9101

    2

    3

    4

    5

    6

    7

    8

    910

    PeakTimeVersusHumidity(minutes)

    10.08.5

    9.5

    9.0

    9.5

    8.5

    9.0

    9.5

    8.5

    9.511.5

    13.01112.5

    12.0

    12.5

    11.0

    13.0

    11.0

    12.0

    PeakHumidity(percent)

    54

    57

    52

    54

    54

    52

    53

    53

    53

    54

    52

    50

    50

    52

    51

    51

    49

    53

    52

    52

    )BetweenTwoSuccessiveHumidityReadingsAfterPeak(-veindicatesdrop),%-1,-2-

    1,-1-

    1,-2-

    1,-1-

    2,-2-

    1,-1-

    2,-2-

    1,-2-

    1,-1-

    1,-2-

    1,-2-

    1,-3-

    1,-2-

    1,-1-

    1,-1-

    1,-1-1,-1-

    1,-1-

    1,-1-

    1,-1

    PeakTimeVersusTemperatureDifference(minutes)

    11.0

    8.0

    9.510.0

    9.5

    7.0

    9.0

    9.5

    8.5

    9.011.5

    14.01113.5

    13.0

    12.0

    12.0

    14.0

    11.5

    13.0

    PeakTemperatureDifference(C)

    20.7

    19.3

    20.1

    20.2

    20.9

    20.8

    20.2

    21.8

    20.7

    20.3

    20.1

    20.4

    20.1

    20.1

    20.3

    20.2

    18.8

    20.3

    20.0

    20.8

    )BetweenTwoSuccessiveTemperatureReadingsAfterPeak(C)TestStopped-0.3,0.1-0.1,-0.55TestStopped-0.2,-0.2-

    0.3,0.1-

    0.2,-0.1-

    0.55,-0.9-0.2,0.1-

    0.1,0.1-

    0.4,-0.1TestStopped-0.3,0TestStopped

    TestStopped-0.4,0TestStopped

    TestStopped-0.2TestStopped

    12

    Relativehumidity(%)

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    17/23

    Kandhal,Mallick,&HunerTable2.TimeVersusPeakHumidityandPeakTemperatureGradientData(Second

    PrototypeTestEquipment)Fine Sample Peak Peak )BetweenTwo PeakTime Peak )BetweenAggregate Time Humidity Successive Versus Temperature Two

    Versus (percent) Humidity Temperature Difference SuccessiveHumidity ReadingsAfter Difference (C) Temperature(minutes) Peak(-ve (minutes) Readings

    indicatesdrop), AfterPeak% (C)

    Sandstone 1 10.0 49 -3 10.5 19.5 TestStopped2 8.5 49 -1,-2 7.5 18.2 -0.4,-0.13 6.0 47 -1,0 6.0 18.5 -0.5,0.14 8.0 48 -1,-1 8.0 17.9 -0.7,-0.15 7.5 51 -1,-2 8.0 19.1 -0.6,0.36 7.0 50 -1,0 6.5 18.8 -0.2,-0.17 7.0 54 -1,0 6.5 18.6 -0.3,-0.18 8.0 51 -1,-1 8.5 16.9 -0.69 7.5 51 -1,-1 8.5 17.6 TestStopped10

    7.5

    53

    -1,-2

    6.5

    18.4

    -0.5,0.2Diabase 1 8.5 49 -2,-2 7.5 20.8 -0.55,-0.6

    2 7.5 47 -2,-3 7.5 19.2 -0.3,-0.13 7.5 49 -1,-2 7.5 20.1 -0.5,0.14 7.0 50 -1,-2 6.0 20.3 -0.1,-1.45 7.0 51 -2,-4 5.5 20.7 -0.3,-0.1

    Dolomite 1 10.0 54 -1,-1 10.5 20.5 -0.62 9.5 53 -1,-1 10.5 20.2 TestStopped3 9.0 53 -1,-2 10.0 21.1 TestStopped4 8.5 52 -1,-1 8.0 20.4 -0.5,0.45 8.5 52 -1,-1 7.5 20.2 -0.1,-0.5

    Limestone 1 9.5 57 -1,-1 7.5 20.3 0.2,-0.12 9.0 56 -1,-1 7.5 19.5 -0.7,03 10.5 56 -1,-3 9.0 19.6 -0.1,-0.14

    11.0

    55

    -1,-2

    8.5

    18.5

    -0.3,-0.25 7.5 53 -1,-1 7.5 20.7 -0.8,0.5

    Quartz 1 8.0 54 -1,-1 8.5 20.9 -0.55Sand 2 7.0 56 -1,-1 8.0 20.4 TestStopped

    3 7.0 53 -1,-1 7.5 19.7 -0.24 6.0 53 -1,-1 5.5 19.6 -0.1,-0.55 7.5 53 -1,-2 8.0 21.3 -0.6

    13

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    18/23

    Kandhal,Mallick,&Huner

    Table3.ComparisonofAbsorptionData(SecondPrototypeTestEquipment)

    Shorter Granite Limestone FineAgg#2 FineAgg#4 FineAgg#5 FineAgg#9SampleSand Screenings Screenings QuartzSand Sandstone Dolomite DiabaseNumber(46.0)* (49.3)* (45.8)* (42.6)* (49.7)* (50.3)* (50.1)*

    ConeDrumConeDrumConeDrumConeDrum ConeDrumConeDrum ConeDrum

    1 0.46 0.60 0.58 0.76 0.77 0.80 3.20 2.20 1.33 1.81 0.62 1.10 1.21 1.55

    2 0.52 0.32 0.42 1.00 0.68 0.74 2.73 2.69 1.44 1.72 0.68 1.05 1.27 1.56

    3 0.48 0.40 0.52 1.15 0.70 0.75 3.02 2.60 1.38 1.84 0.64 0.95 1.15 1.59

    4 0.38 0.54 0.64 0.93 0.70 0.62 2.86 3.27 1.36 1.62 0.72 1.12 1.40 1.64

    5 0.36 0.48 0.40 1.18 0.83 0.83 2.79 2.49 1.45 1.24 0.68 1.32 1.15 1.47

    6 0.38 0.50 0.62 0.99 1.56 1.70

    7 0.40 0.42 0.56 0.84 1.48 1.49

    8 0.38 0.46 0.58 1.15 1.58 1.71

    9 0.42 0.36 0.56 0.88 1.23 1.92

    10 0.26 0.56 0.64 0.96 1.56 1.70

    Average0.400.46 0.55 0.98 0.74 0.75 2.92 2.65 1.44 1.68 0.67 1.11 1.24 1.56

    Std. 0.070.09 0.08 0.14 0.06 0.08 0.19 0.39 0.11 0.19 0.04 0.14 0.10 0.06Dev.

    *Thevaluesinparenthesesarefineaggregateangularity(FAA)valuesinaccordancewithAASHTOT304,MethodA.

    14

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    19/23

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    20/23

    Kandhal,Mallick,&Huner

    3.50

    Cone Drum

    3.00 2.92

    2.502.001.501.000.50

    0.00

    0.400.46

    0.55

    0.98

    0.740.75

    2.65 1.44

    1.68

    0.67

    1.11

    1.24

    1.56

    ShorterSand Granite Limestone FineAgg#2 FineAgg#4 FineAgg#5 FineAgg#9Screenings Screenings

    Aggregate

    Figure9.ComparisonofAverageWaterAbsorptionData(SecondPrototypeTest Equipment)

    0.45

    Cone Drum

    0.40 0.39

    0.35

    0.30

    0.25

    0.20 0.19 0.19

    0.15 0.14 0.14

    0.110.1

    0.10 0.09

    0.05

    0.00

    0.07 0.08 0.06

    0.08

    0.04

    0.06

    ShorterSand Granite Limestone FineAgg#2 FineAgg#4 FineAgg#5 FineAgg#9Screenings Screenings

    Aggregate

    Figure10.ComparisonofStandardDeviationofWaterAbsorptionData(Second

    PrototypeTestEquipment)

    16

    Avera

    ewaterabsortion(%)

    StandardDeviation(%)

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    21/23

    Kandhal,Mallick,&Huner

    3

    Cone2.9

    2.8

    2.7

    Drum

    2.6942.694

    2.6852.674

    2.795

    2.691

    2.891

    2.86

    2.659

    2.632.6132.608

    2.6

    2.5

    2.4462.458

    2.4

    2.3

    2.2

    ShorterSand Granite Limestone FineAgg#2 FineAgg#4 FineAgg#5 FineAgg#9Screenings Screenings

    Aggregate

    Figure11.ComparisonofAverageBulkSpecificGravity(SecondPrototypeTest Equipment)

    0.0350.03

    0.0250.02

    0.015

    Cone

    Drum

    0.0136

    0.023

    0.032

    0.011

    0.010.01 0.009

    0.008

    0.0070.007 0.006 0.006 0.006

    0.005 0.0040.003

    0

    ShorterSand Granite Limestone FineAgg#2 FineAgg#4 FineAgg#5 FineAgg#9Screenings Screenings

    Aggregate

    Figure12.ComparisonofStandardDeviationofBulkSpecificGravity(Second PrototypeTestEquipment)

    17

    Avera

    ebulks

    ecific

    ravit(

    %

    StandardDeviation(%)

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    22/23

    Kandhal,Mallick,&Huner

    Theaveragebulkspecificgravityvalueofthenatural(Shorter)sandobtainedfromthedrumtest

    method(proposednewmethod)isnotsignificantlydifferentfromthevalueobtainedfromtestswiththecone(currentlyused)method.Thesandconemethodisbelievedtoworkbestwithnaturalsandsand,therefore,itisencouragingtoseethatbothmethodsgivesimilartestresults

    (Table4,Figure11).Thewaterabsorptionvaluesofcrushedfineaggregates(Table3,Figure9)aregenerallylowerincaseofsandconemethodcomparedtodrummethod.Thisobviouslyresultsfromoverdryingofthecrushed,angularfineaggregatestocausetheslump.Theresultingbulkspecificgravityvaluesare,therefore,higherincaseofsandconemethodcomparedtodrummethod(Table4,Figure11).

    Tables3and4alsogivethefineaggregateangularity(FAA)valuesforthesevenfineaggregates

    used.Itisinterestingtonotethattheaveragewaterabsorptionandbulkspecificgravityvaluesobtainedfrombothmethodsarenotsignificantlydifferentforthreefineaggregates(shortersand,limestone,andquartzsand)withFAAvaluesof46.0orless.ThedifferencesaresignificantfortheremainingfourfineaggregateswithFAAvaluesofmorethan49.HigherFAAvaluesindicatemoreangularandroughtexturedaggregate.Therefore,theapparentbulkspecific

    gravityvaluesobtainedbythesandconemethodforaggregateswithhighFAAvaluesmaynotbethetrueoractualbulkspecificgravityvalues.

    However,thestandarddeviationvaluesfromthedrummethodareslightlygreaterthanthe

    standarddeviationvaluesfromtheconetestmethodincaseoffouroutofsevenaggregates(Table4,Figure11).ThiscanprobablybeattributedtothefactthatthestoppingofthetestattheSSDconditionisdonemanually,andthetimetakentoobservethehumiditydata,stopthetest,andtransportthematerialfortestingcancausesignificantvariationinthesubsequenttesting.Anidealapproachwouldtobetoautomatethetestcompletely,sothatthedrumstopsautomaticallyoncetheSSDconditionisreached.

    Itisproposedtobuildathirdprototypeequipmenttoaccomplishthefollowing:

    1.Preventthescreenfromblindingsothattheentirefineaggregate(retainedon75:m

    sieve)canbetested.Onesuggestionistoincreasethesurfaceareaofthescreenbyusingasphericalscreen.2.AutomatetheequipmentsothatitshutsdownwhentheSSDconditionisreached.3.Enhancethecapabilityofthepersonalcomputeralreadyinusetoautomatethedata

    acquisitionsystem.

    EquipmentmanufacturerswereinvitedtobuildthecommercialversionoftheNCAT'sSSD

    devicereportedinthispaper,whichwillbeevaluatedbyNCAT.Ifthecommercialversionhasthecapacityofcontinuouslymonitoringthemassofthefineaggregatewhileitisdryinginthedrum,thesampledoesnothavetobetakenoutofthedrumforweighingwhenitreachestheSSDcondition.Thedryingcanthencontinueuntilthesampleiscompletelydrytoobtainitsdrymasswhileinthedrum.ThedifferencebetweentheSSDmassandthedrymassisthewaterabsorptionofthefineaggregate.Theapparentspecificgravityoftheaggregate,whichdoesnot

    involvetheSSDconditionandisreasonablyreproducible,canbemeasuredinaseparatetest.Thebulkspecificgravityofthefineaggregatecanbecalculatedbyaformulausingitspercentwaterabsorption,obtainedintheNCATSSDdeviceanditsapparentspecificgravity.

    CONCLUSIONSANDRECOMMENDATIONS

    Ithasbeendemonstratedthattheconceptofmonitoringthetemperaturegradientofincomingandoutgoingairorrelativehumidityoftheoutgoingair,whileasampleofwetfineaggregateisdriedinarotatingdrum,canbeusedtoestablishthesaturatedsurfacedry(SSD)conditionofthefineaggregate.ThehumidityoftheoutgoingairappearstoestablishtheSSDconditionmoredistinctlythanthetemperaturegradient.

    18

  • 8/9/2019 Development of a New Test Method for Measuring Bulk Specific Gravity of Fine Aggregate

    23/23

    Kandhal,Mallick,&Huner

    ThesecondprototypedevicebuiltbytheNationalCenterforAsphaltTechnology(NCAT)

    surmountedmanyproblemsencounteredinthefirstprototypedevice.However,blindingofthescreenassoonastheSSDconditionisachievedstillremainstobeaproblem.Also,thedeviceneedstobeautomatedfurthersothatitshutsdownassoonasthecriteriafortheSSDcondition

    ismet.Thiswillenhancetherepeatabilityandreproducibilityofthetest.Athirdprototypedevice,therefore,needstobeconstructedandevaluatedassoonaspossible.Ifthedevicehasthecapacityofcontinuouslymonitoringthemassoffineaggregatewhileitisdryinginthedrum,thesampledoesnothavetobetakenoutofthedrumforweighingwhenitreachestheSSDcondition.

    ThisresearchprojectwasfundedbytheFederalHighwayAdministrationunderthecooperative

    agreementwithAuburnUniversity.REFERENCES

    1.2.

    3.

    4.

    5.

    6.

    7.

    8.

    Howard,E.L.Discussion,Proc.Am.ConcreteInst.,Vol.54,1958,p.1215.Pearson,J.C.ASimpleTitrationMethodforDeterminingtheAbsorptionofFineAggregate.RockProducts,Vol.32,1929,p.64.Martin,J.R.TwoYearsofHighwayResearchatOklahomaA.andM.Proc.AAPT,Vol.19,1950,pp.41-54.Saxer,E.L.ADirectMethodofDeterminingAbsorptionandSpecificGravityofAggregates.RockProducts,Vol.87,1956,pp.77-79.Hughes,B.P.,andBahramian,B.AnAccurateLaboratoryTestforDeterminingtheAbsorptionofAggregates.MaterialsResearchandStandards,1967,pp.18-23.Kandhal,P.S.andD.Y.Lee.AnEvaluationoftheBulkSpecificGravityforGranularMaterials.HighwayResearchRecord307,1970,pp.44-55.Dana,J.S.andR.J.Peters.ExperimentalMoistureDeterminationforDefiningSaturatedSurfaceDryStateofHighwayAggregates.ArizonaHighwayDepartment,ReportNo.6,

    HPR1-11(153),June1974.Krugler,P.E.,M.Tahmoressi,andD.A.Rand.ImprovingthePrecisionofTestMethodsUsedinVMADetermination.AsphaltPavingTechnology,Volume61,1992,pp.272-303.

    19


Recommended