+ All Categories
Home > Documents > DEVELOPMENT OF AN ELECTRONIC AEROSOL...

DEVELOPMENT OF AN ELECTRONIC AEROSOL...

Date post: 05-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
77
DEVELOPMENT OF AN ELECTRONIC AEROSOL ATOMISATION SYSTEM FOR GENERATING THREE-DIMENSIONAL (3D) CELLS IN MICROENCAPSULATIONS AND MICROTISSUES CHARACTERISATION LEONG WAI YEAN A thesis submitted in fulfilment of the requirement for the award of the Degree of Master of Electrical Engineering Faculty of Electrical and Electronic Engineering Universiti Tun Hussien Onn Malaysia DECEMBER 2016
Transcript
Page 1: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

DEVELOPMENT OF AN ELECTRONIC AEROSOL ATOMISATION SYSTEM FOR

GENERATING THREE-DIMENSIONAL (3D) CELLS IN

MICROENCAPSULATIONS AND MICROTISSUES CHARACTERISATION

LEONG WAI YEAN

A thesis submitted in

fulfilment of the requirement for the award of the

Degree of Master of Electrical Engineering

Faculty of Electrical and Electronic Engineering

Universiti Tun Hussien Onn Malaysia

DECEMBER 2016

Page 2: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

iii

Special dedication with full gratitude on the guidance and encouragement to families

who loved, especially my beloved father and mother and not forgotten to my supervisor

that contributed ideas and opinions

Page 3: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

iv

ACKNOWLEDGEMENT

First, I would like to extend my deepest appreciation and heartfelt gratitude to my

supervisor, Assoc. Prof. Dr. Soon Chin Fhong for her patience, tremendous support, and

excellent guidance in terms of knowledge and continuous encouragement through my

master studies, research, and thesis work, where ideas and supervision from her is very

important in the completion of this project.

My special appreciations to my parents, family members and friends who has

encourage, support, love, patience and understanding me throughout my involvement in

this research project. Thank you for all the encouragement and affection given.

Finally thanks to my friends and any party involved directly or indirectly in this

project which was conducted in Biosensor and Bioengineering Laboratory,

Microelectronics and Nanotechnology – Shamsuddin Research Centre (MiNT-SRC),

Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia

(UTHM).

We acknowledge Professor Cheong Sok Cheng from Cancer Research Malaysia

for her kind contribution of oral squamous cell carcinoma (OSCC) cell line (ORL-48).

Page 4: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

v

LIST OF ASSOCIATED PUBLICATIONS

Journal

1. Wai Yean Leong, Soon Chuan Wong, Kian Sek Tee, Sok Ching Cheong, Siew

Hua Gan, Mansour Youseffi, Chin Fhong Soon, “In vitro growth of human

keratinocytes and oral cancer cells into microtissues: an aerosol-based

microencapsulation technique”,Biotechnology and Applied Biochemistry. Impact

factor: 1.429 (Q3, JCR, ISI Indexed). [In preparation]

2. Wai Yean Leong, Chin Fhong Soon, Soon Chuan Wong, Kian Sek Tee,

“Development of an electronic aerosol system for generating microcapsules”,

Journal Teknologi, Volume 78, Issue 5-7, Pages: 79-85, May 2016.

http://dx.doi.org/10.11113/jt.v78.8718 (Scopus Indexed).

Page 5: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

vi

ABSTRACT

Cell encapsulation is a micro technology widely applied in cell and tissue engineering,

tissue transplantation and regenerative medicine. Various techniques had been

developed for microencapsulation of cells but these techniques presented threat to the

cells due to the harsh or chemical treatment applied. In this research, a simple and

economic electronic aerosol atomisation system was proposed for producing calcium

alginate microcapsules. The system was developed with the incorporation of a

conventional syringe pump, a customised air pump and motor controller circuits. The

microcapsules and 3D microtissues were biophysically characterised. For the output of

the system, the microcapsules size slightly increased with the extrusion rates and

decreased significantly with the airflow rates. At an extrusion rate of 20 µl/min and

airflow rate of 0.3 l/min, microcapsules with a diameter ranging from 220 - 270 µm

were generated. The polymerisation time for the microcapsules was approximately 10

minutes after the immersion in calcium chloride solutions. The microcapsules showed

high porous surface structure in field emission-scanning electron microscopy (FE-SEM)

imaging. Keratinocytes (HaCaT) and Oral Squamous Cell Carcinoma (ORL-48) cells at

cell densities of 3 × 107 and 9 × 10

7 cells/ml, respectively were applied for encapsulation

and successfully grew into microtissues after 16 days of culture. The fourier transform

infrared (FTIR) spectroscopy of the 3D cells showed stretching in phosphate bond of

Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) backbone, lipid and protein.

The cells of HaCaT and ORL-48 microtissues were viable and they were characterised

by different nucleus size. Replating experiment demonstrated that the cells in the

microtissues could spread and proliferate in the culture dish. The electronic aerosol

atomisation system developed in this work has successfully produced microcapsules

with controllable size and applicable for growing microtissues. The microtissues

produced are potentially a useful cell model for the study of cytochemicals.

Page 6: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

vii

ABSTRAK

Pengkapsulan sel adalah teknologi mikro digunakan secara meluas dalam bidang

penyelidikan sel dan tisu, pemindahan tisu dan perubatan regeneratif. Pelbagai teknik

telah dibangun untuk menghasilkan kapsul mikro untuk membalut sel tetapi memberi

ancaman kepada sel disebabkan layanan kasar atau kimia semasa proses pengkapsulan.

Dalam kajian ini, sistem pengabusan aerosol elektronik yang mudah dan ekonomi telah

dicadang untuk menghasilkan kapsul mikro kalsium alginat. Sistem ini dibangunkan

dengan penggabungan pam picagari konvensional, pam udara dan litar pengawal motor.

Kapsul mikro dan tisu mikro telah dicirikan. Bagi output sistem, saiz kapsul mikro

menunjukkan sedikit peningkatan dengan kadar penyemperitan dan menurun nyata

sekali dengan kadar aliran udara. Pada 20 µl/min kadar penyemperitan dan 0.3 l/min

kadar aliran udara, kapsul mikro dengan diameter 220 - 270 µm telah dihasilkan. Masa

jangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan

kalsium klorida. Kapsul mikro menunjukkan struktur permukaan yang berliang tinggi

dalam pengimejan mikroskopi elektron imbasan-emisi medan (FE-SEM). Sel

keratinocytes (HaCaT) dan Oral Squamous Cell Carcinoma (ORL-48) pada kepadatan 3

× 107 dan 9 × 10

7 sel/ml telah digunakan untuk pengkapsulan dan berjaya tumbuh

menjadi tisu mikro selepas 16 hari kultur. Inframerah transformasi Fourier (FTIR) bagi

sel 3D menunjukkan peregangan ikatan fosfat dalam tulang belakang asid

deoksibonukleik (DNA) dan asid ribonukleik (RNA), lipid dan protein. Sel tisu mikro

HaCaT dan ORL-48 hidup tetapi menunjukkan perbezaan dalam saiz nukleus.

Eksperimen pemplatan semula menunjukkan bahawa sel-sel dalam tisu mikro boleh

mengasingkan diri dan proliferat dalam bekas kultur. Sistem pengabusan aerosol

elektronik dihasil dalam kerja ini berjaya menghasilkan saiz kapsul mikro yang boleh

dikawal dan dapat digunakan untuk menumbuh tisu mikro. Tisu mikro yang dihasilkan

adalah berpotensi untuk dijadikan model sel yang berguna untuk kajian sitokimia.

Page 7: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

viii

CONTENTS

TITLE i

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

LIST OF ASSOCIATED PUBLICATIONS v

ABSTRACT vi

ABSTRAK vii

CONTENTS viii

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF SYMBOLS AND ABBREVIATIONS xxii

LIST OF APPENDICES xxvi

CHAPTER 1 INTRODUCTION 1

1.1 Research background 1

1.2 Problem statement 3

1.3 Aim 5

1.4 Objectives 5

1.5 Scopes 5

1.6 Thesis contribution 6

1.7 Thesis outline 7

Page 8: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

ix

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Cells and tissue 8

2.2.1 Extracellular matrix (ECM) and cell 10

adhesion

2.3 Epithelial cells and skin 12

2.3.1 Human keratinocyte cell lines (HaCaT) 12

2.3.2 Oral squamous cell carcinoma cell line 13

(ORL-48)

2.4 Rationale of growing 3D cells 14

2.5 Methods for culturing microtissues 15

2.6 Microencapsulation 16

2.6.1 Application of microencapsulation 18

2.6.2 Technologies for microencapsulation of 20

cells

2.6.2.1 Extrusion, Jet break-up methods 21

and spinning disc

2.6.2.2 Micro nozzle array and vibrating 22

nozzle

2.6.2.3 Microfluidic device 23

2.6.2.4 Electrostatic droplet generation 25

2.6.2.5 Atomisation technique 27

2.6.3 Biopolymers used for cell 30

microencapsulation

2.7 Review on microscopy and spectroscopy 33

techniques

2.7.1 Inverted phase contrast microscopy 33

2.7.2 Fluorescence microscopy 34

Page 9: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

x

2.7.3 Field emission scanning electron 35

microscopy (FE-SEM)

2.7.4 Fourier transform infrared (FTIR) 37

spectroscopy

2.8 4‟, 6-diamidino-2-phenylindole dihydrochloride 39

(DAPI) staining

2.9 Live/dead viability assay kit 39

2.10 Alginate lyase 40

2.11 Summary 40

CHAPTER 3 METHODOLOGY 41

3.1 Introduction 41

3.2 Development of an electronic aerosol atomisation 45

system

3.2.1 Hardware design of an electronic aerosol 45

atomisation system

3.2.2 Controller circuit design of an electronic 49

aerosol atomisation system

3.2.3 Programming the microcontroller for the 51

air pump

3.2.4 Performance validation of the electronic 56

aerosol atomisation system

3.2.4.1 Verification of the PWM signals 56

generated by the circuit of aerosol

atomisation system

3.2.4.2 Investigate the relationship of 56

potentiometer voltage and PWM

signals

Page 10: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xi

3.2.4.3 Investigate the relationship of PWM 57

signals and output voltage to air pump

3.2.4.4 Investigate the effect of PWM signals 57

to airflow rate

3.2.4.5 Extrusion rate calibration of the 58

commercial syringe pump

3.2.4.6 Airflow rate calibration of the 59

aerosol atomisation system

3.3 Experimental setup of aerosol atomisation system 59

for producing microcapsules

3.3.1 Validation of microcapsules drop distance 61

3.3.2 Determining the size of calcium alginate 63

microcapsules

3.3.3 Spectroscopy analysis of the calcium

alginate microcapsules

3.4 Microencapsulation of cells 64

3.4.1 Cell culture and preparation 64

3.4.2 Preparation of cells-alginate suspension 65

3.4.3 Microencapsulation of cells using the 66

developed aerosol atomisation system

3.4.4 3D cell culture and monitoring 67

3.5 Biophysical properties characterisation of the 67

microcapsules and microtissues

3.5.1 Fourier transform infrared (FTIR) 67

spectroscopy measurement

3.5.2 FE-SEM imaging of the calcium alginate 68

microcapsules and 3D microtissues

Page 11: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xii

3.5.3 DAPI (4‟, 6-diamidino-2-phenylindole 70

dihydrochloride) staining

3.6 Live and dead cell stainings 70

3.7 Degradation of calcium alginate microcapsules 71

membranes using alginate lyase

3.8 Replating of microtissues 71

3.9 Summary 71

CHAPTER 4 RESULTS AND DISCUSSION 73

4.1 Introduction 73

4.2 The electronic aerosol atomisation system 73

4.2.1 The mechanism and operation of an 74

electronic aerosol atomisation system

4.2.2 System verification 78

4.2.2.1 Duty cycle of the pulse width 78

modulation (PWM)

4.2.2.2 The relationship of potentiometer 79

voltage and pulse width modulation

4.2.2.3 The relationship of pulse width 80

modulation and output voltage to

air pump

4.2.2.4 Airflow rate measurement 81

4.2.2.5 Calibration of the extrusion rate of 82

the syringe pump

4.2.2.6 Airflow rate calibration of the 83

aerosol atomisation system

4.3 The effect of drop distance to the structure of 84

the microcapsules

4.4 The effects of extrusion and airflow rates to the size 87

of microcapsules

Page 12: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xiii

4.4.1 The effects of different extrusion rates to 87

the size of microcapsules

4.4.2 The effects of different airflow rates to 90

the size of microcapsules

4.5 Polymerisation time of calcium alginate 95

microcapsules based on spectroscopy analysis

4.6 In vitro growth of encapsulated cells (3D cells) 97

into microtissues

4.7 The biophysical properties of the microcapsules 101

and microtissues

4.7.1 FTIR spectrum of calcium alginate 101

encapsulated cells

4.7.2 FE-SEM physical and surface structure 105

scanning

4.7.2.1 Physical structure of calcium 105

alginate microcapsules

4.7.2.2 Physical structure of 3D 106

microtissues

4.7.3 Nucleus distribution of the cells in the 108

microtissues

4.8 Viability of the cells in microtissues 109

4.9 3D microtissues extracted from degraded 110

calcium alginate microcapsules

4.10 The effect of replating the 3D microtissues 111

4.11 Summary 113

CHAPTER 5 CONCLUSION AND FUTURE WORK 114

5.1 Conclusion 114

5.2 Recommendations for future works 115

Page 13: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xiv

REFERENCES 117

APPENDIX A 144

APPENDIX B 147

APPENDIX C 154

VITA 156

Page 14: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xiv

LIST OF TABLES

2.1 A summary of 3D cell culture methods for culturing

3D microtissues

15

2.2 Comparison of different microencapsulation

technologies for encapsulation of cells

20

2.3 Summary of materials and cell types involved with

microfluidic technologies used for cell encapsulation

25

2.4 An overview on biopolymers used for cells

encapsulation, the encapsulated cells type and their

applications

30

3.1 The specification of electronic aerosol atomisation

system and the parameters used to generate 3D cells

43

3.2 Establishment of experiments 44

4.1 The standard operating procedures of the electronic

aerosol atomisation system

77

Page 15: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xv

LIST OF FIGURES

2.1 The anatomy of human cell 9

2.2 The four basic types of tissue 10

2.3 Cell adhesion to the ECM. (a) Suspended cells

adhere to the surface of ECM via integrins (b) The

structures of actin cytoskeleton, focal adhesion

complexes, integrin receptors, and adhesion proteins

to form cross-linked platforms

11

2.4 Phase contrast micrographs of HaCaT cells cultured

for 3 days at 1 : 6 dilutions (Scale bar: 100 µm)

13

2.5 Phase contrast micrographs of ORL-48 cells cultured

for 3 days at 1 : 6 dilutions (Scale bar: 100 µm)

14

2.6 Different morphology of microcapsules (a) Mono-

core, Single-core or reservoir type, (b) Poly-core or

Multiple-core, (c) and (d) Matrix type

17

2.7 Principle of immunoisolation by a microcapsule 18

2.8 Schematic diagram of different microencapsulation

processes in forming microcapsules: (a) Extrusion,

(b) Jet cutter and (c) Spinning disc

22

2.9 Schematic diagram of microencapsulation processes

in alginate: (a) Micro nozzle array and (b) Vibrating

nozzle

23

2.10 Illustrations of microfluidics system mechanism for

microencapsulation

24

2.11 Illustration of microcapsules fabrication methods

based on microfluidics device. (a) Flow-focusing and

24

Page 16: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xvi

(b) T-junction beads formation

2.12 A schematic view of electrostatic droplet generation

system

26

2.13 Electric charges distribution when the charged

droplet is hanging on the needle tip. Capillary,

electrostatic and gravitational forces are exerted on

the charged droplet

27

2.14 The coaxial air-flow experiment setup 28

2.15 The illustration of the airflow based on the pressure

at two different point

29

2.16 The working principle of aerosol atomisation system 29

2.17 The monomers of alginate 31

2.18 The molecular structure of calcium alginate 32

2.19 (a) Calcium binding site in G-blocks and (b) “Egg-

box” model for alginate gel formation

33

2.20 The working principal of phase contrast microscope 34

2.21 The working principal of fluorescence microscope 35

2.22 The working process of field emission-scanning

electron microscopy

36

2.23 A FE-SEM available in Microelectronic and

Nanotechnology-Shamsuddin Research Centre,

Universiti Tun Hussein Onn Malaysia

37

2.24 Working principle of FTIR spectroscopy 38

2.25 Fourier transform infrared spectroscope, Perkin

Elmer Spectrum 100

38

3.1 Flow chart for the development of electronic aerosol

atomisation system and techniques used to

characterise the microcapsules and 3D microtissues

42

3.2 Three major parts of the electronic aerosol

atomisation system

45

3.3 The conceptual design of a customised electronic 46

Page 17: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xvii

aerosol atomisation system

3.4 The control panel of the electronic aerosol

atomisation system

47

3.5 The direct current air pump of the electronic aerosol

atomisation system

47

3.6 The block diagram of an electronic aerosol

atomisation system

48

3.7 The schematic circuit design diagram of the

electronic aerosol atomisation system

50

3.8 The PCB layout for the circuit connection 51

3.9 The programming flow of the aerosol atomisation

system

52

3.10 Source code for controlling the PWM signal 53

3.11 Source code of start or stop button 53

3.12 Source code of airflow rate function control 55

3.13 The setup for airflow rate measurement of the air

pump

58

3.14 A schematic illustration of the experimental setup of

an electronic aerosol atomisation system for

generating calcium alginate microcapsules

60

3.15 An illustration of the aerosol nozzle. (a) The

schematic diagram of the insulin syringe needle head

area and (b) the picture of the insulin syringe needle

head

61

3.16 (a) The microcapsules drop distance validation setup

and (b) the schematic diagram of the dispersed

coverage (C), angle (θ) and drop distance (D)

62

3.17 The 96 wells plate containing calcium alginate

microcapsules for spectroscopy analysis

64

3.18 Preparation of 1.5 % wt/v cell-alginate suspension 66

3.19 Insulin needle with 100 µl cell-alginate suspension 66

(b) Airflow

Page 18: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xviii

3.20 The samples on FTIR spectroscopy stage. (a) Sodium

alginate powder, (b) calcium alginate microcapsules

and (c) calcium alginate encapsulated cells

68

3.21 The mounting stub with microcapsules and 3D

microtissues

69

4.1 The overall experiment of an electronic aerosol

atomisation system

74

4.2 (a) The electronic circuit boards in the casing and (b)

the front panel of the electronic aerosol atomisation

system

75

4.3 The airflow rate knob used to select the airflow rate

and the LCD displays the selected airflow rate of the

electronic aerosol atomisation system

76

4.4 The output signals of PWM: (a) 0 %, (b) 20 %, (c) 40

%, (d) 60 %, (e) 80 % and (f) 100 % duty cycle. T

denotes the period for a cycle of pulse

79

4.5 The corresponding value of PWM to the

potentiometer voltages manipulation for controlling

the air pump

80

4.6 The corresponding value of output voltage to the

duty cycle of PWM signals manipulation

81

4.7 The correspond value PWM to the airflow rate of the

aerosol atomisation circuit developed

82

4.8 Calibration results for the extrusion rate of the

commercial syringe pump

83

4.9 The airflow rates calibration result of the aerosol

atomisation system

84

4.10 The drop distance between needle tip and CaCl2 bath

surface at (a) 3, (c) 6 and (e) 9 cm and the

photomicrographs of polymerised calcium alginate

formed at drop distance of (b) 3, (d) 6 and (f) 9 cm

86

Page 19: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xix

(Scale bar: 200 µm)

4.11 The drop distance between the aerosol nozzle and the

CaCl2 solution surface determine the microdroplets

coverage region

86

4.12 Morphological and size distribution of calcium

alginate microcapsules with the extrusion rate of (a)

5, (b) 10, (c) 15 and (d) 20 µl/min and a fixed airflow

rate of 0.3 l/min (Scale bar: 200 µm)

88

4.13 The effect of different extrusion rates generated by

the aerosol atomisation system on average diameter

distribution of microcapsules (airflow rate = 0.3

l/min)

89

4.14 The size distribution of calcium alginate

microcapsules prepared by aerosol atomisation

system with (a) 5, (b) 10, (c) 15 and (d) 20 µl/min

extrusion rate and a fixed airflow rate of 0.3 l/min

90

4.15 Morphological and size distribution of calcium

alginate microcapsules with the airflow rate of (a)

0.2, (b) 0.3, (c) 0.4 and (d) 0.5 l/min and a fixed

extrusion rate of 20µl/min (Scale bar: 200 µm)

92

4.16 The effect of different airflow rates generated by the

aerosol atomisation system on average diameter

distribution of microcapsules (extrusion rate = 20

µl/min)

93

4.17 The size distribution of calcium alginate

microcapsules prepared by aerosol atomisation

system with (a) 0.2, (b) 0.3, (c) 0.4 and (d) 0.5 l/min

airflow rate and a fixed extrusion rate of 20 µl/min

94

4.18 The effects of extrusion rate and airflow rate to the

size of microcapsules

95

4.19 The polymerisation absorbance of the microcapsules 96

Page 20: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xx

upon irradiation at wavelength of 330 nm light

4.20 The microcapsules of calcium alginate (a) before and

(b) after polymerisation in calcium chloride bath

97

4.21 Phase contrast microscopic images of calcium

alginate encapsulated 3D HaCaT cells in growth

transition for 16 days of culture. (a) Day 0, (b) 2, (c)

4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 14 and (i) 16 (Scale

bar: 100 µm)

99

4.22 Phase contrast microscopic images of calcium

alginate encapsulated 3D ORL-48 cells in growth

transition for 16 days of culture. (a) Day 0, (b) 2, (c)

4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 14 and (i) 16 (Scale

bar: 100 µm)

100

4.23 Protrusion of cells starting from Day 8 of cells

culture, the dissolved calcium alginate over time and

2D monolayer cells (Scale bar: 100 µm)

101

4.24 FTIR spectra of (a) sodium alginate, (b) calcium

alginate microcapsules, calcium alginate

encapsulated with (c) HaCaT and (d) ORL-48 cells

104

4.25 The size, shape and surface structure of the calcium

alginate microcapsules at (a) 150 ×, (b) 300 × and (c)

10,000 × magnification

106

4.26 Field emission-scanning electron micrographs of 3D

HaCaT microtissue under FE-SEM at (a) 150 ×, (b)

300 × and (c) 1,500 × magnification, respectively

107

4.27 Field emission-scanning electron micrographs of 3D

ORL-48 microtissue under FE-SEM at (a) 150 ×, (b)

300 × and (c) 1,500 × magnification, respectively

108

4.28 DAPI staining of cells in the 3D microtissues of (a)

HaCaT and (b) ORL-48 after 16 days of culture

(Scale bar: 100 µm)

109

Page 21: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxi

4.29 Live and dead staining fluorescence microscopic

micrographs of calcium alginate encapsulated (a)

HaCaT and (b) ORL-48 3D microtissues after 16

days of culture (Scale bar: 100 µm)

110

4.30 Phase contrast microscopic images of the calcium

alginate encapsulated (a) HaCaT and (b) ORL-48

microtissues before degradation process, and the

extracted (c) HaCaT and (d) ORL-48 microtissues

after degradation process at 100 × magnification

(Scale bar: 100 µm)

111

4.31 Phase contrast microscopic image of replating the 3D

HaCaT microtissues (a) Day 0, (b) Day 1, (c) Day 2

and (d) Day 3 (Scale bar: 100 µm)

112

4.32 Phase contrast microscopy image of replating the 3D

ORL-48 microtissues (a) Day 0, (b) Day 1, (c) Day 2

and (d) Day 3 (Scale bar: 100 µm)

113

Page 22: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxii

LIST OF SYMBOLS AND ABBREVIATIONS

2D - Two-Dimensional

3D - Three-Dimensional

- Alpha

- Beta

oC - Degree Celsius

< - Lower Than

% - Percent

cells/ml - Cells per Milli Litre

cm - Centimeter

cm2 - Centimeter Square

f - Frequency

F - Force

cm-1

- Reciprocal Centimeter

kg/m3 - Kilo Gram per Cubic Meter

kV - Kilo Volt

l/min - Litre per Minute

µg/ml - Micro Gram per Milli Litre

µl - Micro Litre

µl/min - Micro Litre per Minute

µm - Micro Meter

µM - Micro Molar

mA - Milli Ampere

mg/l - Milli Gram per Litre

mg/ml - Milli Gram per Milli Litre

min - Minute

Page 23: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxiii

ml - Milli Litre

mm - Milli Meter

mM - Milli Molar

ms - Milli Second

ms-1

- Milli per Second

nm - Nano Meter

nM - Nano Molar

R2 - Coefficient of Determination

s - Second

units/ml - Units per Milli Litre

v - Velocity

V - Volume

A - Ampere

ARES - Advanced Routing and Editing Software

A-T - Adenine−Thymine

ATR - Attenuated Total Reflection

A-U - Adenine−Uracil

BD - Becton Dickinson

CaCl2 - Calcium Chloride

CLS - Cell Line Services

CO2 - Carbon Dioxide

DAPI - 4‟, 6-Diamidino-2-Phenylindole Dihydrochloride

dc - Direct Current

DI - Deionised

DMEM - Dulbecco‟s Modified Eagle Medium

DNA - Deoxyribonucleic Acid

ECM - Extracellular Matrix

ER - Endoplasmic Reticulum

EthD-1 - Ethidium Homodimer

ex/em - Excitation/Emission

FA - Focal Adhesion

Page 24: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxiv

FBS - Fetal Bovine Serum

FDA - Food and Drug Administration

FE-SEM - Field Emission-Scanning Electron Microscope

FTIR - Fourier Transform Infrared

G - Guluronate

HaCaT - Human Keratinocyte Cell Line

HBSS - Hank‟s Balanced Salt Solution

HTS - High-throughput Screening

Hz - Hertz

I-C - Hypoxanthine−Cytosine

ICF - Inertial Confinement Fusion

IL - Illinois

ISIS - Intelligent Schematic Input System

LABE - Low Angle Backscatter Imaging

LCD - Liquid Crystal Display

LED - Light Emitting Diode

LEI - Lower Secondary Electron Imaging

M - Mannuronate

MiNT-SRC - Microelectronics and Nanotechnology-Shamsuddin Research

Centre

MO - Missouri

N - Newton

Na+ - Sodium

NaCl - Sodium Chloride

NIH - National Institutes of Health

ORL-48 - Oral squamous cell carcinoma (OSCC) cell line

OSCC - Oral Squamous Cell Carcinoma

Pa - Pascal

PCB - Printed Circuit Board

Pd - Dynamic Pressure

PDMS - Polydimethylsiloxane

Page 25: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxv

PEG - Polyethylene Glycol

PFPE-PEG - Perfluoropolyether - Polyethylene Glycol

PVC - Polyvinyl Chloride

PWM - Pulse Width Modulation

Q - Airflow Rate

RNA - Ribonucleic acid

RPM - Revolutions Per Minute

SD - Standard Deviation

SEI - Upper Secondary Electron Imaging

UK - United Kingdom

US - United States

USA - United States of America

UTHM - Universiti Tun Hussein Onn Malaysia

V - Volt

Vdc - Volt Direct Current

wt/v - Weight per Volume

Page 26: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

xxvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A List of hardware used and specification 144

B The Arduino source code of electronic aerosol

atomisation system

147

C The mechanism and specification of PVC airflow

meter

154

Page 27: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

CHAPTER 1

INTRODUCTION

1.1 Research background

Monolayer cultures in plastic vessels are routinely used in biological studies. However,

the use of two-dimensional (2D) cell models for cell biological studies has its limitations

[1, 2]. In 2D culture, the proliferation, differentiation, gene and protein expression,

functionality and morphology of cells is considerably different from their physiological

origin in vivo [3]. By contrast, the three-dimensional (3D) cell culture creates an

artificial environment where cells are permitted to grow or interact with its surroundings.

3D cell culture is believed to have a better approximation to the tissue model for cell and

tissue research because it restores specific biochemical and morphological features

similar to the corresponding tissue in vivo [4]. In 3D cell culture, the connections

between cells are more native-like and the behaviour of cells is more reflective of in vivo

cellular responses [3, 5].

Regenerative medicine or biotechnology for creating living functional tissues in

vitro is urgently needed for repair or replacement of damaged organs [6], application in

cell culture and tissue engineering [7], pharmacological testing and bioengineering fields

[8]. Microencapsulation is an intensive research area to create cell and tissue model for

rehabilitation of functional tissues [9] and therapeutics purpose [10, 11]. It is a technique

which encloses cells within a membrane or shell. It has been widely studied since 1960s

[12]. A microcapsule is a hollow chamber with diameters in the range of a few

micrometers to several thousands of micrometers [13, 14]. The semipermeable

Page 28: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

2

membrane of the microcapsule can facilitate the transportation of proteins,

deoxyribonucleic acid (DNA), and drug and allows the diffusion of oxygen, nutrients,

therapeutic products and wastes, while blocking the entry of antibodies and

immunocytes [15]. In tissue transplantation, microcapsules segregate cells from the

surrounding tissue to protect the implanted cells from the recipient‟s immune system

[16]. Therefore, cell encapsulation in biocompatible and semipermeable biopolymeric

membranes is an effective method to overcome rejection of the implanted organ [17].

There are various types of biopolymer such as agarose, collagen, alginate,

chitosan and gelatin that are widely applied for encapsulation of cells [14, 18]. These

materials are different in polymerisation process and hence this consideration greatly

influences the design of the microencapsulation system. Among them, alginate is the

most commonly used biopolymer for encapsulation of living cells because of many

advantages it offers [19, 20]. Alginate is a naturally derived polymer, biocompatible in

vitro and in vivo, with excellent biodegradability and provide rapid gelation process in

the presence of divalent cations at room temperature [21]. Indeed, alginate has been

employed for encapsulating cells and tissues to be transplanted into human body, as it is

biocompatible to both the host and the enclosed cells [22]. Furthermore, alginate has

been studied extensively and it is currently recognised as a clinically ready application

material by the United States Food and Drug Administration (US FDA) [15, 23].

A few methods had been developed for the microencapsulation of cells such as

simple dripping [24, 25], micromolding [26, 27], extrusion [28], microfluidic device [29,

30], electrostatic droplet generation [31-33], coaxial air-flow [34-36], vibration [37] and

jet cutting techniques [38-40]. For simple dripping technique, the diameter of the

capsules produced is usually ranging between 600 and 1000 µm [41]. This technique is

used to produce microcapsules that does not involve with chemical or mechanical

treatment. Other techniques such as microfluidic, micromolding and electrostatic

dropping could produce smaller size of microcapsules ranging from 200 to 600 µm [34]

but these techniques are considered harsh because involvement of the organic solvent,

oil phase, high voltage and ultra-violet treatment to produce the microcapsules. The

requirement for post-processing treatment due to the harsh generation techniques may be

Page 29: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

3

threatening the survival rate of the living organism encapsulated in the microcapsules [8,

28, 42].

Amongst previous methods discussed [26-28, 30-33, 37-39, 43], aerosol

atomisation technique is a simple and efficient method to generate microcapsules with

well-controlled size and shape without the use of harsh chemicals [19, 36, 44]. In this

study, an electronic aerosol atomisation system had been developed for the generation of

3D human keratinocytes (HaCaT) and oral squamous cell carcinoma (OSCC) cells

(ORL-48) in microencapsulations of calcium alginate that leads to the growth of 3D

microtissues in vitro.

1.2 Problem statement

Alginate based capsules can be generated by simply extruding droplets of sodium

alginate solution from a syringe needle and the droplets are immediately allowed to

polymerise in the calcium chloride bath. However, the simple dripping technique usually

produced large diameter capsules of alginate in millimeter, that were recognised as

unsuitable for medical and biotechnological applications [37, 45]. The size of the droplet

is mainly dependent on the orifice diameter [46] and dripping can only be achieved

when the extruded droplet‟s of alginate continue to grow until its mass overcomes the

surface tension at the tip of the needle [47]. Because of this limitation, other approaches

have been developed to create microcapsules with smaller diameter [43]. Smaller

alginate capsules in micron size are desirable because this range of microcapsules can

equilibrate rapidly across the ultrathin membrane with larger surface to volume

relationship, and hence provide better transport of gases and nutrients for the

encapsulated cells [48]. Generation of alginate droplets by the electrostatic and JetCutter

technique were shown to decrease the size of the droplets or capsules compared to

normal dripping [24]. However, these techniques required sophisticated high voltages or

strong electric fields, complex and bulky design of devices, respectively, that might be

of high demand of energy and time during the fabrication of microencapsulation system

[39, 49-51]. Microcapsules formed based on microfluidic emulsion technique are

covered with oil and hence post-processing treatment is required to remove the oil film

Page 30: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

4

for application in cell microencapsulation [52]. This is because the oil layer could block

the exchange of gas and nutrient to the cells in the microcapsules. Involvement of harsh

treatment to remove the oil film causing the cells in the microcapsules exposed more to

the divalent ions or solvents which may present threats to the survival rate of the cells [8,

28]. Hence, the simpler the production process(without harsh and post-processing

treatment), the less threat to the cells whilst ensuring cells to proliferate in the

encapsulations.

In this thesis, an electronic aerosol atomisation system is proposed to generate

the desired size of calcium alginate microcapsules for the microencapsulation of cells.

Although the aerosol atomisation method has been developed previously [53, 54], but

the microcapsules size was ranging from 10 to 40 µm which is too small and not suitable

for cells encapsulation. Current applications (air jets, fuel injection and spray coating)

based on aerosol atomisation technique required high air flow rate (50 - 600 l/min) and

large volume (millilitre) of solution to create small beads size (approximately 1 - 3.5

µm) [55]. Thus, an adjustable electronic aerosol atomisation system employed for this

research was designed to produce different airflow rates (0.2 - 0.5 l/min), in which it can

be used to disperse small volume of cells-alginate suspension (microlitre) and to

generate larger size of microcapsules with controllable size (range in 80 - 360 µm)

which is suitable for cells encapsulation. Instead of using compressed air from a gas

cylinder [19, 36] which is costly, the electronic aerosol atomisation system presented a

different approach in the generation of airflow by using a direct current (dc) air pump.

Moreover, this research applied OSCC and HaCaT cell lines for the microencapsulation

that had not been reported previously. Oral cancer is the most common disease and it is a

silent killer in the developing world, particularly in Southeast Asia country [56, 57].

Although the etiological factors of oral cancer are well established, the mechanism

developed has rarely been studied and it is not well understood [56, 57]. In vitro

microtissues models of OSCC could support the cancer research. Therefore,

development techniques for generation of OSCC and HaCaT microtissues are essential.

The OSSC (ORL-48) and HaCaT cells encapsulated are expected to grow into

microtissues models that have applications for pharmacology study and preliminary

prediction performance of their efficacy in therapeutic strategies.

Page 31: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

5

1.3 Aim

The aim of the research is to develop an electronic aerosol atomisation system to

generate calcium alginate microcapsules that are size controllable and able to

encapsulate cells that leads to the growth of 3D microtissues.

1.4 Objectives

The following research objectives were established to achieve the aim. The objectives

for this research are:

a) To develop an electronic aerosol atomisation system for generating calcium

alginate based microcapsules of cells.

b) To encapsulate human Keratinocytes (HaCaT) and OSCC cell lines (ORL-48)

using microcapsules of calcium alginate to form 3D cells.

c) To characterise the biophysical properties of calcium alginate microcapsules

and the 3D microtissues produced.

1.5 Scopes

The four scopes of the research work are as follows:

a) Development and characterisation of an electronic aerosol atomisation

system to generate microcapsules.

b) Synthesis of calcium alginate microcapsules with a diameter ranging from

200 to 300 µm, as the thickness of human epidermis by using an aerosol

atomisation system.

c) Determine the extrusion rates and airflow rates of the aerosol atomisation

system to generate appropriate size of microcapsules for cell encapsulation.

Page 32: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

6

d) Encapsulation of HaCaT and OSCC (ORL-48) cells using calcium alginate to

form 3D cells, monitor their growth in the encapsulation and investigate their

biophysical properties.

1.6 Thesis contribution

The main contributions of this thesis are:

a) Electronic aerosol atomisation system with controllable airflow rate

The aerosol atomisation system has revived previous cell encapsulation techniques with

no post-treatment process, no complex fabrication design of nozzle or high voltage

requirement that would affect the cell survival rate in the alginate microcapsules [8, 28,

29, 42, 58].

b) Round shape and suitable size of 3D cells generated for the application

The findings obtained from the aerosol atomisation system have contributed to the

understanding of how alginate is involved in driving the growth of both HaCaT and

ORL-48 microtissues whereby the microcapsules and 3D cells generated were round

shape and in consistent size [8, 30].

c) Encapsulate new cell lines of HaCaT and ORL-48

This is the first demonstration of microencapsulation of HaCaT and ORL-48 using

calcium alginate microcapsules to be applied as a cell model for cancer research.

Page 33: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

7

1.7 Thesis outline

Chapter 1 introduces the overview of this project with technology and technique of

microencapsulation. The problems of the current 3D cell encapsulation technique were

discussed, followed by the problem statement, aims, objectives, scopes, thesis

contribution and thesis outline.

Chapter 2 consists of the review of the essential background study information in

understanding the current body knowledge of microencapsulation and the latest

development or technique developed in the field associated with the research topic.

Chapter 3 presents the methodology used to develop the electronic aerosol

atomisation system and technique to produce 3D cells based on the calcium alginate

microencapsulation. Calcium alginate microencapsulation to generate 3D cell technique,

the development of an electronic aerosol atomisation system, the programming of

microcontroller of the air pump, the circuit design and simulation of the aerosol

atomisation system, the procedure in preparing the cells and calcium alginate for

microencapsulation and the biophysical properties characterisation of the microcapsules

and microtissues were discussed.

Chapter 4 unveils the performance of the aerosol atomisation system based on

the pulse width modulation (PWM), potentiometer voltage and the effects of airflow rate

and extrusion rates to the size of microcapsules. The biophysical properties of

microcapsules generated were assessed using the optical microscopy, fourier transform

infrared spectroscopy (FTIR) and field emission-scanning electron microscopy (FE-

SEM). The growth of 3D HaCaT and ORL-48 cells into microtissues were monitored

using inverted phase contrast and fluorescence microscopy. Nonetheless, the results of

the biophysical properties of the microtissues formed were reported and discussed.

Chapter 5 summarises the problem statement that have been solved, the

objectives that have been achieved and the future works to enhance this research.

Page 34: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discussed and explained the background knowledge and information of

cells and tissues, types of epithelial cells applied for microencapsulation, rationale of

growing 3D cells, microencapsulations, applications of microcapsules,

microencapsulation technics, biopolymers used for fabrication of microcapsules for cell

microencapsulation and the review on microscopy and spectroscopy techniques applied

in this research.

2.2 Cells and tissue

The basic building blocks of all living things is cell [59]. Cells provide structure for

human body, take in nutrients that are consumed, convert it into energy, and use them to

carry out specialised functions. Organelles are specialised structures that perform

important cellular functions within the cell. Human cells contain nine major organelles

such as the cytoplasm, cytoskeleton, endoplasmic reticulum (ER), golgi apparatus,

lysosomes, mitochondria, nucleus, plasma membrane and ribosomes as shown in Figure

2.1.

Page 35: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

9

Figure 2.1: The anatomy of human cell [60]

Tissue is structural organisation of cells with similar or identical specialised

characteristics, contributing to the performance of a specific function. Tissues are parts

of organs that provide numerous functions of organs necessary to maintain biological

life. In humans, there are four basic types of tissue, which are epithelial, connective,

muscular, and nervous tissues (Figure 2.2). Epithelial tissue covers the body surface and

forms the lining for most internal cavities. The major function of epithelial tissue

includes protection, secretion, absorption, and filtration. The skin is an organ made up of

epithelial tissue which protects the body from harmful microbes [61]. Cells of the

epithelial tissue have different shapes. Connective tissue is tissue that supports and binds

other tissues. It consists of connective tissue cells embedded in a large amount of

extracellular matrix.

Mitochondria

Lysosome

Centrioles

Microtubules

Golgi

apparatus

Vesicle

Cytoplasm

Plasma

membrane

Microfilaments

Smooth ER

Ribosome

Rough ER

Nucleus

Nuclear pore

Free ribosome

Peroxisome

Page 36: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

10

Figure 2.2: The four basic types of tissue [62]

2.2.1 Extracellular matrix (ECM) and cell adhesion

All cells in solid tissue are surrounded by extracellular matrix (ECM). ECM is

composed of proteins and polysaccharides. In animal cells, the ECM surrounds cells as

fibrils that contact the cells. Cells are linked directly to each other by cell adhesion

molecules at the cell surface. ECM provides mechanical support [63], a biochemical

barrier [64], a medium for extracellular communication [65], cell matrix adhesion [66],

and adhesion matrix for cell migration [67-69] during cell development.

Adhesion of cells to the ECM is key to the regulation of cellular morphology,

migration, proliferation, survival, and differentiation [70]. These functions are essential

during development, maintenance of tissue architecture and the induction of tissue

repair. Integrin are the predominant receptors that mediate cell adhesion to the ECM

proteins [71, 72].

Attachment of cells to ECM components induces clustering of integrin on the

cell surface [73]. The cytoplasmic portions of the clustered integrin then function as a

Page 37: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

11

platform for the recruitment of cellular proteins and signaling proteins to the inner

surface of the plasma membrane, where they form structures called focal adhesions (FA)

(Figure 2.3 (a)) [74]. The FA provide strong linkages to the actin cytoskeleton mediated

by integrins to connect cells firmly to the ECM [75].

Cells adhere to the ECM via integrins that function as a heterodimer that

composed of subunits alpha (α) and beta (β) transmembrane linked to cell cytoskeleton

actin microfilaments via talin and vinculin [76]. Talin is a main regulator of the initial

process of FA assembly [77]. During the initial step of FA formation, the binding of

talin to integrin stabilises the ligand-induced clustering by mediating crosslinking of

integrins with vinculin and α-actinin (Figure 2.3(b)) [78].

(a)

(b)

Figure 2.3: Cell adhesion to the ECM. (a) Suspended cells adhere to the surface of ECM

via integrins (b) The structures of actin cytoskeleton, focal adhesion complexes, integrin

receptors, and adhesion proteins to form cross-linked platforms

ECM

Cell Focal adhesion (FA) Nucleus

Talin

Integrin

Bilayer

membrane

Src Paxillin

Actin filament

Tensin

Laminin protein

ECM

Page 38: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

12

2.3 Epithelial cells and skin

HaCaT and OSCC (ORL-48) are non-cancer and cancer epithelial cells, respectively.

The microtissue models for epidermis and oral cancer cell study are scarce. Hence, the

growth of both cell types into biomimetic microtissues would provide value in tissue

implant [79], pharmacology [80] or even cancer therapeutic drugs study [11].

2.3.1 Human keratinocyte cell lines (HaCaT)

The epidermis is a squamous epithelium that forms the protective layer of the skin. It

consists of renewing tissue with the main cell type (keratinocytes), superpositioned and

organised into four histologically distinct cellular layers: stratum corneum, stratum

granulosum, stratum spinosum and stratum basale [81]. The HaCaTs have a close

similarity in functional competence to normal keratinocytes [82]. HaCaT is a

spontaneously immortalised and transformed aneuploidy immortal keratinocyte cell line

from adult human skin [83]. The naturally immortalised human HaCaT cell line can be

grown in culture vessel (Figure 2.4) for long periods of time [84]. This cell line has been

widely used for studies of skin biology, differentiation and scientific research as a

paradigm for epidermal cells [84-86]. HaCaT grew in the form of monolayer and

adherent to the culture dish easily. Under typical culture conditions, HaCaT cells have a

partially to fully differentiated phenotype due to the high calcium content of both

standard media and fetal bovine serum. HaCaT cells are used for high differentiate and

proliferate capacity in vitro [87]. HaCaT cells drastically reduced tissue regeneration

compared to normal epidermal keratinocytes [88, 89]. The deficiency in HaCaT cells

were not due to the permanent loss of differential functions and can be solved by the

addition of growth factors [84].

Page 39: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

13

Figure 2.4: Phase contrast micrographs of HaCaT cells cultured for 3 days at 1 : 6

dilutions (Scale bar: 100 µm)

2.3.2 Oral squamous cell carcinoma cell line (ORL-48)

Oral cancer is defined as malignant lesion within oral cavity. Most cancerous oral cells

originate from the oral squamous epithelium cell which is the primary surface structure

of the lips and mucous membrane of the oral cavity [90]. OSCC has been histologically

characterised as irregular nests, columns or malignant epithelial cells [91].

Abnormalities of oral cancerous cells are believed to be associated with several

consecutive genetic mutations [92]. By clonal selection of viable cells which have

accumulated genetic damages, normal mucosa cells ultimately evolve into malignant

mucosa cells over an indefinite period [93].

ORL-48 is one of the OSCC cell lines derived in Cancer Research Malaysia.

ORL-48 was surgically explanted specimens obtained from untreated primary human

oral squamous cell carcinomas of the oral cavity [56]. It was derived from a female

donor patient at the age of 79 years old having cancer tumour in the mouth and gum

[56]. ORL-48 cell lines grew in the form of monolayers (Figure 2.5) with the population

doubling times ranging between 26.4 and 40.8 hours and they are immortal [56].

Page 40: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

14

Figure 2.5: Phase contrast micrographs of ORL-48 cells cultured for 3 days at 1 : 6

dilutions (Scale bar: 100 µm)

2.4 Rationale of growing 3D cells

Sub-culturing monolayer of cells in plastic vessels is a routine procedure for cell biology

study. However, the validity of using such a 2D cell model for cell biology or

pharmacological study is controversial [1, 2]. Cells grown in monolayer proliferate

involuntarily due to the contactless spreading of cells and it has been shown to produce

limited amount of extracellular matrix proteins [94]. The cell behaviour such as

proliferation, differentiation, gene and protein expression, general cell function and

morphology is considerably different from their physiological origin in vivo [3]. In

contrast, 3D cell culture creates an artificial environment in which biological cells are

allowed to grow and interact with its surrounding environment in three dimensional. 3D

cell culture is also proven to have better approximation to the tissue model for cell and

tissue research because it reconstructs specific biochemical and morphological features

similar to the tissue in vivo [4]. The connections between cells are more native-like and

the cellular behaviour is more realistic.

Page 41: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

15

2.5 Methods for culturing microtissues

3D cell culture methods are commonly accepted as more physiologically relevant

methods and are believed to improve prediction of drug development process [95, 96].

There are several methods for culturing cells into 3D microtissues, which involved

scaffolds, matrices (scaffold-free), gels or hydrogels and bioreactor as listed in Table

2.1. Scaffold based method is available in variety of materials with different porosities,

permeabilities and mechanical characteristics designed to mimic the in vivo ECM of the

specific tissues [1]. Whereas, microtissue culture using scaffold-free platforms do not

contain added biomaterials or ECM. Cells grown and organised with their own

generated ECM [96]. Gels or hydrogels culturing method aim to mimic the ECM and it

has a soft tissue-like stiffness [97]. Cells can be cultured directly on the hydrogels

(agarose, collagen and alginate) to form microtissues [98-100]. This method can be

combined with other methods, such as scaffolds and microchips. The most ideal 3D cell

culture method for high volume cell production and in vitro tissue engineering

applications are the bioreactors method [101]. Microtissues cultured by using bioreactor

method allows circulation of nutrients and removal of wastes within the reactor.

Table 2.1: A summary of 3D cell culture methods for culturing 3D microtissues

Methods Advantages Disadvantages Applications Reference

a) Scaffolds

• Polymeric Hard Scaffolds

• Biologic Scaffolds

• Micropatterned Surface

Large variety of

materials possible

for desired

properties

Customisable

Co-cultures

possible

Medium cost

• Possible scaffold-

to-scaffold

variation

• May not be

transparent

• Cell removal may

be difficult

• High-throughput

screening (HTS)

options limited

• Basic research

• Drug discovery

• Cell expansion

[102-105]

Page 42: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

16

Table 2.1 (continued): A summary of 3D cell culture methods for culturing 3D

microtissues

Methods Advantages Disadvantages Applications Reference

b) Matrices

(Scaffold-free)

• Hanging Drop Microplates

• Microfluidic

• Microarray

No added

materials

Consistent

spheroid

formation

(control over

size)

Co-cultures

possible

Transparent

HTS capable

Compatible with

liquid handling

tools

Inexpensive

No support or

porosity

Limited

flexibility

Size of spheroid

limiting

Basic research

Drug discovery

Personalised

medicine

[96, 106,

107]

c) Gels / Hydrogels

• Micromold

• Microencapsulation

• Large variety of

natural or

synthetic

materials

• Customisable

• Co-cultures

possible

• Inexpensive

• Gel-to-gel

variation and

structural changes

over time

• Undefined

constituents in

natural gels

• May not be

transparent

• HTS options

limited

• Basic research

• Drug discovery

[103, 104,

108]

d) Bioreactor

• Several options

available

• High volume cell

production

• Customisable

• Cost

• HTS options

limited

• Basic research

• Tissue

engineering

• Cell expansion

[101]

2.6 Microencapsulation

Microencapsulation is a technology of packaging solids, liquids or gases to be

encapsulated inside a tiny sphere, called microcapsule. A microcapsule is a small sphere

with hollow chamber, micro-porous and semi-permeable wall around it [109].

Microencapsulation of active compounds is defined as a series of techniques whereby a

Page 43: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

17

compound is coated or masked, to present it in the form of multiparticulate system.

Microencapsulation process can be classified in terms of the microparticles or

microspheres, based on their external morphology and internal structure (homogeneous

or solid spheres) in micrometer range diameters [13, 34]. The material inside the

microcapsule is referred to as the core, internal phase, or fill, whereas the wall is

sometimes called a shell, coating, or membrane. Microcapsules can be classified into

three basic categories as mono-core (also called single-core or reservoir type), poly-core

(also called multiple-core) and matrix types (Figure 2.6). Mono-core is microcapsule

which has a single hollow chamber within the capsule [110]. Poly-core is microcapsule

which has a number of different size chambers within the shell [110]. Matrix type is of

microparticle that has the active compounds integrated within the matrix of the shell

material [110]. However, the morphology of the internal structure of a microparticle

depends mainly on the shell materials and the microencapsulation methods that are

employed [110].

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 2.6: Different morphology of microcapsules. (a) Mono-core, Single-core or

reservoir type, (b) Poly-core, Multiple-core, (c) and (d) Matrix type [110]

The main functions of microencapsulation are to isolate, immobilise, stabilise

and protect the core from its surroundings. Capsular membrane is to shield the material

within and control the flow of materials across the membrane (Figure 2.7). It allows

manipulating the diffusion rate of molecules leaving the microcapsule under specific

conditions and protecting against degradation agents (humidity, light, pH and gases)

[111]. Microcapsules are also performing as carriers for drugs delivery, removal of

fragrances and other compounds to facilitate product handling and improve material

Page 44: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

18

ability [34]. For microencapsulation of cells, the selection of a suitable encapsulating

material is critical. The material is required to have appropriate porosity, which can

facilitate the transport of nutrients, proteins, DNA, and drug while blocking attack of

antibodies and immune cells [6]. The capsules must be mechanically stable and easy to

handle. These requirements may be fulfilled by controlling the pore size and the

thickness of encapsulating polymer membrane at microscale. Smaller pore size and

thicker capsules membrane showed higher mechanical stability [112, 113]. The cell

viability and metabolic status must be optimal if the encapsulated cells are in the order

of hundreds micron in size [15].

Figure 2.7: Principle of immunoisolation by a microcapsule [15]

2.6.1 Application of microencapsulation

Microencapsulation offers the possibility to microencapsulate any substances in

polymeric materials [6]. It is well known as the promising technique to fabricate novel

Page 45: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

19

micro and nanostructured materials applied to a wide variety of applications. There are

various application of microcapsules that already been introduced in the market.

One of the most important applications of microencapsulated products is in the

area of crop protection [114, 115]. Polymer microcapsules, such as gelatin, serve as

efficient delivery vehicles to deliver pheromone by spraying the capsule dispersion and

protect the pheromone from oxidation and light during storage and release [116].

The major applications area of encapsulation technique is pharmaceutical or

biomedical for controlled drug delivery [117-120]. Several drug delivery systems are

replacement of therapeutic agents, gene therapy and vaccines use. The capsules are

engineered to stick tightly to and even penetrate linings in the gastrointestinal track

before transferring the drug contents over time into circulatory system or the targeted

spot [119, 121]. Other than that, one of the most important medical applications of

microencapsulation technology is to serve as a cushion or implant, such as breast

implant [110].

Microencapsulation is used to overcome all the challenges in food industry by

providing technology to incorporate minerals, vitamins, flavours [122] and essential oils

in food [123]. Microencapsulation simplify the food manufacturing process by

converting liquids to solid powder, decreasing production cost, help fragile and sensitive

materials survive processing and packaging conditions and stabilise the shelf life of the

active ingredient [124-126].

Microencapsulation also plays a crucial role in energy generation field. Hollow

and multilayered plastic microspheres loaded with gaseous, deuterium, a fusion fuel, are

used to harness nuclear fusion for producing electrical energy [127]. This fusion

experiment process has been named as inertial confinement fusion (ICF) and it has been

in use since 1980s [128].

Design and development of nanofiber-based microencapsulation as a novel

materials by the inclusion of carbonaceous materials such as graphene, in aeronautics-

grade matrixes (thermoplastics and thermoset resins) through the application of

microcoatings and intermediate microlayers in sandwich panels and reinforcement of

matrixes have been widely used in aeronautics application.

Page 46: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

20

2.6.2 Technologies for microencapsulation of cells

The encapsulation of various materials and living cells inside capsules for different

purposes in the pharmaceutical, chemical, food industry, agriculture, tissue engineering,

biotechnology and medicine is of great importance. Microencapsulation of cells in

hydrocolloid gel matrices is the technique that the cells are entrapped during gel

formation, leading to spherical droplets containing cells. Some of the popular

microencapsulation technologies generally produce the capsules of micron to millimeter

size for microencapsulation of cells were listed in Table 2.2.

Table 2.2: Comparison of different microencapsulation technologies for encapsulation of

cells

Micro-

encapsulation

process

Cost Complex

design

High

voltage

Material

volume

Uniform Size

(mm)

Post-

processing

/harsh

treatment

Reference

Extrusion Low No No Large No 2 - 10 No [129-131]

JetCutter

break-up

High Yes Yes Large Yes < 1 No [39, 49,

132-134]

Spinning disc High Yes No Large Yes 0.2 - 5 No [135]

Micro nozzle

array

High Yes No Large Yes > 0.5 Yes [8, 19]

Vibration

nozzle

Low Yes No Medium No 0.1 - 3 No [37, 136,

137]

Coacervation/

emulsion

method

High Yes No Large Yes 0.02 - 2 Yes [130, 131,

138, 139]

Electrostatic

droplet

generation

High Yes Yes Medium Yes > 0.1 No [31-33,

133]

Flicking High No No Medium Yes 0.2 - 0.4 No [97]

Air

atomisation

Low No No Medium No 0.08 -

0.6

No [35, 140,

141]

Page 47: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

21

2.6.2.1 Extrusion, Jet break-up methods and spinning disc

Extrusion (Figure 2.8 (a)) is the most common methods widely used to produce

microcapsules due to its ease, simplicity, low cost, gentle condition and high quantity of

encapsulated cells. Jet break-up and spinning disc techniques are also originated from

the extrusion method. In a basic extrusion technique, the alginate containing cells are

extruded through a syringe needle as droplets into calcium chloride (CaCl2) solution to

be polymerised. The size and shape of the capsules were influenced by the aperture size

of the needle, concentration of the CaCl2 solution and the surface tension of the CaCl2

solution. The basic extrusion technique produced capsules size ranging from 2 - 10 mm

[129-131].

Jet cutter method is suitable to be used with high viscosity polymer solutions

such as poly(vinyl alcohol) solutions [134]. In this technique, the mixture of cells-

alginate suspension was forced through a nozzle to form liquid jet and then cut by a

rotating cutting wire (Figure 2.8 (b)). The number of cutting wires, rotations speed of

cutting tool and the infusion rate manipulates the size of the capsules.

For the spinning disc technique, the capsules are formed by infusing the cells-

alginate suspension onto the high velocity spinning disc (Figure 2.8 (c)) due to the

centrifugal force at the edge of the spinning disc, the droplets are formed and dropped

into the CaCl2 solution to be polymerised. The size of the capsules is controlled by the

rotating disc speed [142]. This method produces capsules with the size ranged from a

few hundreds of micrometers up to several millimeters. In contrast to the jet cutting

method in which, this method is suitable for fluid at low viscosity and it has a very high

productivity.

Page 48: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

22

(a) (b) (c)

Figure 2.8: Schematic diagram of different microencapsulation processes in forming

microcapsules: (a) Extrusion, (b) Jet cutter and (c) Spinning disc [143]

2.6.2.2 Micro nozzle array and vibrating nozzle

Micro nozzle is a developed technique for microencapsulation in year 2000. In this

technique, the cell-alginate suspension is flew through silicon micro nozzle array and

then cut off by the high stream of oil to form droplets [8]. The gel droplets drop into the

oil stream that directs the flow of the droplets to a solution of positive ions (Figure 2.9

(a)). Due to the high flow pressure conditions, micro nozzle array are suitable to be used

with high viscosity solution [144]. If this method is to be scaled up for large production,

the cost of the oil and its disposability could be the limitations of this technique [145].

For vibration nozzle technique (Figure 2.9 (b)), the microcapsules are formed by

oscillating and purging the mixture cells suspension through a nozzle into the hardening

bath, resulting in size distribution of capsules as 0.1 - 3.0 mm in diameter [137].

Collecting

bath

Liquid jet

Cutting

tool with

wires

Spinning

disc

Page 49: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

23

(a) (b)

Figure 2.9: Schematic diagram of microencapsulation processes in alginate: (a) Micro

nozzle array [8] and (b) Vibrating nozzle [146]

2.6.2.3 Microfluidic device

Microfluidics device has emerged as a powerful platform for the generation of

microparticles with tailored structure and properties [147-150]. This technique allows

direct integration of different input fluids into the polydimethylsiloxane (PDMS)

microfluidic channel as shown in Figure 2.10. The working principle of microfluidic to

generate microcapsules is based on the emulsification of alginate solution.

Microcapsule fabrication methods based on microfluidics device may be

classified into two major approaches, that are flow-focusing and T-junction capsule

formation. The flow-focusing microfluidic approach, as shown in Figure 2.11, forms

microcapsules by allowing a core fluid (cell-alginate suspension) to be surrounded by

sheath stream (oil) flowing. In contrast, T-junctions microfluidic is designed to form

microcapsules by permitting the core fluid to be swept away by one sheath stream in

only one direction. A summary of the microfluidic emulsification technologies based on

PDMS microfluidic chip design for both flow-focusing and T-junction capsules

formation methods, used for the application of cell encapsulation were listed in Table

2.3 [6].

Alginate CaCl2

Microcapsules Vegetable

oil

Vibration

of nozzle

Vibration

of liquid

Page 50: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

24

Figure 2.10: Illustrations of microfluidics system mechanism for microencapsulation

[151]

(a) (b)

Figure 2.11: Illustration of microcapsules fabrication methods based on microfluidics

device. (a) Flow-focusing and (b) T-junction capsules formation [6]

Page 51: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

REFERENCES

[1] D. Antoni, H. Burckel, E. Josset, and G. Noel. Three-dimensional cell culture: a

breakthrough in vivo. International Journal of Molecular Sciences. 2015. 16(3):

5517 - 5527.

[2] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin,

L. F. Bronk, J. S. Ananta, J. Mandelin, M. M. Georgescu, J. A. Bankson, J. G.

Gelovani, T. C. Killian, W. Arap, and R. Pasqualini. Three-dimensional tissue

culture based on magnetic cell levitation. Nature Nanotechnology. 2010. 5(4):

291 - 296.

[3] R. Edmondson, J. J. Broglie, A. F. Adcock, and L. Yang. Three-dimensional cell

culture systems and their applications in drug discovery and cell-based

biosensors. Assay and Drug Development Technologies. 2014. 12(4): 207 - 218.

[4] L. Kunz-Schughart, J. P. Freyer, F. Hofstaedter, and R. Ebner. The use of 3-D

cultures for high throughput screening: the multicellular spheroid model. Journal

of Biomolecular Screening. 2004. 9(4): 273 - 285.

[5] C. Soon, K. Thong, K. Tee, A. Ismail, M. Denyer, M. Ahmad, Y. Kong, P.

Vyomesh, and S. Cheong. A scaffoldless technique for self-generation of three-

dimensional keratinospheroids on liquid crystal surfaces. Biotechnic &

Histochemistry. 2016. 91(4): 283 - 295.

[6] A. Kang, J. Park, J. Ju, G. S. Jeong, and S. H. Lee. Cell encapsulation via

microtechnologies. Biomaterials. 2014. 35(9): 2651 - 2663.

[7] M. M. Stevens, H. F. Qanadilo, R. Langer, and V. Prasad Shastri. A rapid-curing

alginate gel system: utility in periosteum-derived cartilage tissue engineering.

Biomaterials. 2004. 25(5): 887 - 894.

Page 52: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

118

[8] S. Sugiura, T. Oda, Y. Izumida, Y. Aoyagi, M. Satake, A. Ochiai, N. Ohkohchi,

and M. Nakajima. Size control of calcium alginate beads containing living cells

using micro-nozzle array. Biomaterials. 2005. 26(16): 3327 - 3331.

[9] E. L. Scheller, P. H. Krebsbach, and D. H. Kohn. Tissue engineering: state of the

art in oral rehabilitation. Journal of Oral Rehabilitation. 2009. 36(5): 368 - 389.

[10] E. L. da Rocha, L. M. Porto, and C. R. Rambo. Nanotechnology meets 3D in

vitro models: tissue engineered tumors and cancer therapies. Materials Science &

Engineering. C, Materials For Biological Applications. 2014. 34: 270 - 279.

[11] C. S. Shin, B. Kwak, B. Han, and K. Park. Development of an in vitro 3D tumor

model to study therapeutic efficiency of an anticancer drug. Molecular

Pharmaceutics. 2013. 10(6): 2167 - 2175.

[12] T. M. Chang. Semipermeable Microcapsules. Science. 1964. 146(3643): 524 -

525.

[13] A. M. Sun. Microencapsulation of cells. Medical applications. Annals of The

New York Academy of Sciences. 1997. 831: 271 - 279.

[14] L. Gasperini, J. F. Mano, and R. L. Reis. Natural polymers for the

microencapsulation of cells. Journal of The Royal Society Interface. 2014.

11(100): 20140817.

[15] G. A. Paredes Juarez, M. Spasojevic, M. M. Faas, and P. de Vos. Immunological

and technical considerations in application of alginate-based microencapsulation

systems. Frontiers in Bioengineering and Biotechnology. 2014. 2: 26.

[16] V. Vaithilingam and B. E. Tuch. Islet transplantation and encapsulation: an

update on recent developments. The Review of Diabetic Studies. 2011. 8(1): 51 -

67.

[17] J. M. Rabanel, X. Banquy, H. Zouaoui, M. Mokhtar, and P. Hildgen. Progress

technology in microencapsulation methods for cell therapy. Biotechnology

Progress. 2009. 25(4): 946 - 963.

[18] N. C. Hunt and L. M. Grover. Cell encapsulation using biopolymer gels for

regenerative medicine. Biotechnology Letters. 2010. 32(6): 733 - 742.

[19] S. Sugiura, T. Oda, Y. Aoyagi, R. Matsuo, T. Enomoto, K. Matsumoto, T.

Nakamura, M. Satake, A. Ochiai, N. Ohkohchi, and M. Nakajima.

Page 53: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

119

Microfabricated airflow nozzle for microencapsulation of living cells into 150

micrometer microcapsules. Biomedical Microdevices. 2007. 9(1): 91 - 99.

[20] P. de Vos, C. G. van Hoogmoed, J. van Zanten, S. Netter, J. H. Strubbe, and H. J.

Busscher. Long-term biocompatibility, chemistry, and function of

microencapsulated pancreatic islets. Biomaterials. 2003. 24(2): 305 - 312.

[21] K. Y. Lee and D. J. Mooney. Alginate: properties and biomedical applications.

Progress In Polymer Science. 2012. 37(1): 106 - 126.

[22] I. Ghidoni, T. Chlapanidas, M. Bucco, F. Crovato, M. Marazzi, D. Vigo, M. L.

Torre, and M. Faustini. Alginate cell encapsulation: new advances in

reproduction and cartilage regenerative medicine. Cytotechnology. 2008. 58(1):

49 - 56.

[23] P. de Vos, H. A. Lazarjani, D. Poncelet, and M. M. Faas. Polymers in cell

encapsulation from an enveloped cell perspective. Advanced Drug Delivery

Reviews. 2014. 67 - 68: 15 - 34.

[24] E. S. Chan, B. B. Lee, P. Ravindra, and D. Poncelet. Prediction models for shape

and size of ca-alginate macrobeads produced through extrusion-dripping method.

Journal of Colloid and Interface Science. 2009. 338(1): 63 - 72.

[25] S. Swioklo, P. Ding, A. W. Pacek, and C. J. Connon. Process parameters for the

high-scale production of alginate-encapsulated stem cells for storage and

distribution throughout the cell therapy supply chain. Process Biochemistry.

2016.

[26] A. Khademhosseini, G. Eng, J. Yeh, J. Fukuda, J. Blumling, R. Langer, and J. A.

Burdick. Micromolding of photocrosslinkable hyaluronic acid for cell

encapsulation and entrapment. Journal of Biomedical Materials Research Part A.

2006. 79(3): 522 - 532.

[27] W. G. Koh, A. Revzin, and M. V. Pishko. Poly(ethylene glycol) hydrogel

microstructures encapsulating living cells. Langmuir. 2002. 18(7): 2459 - 2462.

[28] C. J. Martinez, J. W. Kim, C. Ye, I. Ortiz, A. C. Rowat, M. Marquez, and D.

Weitz. A microfluidic approach to encapsulate living cells in uniform alginate

hydrogel microparticles. Macromolecular Bioscience. 2012. 12(7): 946 - 951.

Page 54: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

120

[29] K. S. Huang, M. K. Liu, C. H.Wu, Y. T. Yen, and Y. C. Lin. Calcium alginate

microcapsule generation on a microfluidic system fabricated using the optical

disk process. Journal of Micromechanics and Microengineering. 2007. 17(8):

1428 - 1434.

[30] Y. Hu, Q. Wang, J. Wang, J. Zhu, H. Wang, and Y. Yang. Shape controllable

microgel particles prepared by microfluidic combining external ionic

crosslinking. Biomicrofluidics. 2012. 6(2): 026502.

[31] W. Zhang and X. He. Encapsulation of living cells in small (approximately 100

microm) alginate microcapsules by electrostatic spraying: a parametric study.

Journal of Biomechanical Engineering. 2009. 131(7): 074515.

[32] D. Lewinska, J. Bukowski, M. Kozuchowski, A. Kinasiewicz, and A. Werynski.

Electrostatic microencapsulation of living cells. Biocybernetics and Biomedical

Engineering. 2008. 28(2): 69 - 84.

[33] N. Li, X. X. Xu, G. W. Sun, X. Guo, Y. Liu, S. J. Wang, Y. Zhang, W. T. Yu, W.

Wang, and X. J. Ma. The effect of electrostatic microencapsulation process on

biological properties of tumour cells. Journal of Microencapsulation. 2013.

30(6): 530 - 537.

[34] L. Martin-Banderas, A. M. Ganan-Calvo, and M. Fernandez-Arevalo. Making

Drops in Microencapsulation Processes. Letters in Drug Design & Discovery.

2010. 7(4): 300 - 309.

[35] J. H. Cui, J. S. Goh, S. Y. Park, P. H. Kim, and B. J. Le. Preparation and physical

characterization of alginate microparticles using air atomization method. Drug

Development and Industrial Pharmacy. 2001. 27(4): 309 - 319.

[36] E.P. Herrero, E.M. Mart´ın Del Valle, and M. A. Galan. Development of a new

technology for the production of microcapsules based in atomization processes.

Chemical Engineering Journal. 2006. 117(2): 137 - 142.

[37] M. Whelehan and I. W. Marison. Microencapsulation using vibrating

technology. Journal of Microencapsulation. 2011. 28(8): 669 - 688.

[38] C. L. Herran and Y. Huang. Alginate microsphere fabrication using bipolar

wave-based drop-on-demand jetting. Journal of Manufacturing Processes. 2012.

14(2): 98 - 106.

Page 55: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

121

[39] C. Schwinger, S. Koch, U. Jahnz, P. Wittlich, N. G. Rainov, and J. Kressler.

High throughput encapsulation of murine fibroblasts in alginate using the

JetCutter technology. Journal of Microencapsulation. 2002. 19(3): 273 - 280.

[40] Q. Gao, Y. He, J.-z. Fu, J.-j. Qiu, and Y.-a. Jin. Fabrication of shape controllable

alginate microparticles based on drop-on-demand jetting. Journal of Sol-Gel

Science and Technology. 2015. 77(3): 610 - 619.

[41] A. Gautier, B. Carpentier, M. Dufresne, Q. Vu Dinh, P. Paullier, and C.

Legallais. Impact of alginate type and bead diameter on mass transfers and the

metabolic activities of encapsulated C3A cells in bioartificial liver applications.

European Cells & Materials. 2011. 21: 94 - 106.

[42] J. Wan. Review Microfluidic-based synthesis of hydrogel particles for cell

microencapsulation and cell-based drug delivery. Polymers. 2012. 4(2): 1084 -

1108.

[43] U. Prüsse, L. Bilancetti, M. Bučko, B. Bugarski, J. Bukowski, P. Gemeiner, D.

Lewińska, V. Manojlovic, B. Massart, C. Nastruzzi, V. Nedovic, D. Poncelet, S.

Siebenhaar, L. Tobler, A. Tosi, A. Vikartovská, and K.-D. Vorlop. Comparison

of different technologies for alginate beads production. Chemical Papers. 2008.

62(4): 364 - 374.

[44] S. Tendulkar, S. H. Mirmalek-Sani, C. Childers, J. Saul, E. C. Opara, and M. K.

Ramasubramanian. A three-dimensional microfluidic approach to scaling up

microencapsulation of cells. Biomedical Microdevices. 2012. 14(3): 461 - 469.

[45] M. Whelehan and I. W. Marison. Microencapsulation by dripping and jet break

up. Bioencapsulation Innovations. 2011. 1(1): 4 - 10.

[46] A. Dalmoro, A. A. Barba, and M. d'Amore. Analysis of size correlations for

microdroplets produced by ultrasonic atomization. The Scientific World Journal.

2013. 2013: 7.

[47] Y. Zhang and M. L. Ma. Microscale Technologies for Cell Engineering. Springer

International Publishing: Springer. 2016.

[48] D. Chicheportiche and G. Reach. In vitro kinetics of insulin release by

microencapsulated rat islets: effect of the size of the microcapsules.

Diabetologia. 1988. 31(1): 54 - 57.

Page 56: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

122

[49] U. Pruesse, U. Jahnz, P. Wittlich, and K. D. Vorlop. Scale-up of the JetCutter

technology. Chemistry & Industry. 2003. 12: 636 - 641.

[50] C. Heinzen, A. Berger, and I. Marison. Use of vibration technology for jet break-

up for encapsulation of cells and liquids in monodisperse microcapsules. In: V.

Nedović and R. Willaert. Fundamentals of Cell Immobilisation Biotechnology.

Dordrecht: Springer Netherlands. 2004. 257 - 275.

[51] M. A. Neves, I. Kobayashi, and M. Nakajima. Development of microchannel

emulsification technology for monodispersed soybean and olive oil-in-water

emulsions. Journal of Arid Land Studies. 2009. 19(1): 97 - 100.

[52] C. Kim, K. S. Lee, Y. E. Kim, K. J. Lee, S. H. Lee, T. S. Kim, and J. Y. Kang.

Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability.

Lab On A Chip. 2009. 9(9): 1294 - 1297.

[53] A. Sohail, M. S. Turner, A. Coombes, T. Bostrom, and B. Bhandari.

Survivability of probiotics encapsulated in alginate gel microbeads using a novel

impinging aerosols method. International Journal of Food Microbiology. 2011.

145(1): 162 - 168.

[54] S. Ahn, H. Lee, L. J. Bonassar, and G. Kim. Cells (MC3T3-E1)-laden alginate

scaffolds fabricated by a modified solid-freeform fabrication process

supplemented with an aerosol spraying. Biomacromolecules. 2012. 13(9): 2997 -

3003.

[55] S. Ahn and G. Kim. Cell-encapsulating alginate microsized beads using an air-

assisted atomization process to obtain a cell-laden hybrid scaffold. Journal of

Materials Chemistry B. 2015. 3(47): 9132 - 9139.

[56] S. Hamid, K. P. Lim, R. B. Zain, S. M. Ismail, S. H. Lau, W. M. Mustafa, M. T.

Abraham, N. A. Nam, S. H. Teo, and S. C. Cheong. Establishment and

characterization of Asian oral cancer cell lines as in vitro models to study a

disease prevalent in Asia. International Journal of Molecular Medicine. 2007.

19(3): 453 - 460.

[57] C. Scully and S. Porter. ABC of oral health. Oral cancer. BMJ - British Medical

Journal. 2000. 321(7253): 97 - 100.

Page 57: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

123

[58] W. Chen, J. H. Kim, D. Zhang, K. H. Lee, G. A. Cangelosi, S. D. Soelberg, C. E.

Furlong, J. H. Chung, and A. Q. Shen. Microfluidic one-step synthesis of

alginate microspheres immobilized with antibodies. Journal of The Royal Society

Interface. 2013. 10(88): 20130566.

[59] E. Bianconi, A. Piovesan, F. Facchin, A. Beraudi, R. Casadei, F. Frabetti, L.

Vitale, M. C. Pelleri, S. Tassani, F. Piva, S. Perez-Amodio, P. Strippoli, and S.

Canaider. An estimation of the number of cells in the human body. Annals of

Human Biology. 2013. 40(6): 463 - 471.

[60] L. Sherwood. Fundamentals of Human Physiology. 4th Ed. USA: Brooks/Cole

Cengage Learning. 2012.

[61] M. Wilson. Microbial inhabitants of Humans: Their Ecology and Role in Health

and Disease. 1st Ed. United Kingdom: Cambridge University Press. 2005.

[62] J. McDowell. Encyclopedia of Human Body Systems Volume 1. USA:

Greenwood. 2010.

[63] M. Chiquet, M. Matthisson, M. Koch, M. Tannheimer, and R. Chiquet-

Ehrismann. Regulation of extracellular matrix synthesis by mechanical stress.

Biochemistry and Cell Biology-Biochimie ET Biologie Cellulaire. 1996. 74(6):

737 - 744.

[64] R. Londono, V. S. Gorantla, and S. F. Badylak. Emerging implications for

extracellular matrix-based technologies in vascularized composite

allotransplantation. Stem Cells International. 2016. 2016(1541823): 16.

[65] M. Fujita, D. C. Spray, H. Choi, J. Saez, D. M. Jefferson, E. Hertzberg, L. C.

Rosenberg, and L. M. Reid. Extracellular matrix regulation of cell-cell

communication and tissue-specific gene expression in primary liver cultures.

Progress in Clinical and Biological Research. 1986. 226(1): 333 - 360.

[66] C. Frantz, K. M. Stewart, and V. M. Weaver. The extracellular matrix at a

glance. Journal of Cell Science. 2010. 123(24): 4195 - 4200.

[67] S. H. Kim, J. Turnbull, and S. Guimond. Extracellular matrix and cell signalling:

the dynamic cooperation of integrin, proteoglycan and growth factor receptor.

The Journal of Endocrinology. 2011. 209(2): 139 - 151.

Page 58: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

124

[68] M. P. Sheetz, D. P. Felsenfeld, and C. G. Galbraith. Cell migration: regulation of

force on extracellular-matrix-integrin complexes. Trends in Cell Biology. 1998.

8(2): 51 - 54.

[69] K. Wolf, M. Te Lindert, M. Krause, S. Alexander, J. Te Riet, A. L. Willis, R. M.

Hoffman, C. G. Figdor, S. J. Weiss, and P. Friedl. Physical limits of cell

migration: control by ECM space and nuclear deformation and tuning by

proteolysis and traction force. The Journal of Cell Biology. 2013. 201(7): 1069 -

1084.

[70] B. M. Gumbiner. Cell adhesion: the molecular basis of tissue architecture and

morphogenesis. Cell. 1996. 84(3): 345 - 357.

[71] H. Truong and E. H. Danen. Integrin switching modulates adhesion dynamics

and cell migration. Cell Adhesion & Migration. 2009. 3(2): 179 - 181.

[72] J. T. Parsons, A. R. Horwitz, and M. A. Schwartz. Cell adhesion: integrating

cytoskeletal dynamics and cellular tension. Nature Reviews Molecular Cell

Biology. 2010. 11(9): 633 - 643.

[73] M. Nagano, D. Hoshino, N. Koshikawa, T. Akizawa, and M. Seiki. Turnover of

focal adhesions and cancer cell migration. International Journal of Cell Biology.

2012. 2012(310616): 10.

[74] V. Petit and J. P. Thiery. Focal adhesions: structure and dynamics. Biology of

The Cell. 2000. 92(7): 477 - 494.

[75] B. Geiger, A. Bershadsky, R. Pankov, and K. M. Yamada. Transmembrane

crosstalk between the extracellular matrix--cytoskeleton crosstalk. Nature

Reviews. Molecular Cell Biology. 2001. 2(11): 793 - 805.

[76] B. H. Luo, C. V. Carman, and T. A. Springer. Structural basis of integrin

regulation and signaling. Annual Review of Immunology. 2007. 25: 619 - 647.

[77] E. Goksoy, Y. Q. Ma, X. Wang, X. Kong, D. Perera, E. F. Plow, and J. Qin.

Structural basis for the autoinhibition of talin in regulating integrin activation.

Molecular Cell. 2008. 31(1): 124 - 133.

[78] J. D. Humphries, P. Wang, C. Streuli, B. Geiger, M. J. Humphries, and C.

Ballestrem. Vinculin controls focal adhesion formation by direct interactions

with talin and actin. The Journal of Cell Biology. 2007. 179(5): 1043 - 1057.

Page 59: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

125

[79] W. R. Legant, C. S. Chen, and V. Vogel. Force-induced fibronectin assembly

and matrix remodeling in a 3D microtissue model of tissue morphogenesis.

Integrative Biology : Quantitative Biosciences From Nano To Macro. 2012.

4(10): 1164 - 1174.

[80] J. A. Hickman, R. Graeser, R. de Hoogt, S. Vidic, C. Brito, M. Gutekunst, H. van

der Kuip, and I. P. Consortium. Three-dimensional models of cancer for

pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex

vivo. Biotechnology Journal. 2014. 9(9): 1115 - 1128.

[81] C. L. Simpson, D. M. Patel, and K. J. Green. Deconstructing the skin:

cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews.

Molecular Cell Biology. 2011. 12(9): 565 - 580.

[82] A. Pessina, A. Raimondi, A. Cerri, M. Piccirillo, M. G. Neri, C. Croera, P. Foti,

and E. Berti. High sensitivity of human epidermal keratinocytes (HaCaT) to

topoisomerase inhibitors. Cell Proliferation. 2001. 34(4): 243 - 252.

[83] P. Boukamp, R. T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, and

N. E. Fusenig. Normal keratinization in a spontaneously immortalized aneuploid

human keratinocyte cell line. The Journal of Cell Biology. 1988. 106(3): 761 -

771.

[84] A. F. Deyrieux and V. G. Wilson. In vitro culture conditions to study

keratinocyte differentiation using the HaCaT cell line. Cytotechnology. 2007.

54(2): 77 - 83.

[85] V. G. Wilson. Growth and differentiation of HaCaT keratinocytes. Methods In

Molecular Biology. 2014. 1195: 33 - 41.

[86] V. M. Schoop, N. Mirancea, and N. E. Fusenig. Epidermal organization and

differentiation of HaCaT keratinocytes in organotypic coculture with human

dermal fibroblasts. The Journal of Investigative Dermatology. 1999. 112(3): 343

- 353.

[87] N. Schurer, A. Kohne, V. Schliep, K. Barlag, and G. Goerz. Lipid composition

and synthesis of HaCaT cells, an immortalized human keratinocyte line, in

comparison with normal human adult keratinocytes. Experimental Dermatology.

1993. 2(4): 179 - 185.

Page 60: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

126

[88] E. Boelsma, M. C. H. Verhoeven, and M. Ponec. Reconstruction of a human skin

equivalent using a spontaneously transformed keratinocyte cell line (HaCaT).

Journal of Investigative Dermatology. 1999. 112(4): 489 - 498.

[89] K. M. Yamada and E. Cukierman. Modeling tissue morphogenesis and cancer in

3D. Cell. 2007. 130(4): 601 - 610.

[90] P. B. Sugerman and N. W. Savage. Current concepts in oral cancer. Australian

Dental Journal. 1999. 44(3): 147 - 156.

[91] R. B. Zain and N. Gahzali. A review of epidemiological studies of oral cancer

and precance in Malaysia. Annals of Dentistry. 2001. 8(1): 50 - 56.

[92] K. R. Loeb and L. A. Loeb. Significance of multiple mutations in cancer.

Carcinogenesis. 2000. 21(3): 379 - 385.

[93] J. Califano, P. van der Riet, W. Westra, H. Nawroz, G. Clayman, S. Piantadosi,

R. Corio, D. Lee, B. Greenberg, W. Koch, and D. Sidransky. Genetic progression

model for head and neck cancer: implications for field cancerization. Cancer

Research. 1996. 56(11): 2488 - 2492.

[94] K. M. Yamada and E. Cukierman. Modeling tissue morphogenesis and cancer in

3D. Cell. 2007. 130(4): 601 - 610.

[95] W. Fayad, L. Rickardson, C. Haglund, M. H. Olofsson, P. D‟Arcy, R. Larsson, S.

Linder, and M. Fryknäs. Identification of agents that induce apoptosis of

multicellular tumour spheroids: enrichment for mitotic inhibitors with

hydrophobic properties. Chemical Biology & Drug Design. 2011. 78(4): 547 -

557.

[96] F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser, and L. A.

Kunz-Schughart. Multicellular tumor spheroids: An underestimated tool is

catching up again. Journal of Biotechnology. 2010. 148(1): 3 - 15.

[97] S. C. Wong, C. F. Soon, W. Y. Leong, and K. S. Tee. Flicking technique for

microencapsulation of cells in calcium alginate leading to the microtissue

formation. Journal of Microencapsulation. 2016. 33(2): 162 - 171.

[98] M. M. Vantangoli, S. J. Madnick, S. M. Huse, P. Weston, and K. Boekelheide.

MCF-7 human breast cancer cells form differentiated microtissues in scaffold-

free hydrogels. PLoS One. 2015. 10(8): e0135426.

Page 61: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

127

[99] V. S. Nirmalanandhan, A. Duren, P. Hendricks, G. Vielhauer, and G. S.

Sittampalam. Activity of anticancer agents in a three-dimensional cell culture

model. Assay and Drug Development Technologies. 2010. 8(5): 581 - 590.

[100] C. Godugu, A. R. Patel, U. Desai, T. Andey, A. Sams, and M. Singh.

AlgiMatrix™ based 3D cell culture system as an in-vitro tumor model for

anticancer studies. PLoS One. 2013. 8(1): e53708.

[101] J. W. Haycock. 3D cell culture: a review of current approaches and techniques.

Methods in Molecular Biology. 2011. 695: 1 - 15.

[102] M. Rimann and U. Graf-Hausner. Synthetic 3D multicellular systems for drug

development. Current Opinion in Biotechnology. 2012. 23(5): 803 - 809.

[103] A. P. Napolitano, D. M. Dean, A. J. Man, J. Youssef, D. N. Ho, A. P. Rago, M.

P. Lech, and J. R. Morgan. Scaffold-free three-dimensional cell culture utilizing

micromolded nonadhesive hydrogels. BioTechniques. 2007. 43(4): 494 - 500.

[104] T. M. Achilli, J. Meyer, and J. R. Morgan. Advances in the formation, use and

understanding of multi-cellular spheroids. Expert Opinion on Biological

Therapy. 2012. 12(10): 1347 - 1360.

[105] E. Gevaert, L. Dolle, T. Billiet, P. Dubruel, L. van Grunsven, A. van Apeldoorn,

and R. Cornelissen. High throughput micro-well generation of hepatocyte micro-

aggregates for tissue engineering. PLoS One. 2014. 9(8): e105171.

[106] M. Drewitz, M. Helbling, N. Fried, M. Bieri, W. Moritz, J. Lichtenberg, and J.

M. Kelm. Towards automated production and drug sensitivity testing using

scaffold-free spherical tumor microtissues. Biotechnology Journal. 2011. 6(12):

1488 - 1496.

[107] P. Occhetta, M. Centola, B. Tonnarelli, A. Redaelli, I. Martin, and M. Rasponi.

High-throughput microfluidic platform for 3d cultures of mesenchymal stem

cells, towards engineering developmental processes. Scientific Reports. 2015. 5:

10288.

[108] J. L. Wilson and T. C. McDevitt. Stem cell microencapsulation for phenotypic

control, bioprocessing, and transplantation. Biotechnology and Bioengineering.

2013. 110(3): 667 - 682.

Page 62: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

128

[109] J. Schweicher, C. Nyitray, and T. A. Desai. Membranes to achieve

immunoprotection of transplanted islets. Frontiers in Bioscience. 2014. 19: 49 -

76.

[110] R. Dubey, T. C. Shami, and K. U. B. Rao. Microencapsulation technology and

applications. Defence Science Journal. 2009. 59(1): 82 - 95.

[111] M. N. Singh, K. S. Hemant, M. Ram, and H. G. Shivakumar.

Microencapsulation: A promising technique for controlled drug delivery.

Research in Pharmaceutical Sciences. 2010. 5(2): 65 - 77.

[112] G. J. Wang, L. Y. Chu, M. Y. Zhou, and W. M. Chen. Effects of preparation

conditions on the microstructure of porous microcapsule membranes with

straight open pores. Journal of Membrane Science. 2006. 284(1-2): 301 - 312.

[113] S. V. Bhujbal, G. A. Paredes-Juarez, S. P. Niclou, and P. de Vos. Factors

influencing the mechanical stability of alginate beads applicable for

immunoisolation of mammalian cells. Journal of the Mechanical Behavior of

Biomedical Materials. 2014. 37: 196 - 208.

[114] H. B. Scher, M. Rodson, and K. S. Lee. Microencapsulation of pesticides by

interfacial polymerization utilizing isocyanate or aminoplast chemistry. Journal

of Pesticide Science. 1998. 54(4): 394 - 400.

[115] G. Bingham, R. V. Gunning, K. Gorman, L. M. Field, and G. D. Moores.

Temporal synergism by microencapsulation of piperonyl butoxide and alpha-

cypermethrin overcomes insecticide resistance in crop pests. Pest Management

Science. 2007. 63(3): 276 - 281.

[116] X. L. Gu, X. Zhu, X. Z. Kong, and Y. Tan. Comparisons of simple and complex

coacervations for preparation of sprayable insect sex pheromone microcapsules

and release control of the encapsulated pheromone molecule. Journal of

Microencapsulation. 2010. 27(4): 355 - 364.

[117] V. D. Prajapati, G. K. Jani, and J. R. Kapadia. Current knowledge on

biodegradable microspheres in drug delivery. Expert Opinion on Drug Delivery.

2015: 1 - 17.

Page 63: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

129

[118] D. H. Kim, J. Chen, R. A. Omary, and A. C. Larson. MRI visible drug eluting

magnetic microspheres for transcatheter intra-arterial delivery to liver tumors.

Theranostics. 2015. 5(5): 477 - 488.

[119] C. A. Garcia-Gonzalez, M. Jin, J. Gerth, C. Alvarez-Lorenzo, and I. Smirnova.

Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydrate

Polymers. 2015. 117: 797 - 806.

[120] Q. Li, G. Zhou, X. Yu, T. Wang, Y. Xi, and Z. Tang. Porous deproteinized

bovine bone scaffold with three-dimensional localized drug delivery system

using chitosan microspheres. Biomedical Engineering Online. 2015. 14(1): 33.

[121] R. Rastogi, Y. Sultana, M. Aqil, A. Ali, S. Kumar, K. Chuttani, and A. K.

Mishra. Alginate microspheres of isoniazid for oral sustained drug delivery.

International Journal of Pharmaceutics. 2007. 334(1-2): 71 - 77.

[122] B. M. Estevinho, F. A. Rocha, L. M. Santos, and M. A. Alves. Using water-

soluble chitosan for flavour microencapsulation in food industry. Journal of

Microencapsulation. 2013. 30(6): 571 - 579.

[123] I. H. Kim, J. Han, J. H. Na, P. S. Chang, M. S. Chung, K. H. Park, and S. C. Min.

Insect-resistant food packaging film development using cinnamon oil and

microencapsulation technologies. Journal of Food Science. 2013. 78(2): 229 -

237.

[124] M. I. Dias, I. C. Ferreira, and M. F. Barreiro. Microencapsulation of bioactives

for food applications. Food & Function. 2015. 6(4): 1035 - 1052.

[125] F. Nazzaro, P. Orlando, F. Fratianni, and R. Coppola. Microencapsulation in

food science and biotechnology. Current Opinion in Biotechnology. 2012. 23(2):

182 - 186.

[126] S. S. Kuang, J. C. Oliveira, and A. M. Crean. Microencapsulation as a tool for

incorporating bioactive ingredients into food. Critical Reviews in Food Science

and Nutrition. 2010. 50(10): 951 - 968.

[127] K. K. Mishra, R. K. Khardekar, R. Singh, and H. C. Pant. Fabrication of

polystyrene hollow microspheres as laser fudion targets by optimized density

matched emulsion technique and characterization. Pramana-Journal of Physics.

2002. 59(1): 113 - 131.

Page 64: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

130

[128] H. S. Park, O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R.

Dittrich, T. Doppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, P.

K. Patel, B. A. Remington, H. F. Robey, J. D. Salmonson, and J. L. Kline. High-

adiabat high-foot inertial confinement fusion implosion experiments on the

national ignition facility. Physical Review Letters. 2014. 112(5): 055001.

[129] J. Burgain, C. Gaiani, M. Linder, and J. Scher. Review: Encapsulation of

probiotic living cells: From laboratory scale to industrial applications. Journal of

Food Engineering. 2011. 104(4): 467 - 483.

[130] G. K. Gbassi and T. Vandamme. Probiotic encapsulation technology: from

microencapsulation to release into the gut. Pharmaceutics. 2012. 4(1): 149 - 163.

[131] H. K. Solanki, D. D. Pawar, D. A. Shah, V. D. Prajapati, G. K. Jani, A. M.

Mulla, and P. M. Thakar. Development of microencapsulation delivery system

for long-term preservation of probiotics as biotherapeutics agent. BioMed

Research International. 2013. 2013(620719): 21.

[132] U. Prube, U. Jahnz, P. Wittlich, J. Breford, and K. D. Vorlop. Bead production

with JetCutting and rotating disc/nozzle technologies. Landbauforschung. 2002.

241: 1 - 10.

[133] K. Kailasapathy. Microencapsulation of probiotic bacteria: technology and

potential applications. Current Issues in Intestinal Microbiology. 2002. 3(2): 39 -

48.

[134] U. Prüsse, B. Fox, M. Kirchhoff, F. Bruske, J. Breford, and K. D. Vorlop. New

process (Jet Cutting Method) for the production of spherical beads from highly

viscous polymer solutions. Chemical Engineering & Technology. 1998. 21(1): 29

- 33.

[135] T. A. Horbett, J. J. Waldburger, B. D. Ratner, and A. S. Hoffman. Cell adhesion

to a series of hydrophilic-hydrophobic copolymers studied with a spinning disc

apparatus. Journal of Biomedical Materials Research. 1988. 22(5): 383 - 404.

[136] R. Dorati, I. Genta, T. Modena, and B. Conti. Microencapsulation of a

hydrophilic model molecule through vibration nozzle and emulsion phase

inversion technologies. Journal of Microencapsulation. 2013. 30(6): 559 - 570.

Page 65: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

131

[137] Y. Zhang and D. Rochefort. Comparison of emulsion and vibration nozzle

methods for microencapsulation of laccase and glucose oxidase by interfacial

reticulation of poly(ethyleneimine). Journal of Microencapsulation. 2010. 27(8):

703 - 713.

[138] A. Picot, and C. Lacroix. Production of multiphase water-insoluble

microcapsules for cell encapsulation using an emulsification/spray-drying

technology. Journal of Food Science. 2003. 68(9): 2693 - 2700.

[139] L. Liu, F. Wu, X. J. Ju, R. Xie, W. Wang, C. H. Niu, and L. Y. Chu. Preparation

of monodisperse calcium alginate microcapsules via internal gelation in

microfluidic-generated double emulsions. Journal of Colloid and Interface

Science. 2013. 404: 85 - 90.

[140] T. A. B. Bressel, A. H. Paz, G. Baldo, E. O. C. Lima, U. Matte, and M. L.

Saraiva-Pereira. An effective device for generating alginate microcapsules.

Genetics and Molecular Biology. 2008. 31(1): 136 - 140.

[141] W. Y. Leong, C. F. Soon, S. C. Wong, and K. S. Tee. Development of an

electronic aerosol system for generating microcapsules. Journal Teknologi. 2016.

78(5-7): 79 - 85.

[142] D. Ma, C. Liu, Z. Zhao, and H. Zhang. Rolling friction and energy dissipation in

a spinning disc. Proceedings of the Royal Society A-Mathematical Physical and

Engineering Science. 2014. 470(2169): 20140191.

[143] N. J. Zuidam, and E. Shimoni. Overview of microencapsulates for use in food

products or processes and methods to make them. In: Encapsulation

Technologies for Active Foos Ingredients and Food Processing. Springer:

Springer. 2010. 400.

[144] D. Mark, S. Haeberle, R. Zengerle, J. Ducree, and G. T. Vladisavljevic.

Manufacture of chitosan microbeads using centrifugally driven flow of gel-

forming solutions through a polymeric micronozzle. Journal of Colloid and

Interface Science. 2009. 336(2): 634 - 641.

[145] W. Krasaekoopt, B. Bhandari, and H. Deeth. Evaluation of encapsulation

techniques of probiotics for yoghurt. International Dairy Journal. 2003. 13(1): 3

- 13.

Page 66: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

132

[146] W. Krasaekoopt. Microencapsulation of probiotics in hydrocolloid gel matrices:

a review. Agro Food Industry Hi-Tech. 2013. 24(2): 76 - 84.

[147] J. Wang, Y. Cheng, Y. Yu, F. Fu, Z. Chen, Y. Zhao, and Z. Gu. Microfluidic

generation of porous microcarriers for three-dimensional cell culture. ACS

Applied Materials & Interfaces. 2015. 7(49): 27035 - 27039.

[148] W. Wang, M. J. Zhang, and L. Y. Chu. Functional polymeric microparticles

engineered from controllable microfluidic emulsions. Accounts of chemical

Research. 2014. 47(2): 373 - 384.

[149] W. L. Chou, P. Y. Lee, C. L. Yang, W. Y. Huang, and Y. S. Lin. Recent

advances in applications of droplet microfluidics. Micromachines. 2015. 6: 1249

- 1271.

[150] K. Jiang, P. C. Thomas, S. P. Forry, D. L. DeVoe, and S. R. Raghavan.

Microfluidic synthesis of monodisperse PDMS microbeads as discrete oxygen

sensors. Soft Matter. 2012. 8(4): 923 - 926.

[151] K. S. Huang, T. H. Lai, and Y. C. Lin. Manipulating the generation of ca-alginate

microspheres using microfluidic channels-as a carrier of gold nanoparticles. Lab

On A Chip. 2006. 6(7): 954 - 957.

[152] D. Choi, H. Lee, J. Im do, I. S. Kang, G. Lim, D. S. Kim, and K. H. Kang.

Spontaneous electrical charging of droplets by conventional pipetting. Scientific

Reports. 2013. 3: 2037.

[153] L. Zhang, J. Huang, T. Si, and R. X. Xu. Coaxial electrospray of microparticles

and nanoparticles for biomedical applications. Expert Review of Medical

Devices. 2012. 9(6): 595 - 612.

[154] L. Canaple, A. Rehor, and D. Hunkeler. Improving cell encapsulation through

size control. Journal of Biomaterials Science-Polymer Edition. 2002. 13(7): 783

- 796.

[155] S. Bigdeli, R. O. Dettloff, C. W. Frank, R. W. Davis, and L. D. Crosby. A simple

method for encapsulating single cells in alginate microspheres allows for direct

PCR and whole genome amplification. PLoS One. 2015. 10(2): e0117738.

Page 67: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

133

[156] P. Kulkarni, P. A. Baron, and K. Willeke. Introduction to aerosol

characterization. In: Aerosol Measurement: Principles, Techniques, and

Applications. New Jersey: John Wiley & Sons, Inc. 2011. 3 - 13.

[157] J. L. Clancy. Aerodynamics. India: Sterling Book House. 2006.

[158] G. Najafpour. Biochemical Engineering and Biotechnology. 2nd Ed. Elsevier,

USA: Elsevier B.V. 2015.

[159] G. J. Mattamal. US FDA perspective on the regulations of medical-grade

polymers: cyanoacrylate polymer medical device tissue adhesives. Expert Review

of Medical Devices. 2008. 5(1): 41 - 49.

[160] A. Batorsky, J. Liao, A. W. Lund, G. E. Plopper, and J. P. Stegemann.

Encapsulation of adult human mesenchymal stem cells within collagen-agarose

microenvironments. Biotechnology and Bioengineering. 2005. 92(4): 492 - 500.

[161] L. Wang, R. R. Rao, and J. P. Stegemann. Delivery of mesenchymal stem cells in

chitosan/collagen microbeads for orthopaedic tissue repair. Cells Tissues Organs.

2013. 197(5): 333 - 343.

[162] V. X. Truong, K. M. Tsang, G. P. Simon, R. L. Boyd, R. A. Evans, H. Thissen,

and J. S. Forsythe. Photodegradable gelatin-based hydrogels prepared by

bioorthogonal click chemistry for cell encapsulation and release.

Biomacromolecules. 2015. 16(7): 2246 - 2253.

[163] B. Sarker, R. Singh, R. Silva, J. A. Roether, J. Kaschta, R. Detsch, D. W.

Schubert, I. Cicha, and A. R. Boccaccini. Evaluation of fibroblasts adhesion and

proliferation on alginate-gelatin crosslinked hydrogel. PLoS One. 2014. 9(9):

e107952.

[164] S. N. Tzouanas, A. K. Ekenseair, F. K. Kasper, and A. G. Mikos. Mesenchymal

stem cell and gelatin microparticle encapsulation in thermally and chemically

gelling injectable hydrogels for tissue engineering. Journal of Biomedical

Materials Research Part A. 2014. 102(5): 1222 - 1230.

[165] S. Sakai, S. Ito, H. Inagaki, K. Hirose, T. Matsuyama, M. Taya, and K.

Kawakami. Cell-enclosing gelatin-based microcapsule production for tissue

engineering using a microfluidic flow-focusing system. Biomicrofluidics. 2011.

5(013402 ): 1 - 7.

Page 68: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

134

[166] P. Mercier, F. Fernandez, F. Tortosa, H. Bagheri, H. Duplan, M. Tafani, J. C.

Bes, R. Bastide, Y. Lazorthes, and B. Sallerin. A new method for encapsulation

of living cells: preliminary results with PC12 cell line. Journal of

Microencapsulation. 2001. 18(3): 323 - 334.

[167] C. R. Correia, P. Sher, R. L. Reisa, and J. F. Mano. Liquified chitosan–alginate

multilayer capsules incorporating poly(L-lactic acid) microparticles as cell

carriers. Soft Matter. 2013. 9: 2125 - 2130.

[168] S. Ramesh, K. Rajagopal, D. Vaikkath, P. D. Nair, and Madhuri. Enhanced

encapsulation of chondrocytes within a chitosan/hyaluronic acid hydrogel: a new

technique. Biotechnology Letters. 2014. 36(5): 1107 - 1111.

[169] S. Sakai, K. Kawabata, T. Ono, H. Ijima, and K. Kawakami. Development of

mammalian cell-enclosing subsieve-size agarose capsules (<100 micron) for cell

therapy. Biomaterials. 2005. 26(23): 4786 - 4792.

[170] H. Uludag, P. De Vos, and P. A. Tresco. Technology of mamalian cell

encapsulation. Advanced Drug Delivery Reviews. 2000. 42(1-2): 29 - 64.

[171] P. De Vos, M. M. Faas, B. Strand, and R. Calafiore. Alginate-based

microcapsules for immunoisolation of pancreatic islets. Biomaterials. 2006.

27(32): 5603 - 5617.

[172] K. A. Heald, T. R. Jay, and R. Downing. Assessment of the reproducibility of

alginate encapsulation of pancreatic islets using the MTT colorimetric assay. Cell

Transplantation. 1994. 3(4): 333 - 337.

[173] L. Picariello, S. Benvenuti, R. Recenti, L. Formigli, A. Falchetti, A. Morelli, L.

Masi, F. Tonelli, P. Cicchi, and M. L. Brandi. Microencapsulation of human

parathyroid cells: an “in vitro” study. Journal of Surgical Research. 2001. 96(1):

81 - 89.

[174] M. H. Wu and W. C. Pan. Development of microfluidic alginate microbead

generator tunable by pulsed airflow injection for the microencapsulation of cells.

Microfluidics and Nanofluidics. 2010. 8(6): 823 - 835.

[175] I. Batubara, D. Rahayu, K. Mohamad, and W. E. Prasetyaningtyas. Leydig cells

encapsulation with alginate-chitosan: optimization of microcapsule formation.

Journal of Encapsulation and Adsorption Sciences. 2012. 2(2): 15 - 20.

Page 69: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

135

[176] T. Moustafa, S. Girod, F. Tortosa, R. Li, J. C. Sol, F. Rodriguez, R. Bastide, Y.

Lazorthes, and B. Sallerin. Viability and functionality of bovine chromaffin cells

encapsulated into alginate - PLL microcapsules with a liquefied inner core. Cell

Transplantation. 2006. 15(2): 121 - 133.

[177] T. Andersen, P. Auk-Emblem, and M. Dornish. Review 3D cell culture in

alginate hydrogels. Microarrays. 2015. 4(2): 133 - 161.

[178] G. M. Lee. and B. O. Palsson. Stability of antibody productivity is improved

when hybridoma cells are entrapped in calcium alginate beads. Biotechnology

and Bioengineering. 1993. 42(9): 1131 - 1135.

[179] M. S. Sinacore, B. C. Creswick, and R. Buehler. Entrapment and growth of

murine hybridoma cells in calcium alginate gel microbeads. Nature Publishing

Company. 1989. 7(12): 1275 - 1279.

[180] S. Overgaard, J. M. Scharer, M. Moo-Young, and N. C. Bols. Immobilization of

hybridoma cells in chitosan alginate beads. The Canadian Journal of Chemical

Engineering. 1991. 69(2): 439 - 443.

[181] M. L. Plunkett and J. A. Hailey. An in vivo quantitative angiogenesis model

using tumor cells entrapped in alginate. Laboratory Investigation. 1990. 62(4):

510 - 517.

[182] Y. Wang, Q. Chen, and F. Yuan. Alginate encapsulation is a highly reproducible

method for tumor cell implantation in dorsal skinfold chambers. BioTechniques.

2005. 39(6): 834 - 839.

[183] V. Breguet, R. Gugerli, U. V. Stockar, and I. W. Marison. CHO immobilization

in alginate/poly-l-lysine microcapsules: an understanding of potential and

limitations. Cytotechnology. 2007. 53(1-3): 81 - 93.

[184] J. Xiea and C. H. Wang. Electrospray in the dripping mode for cell

microencapsulation. Journal of Colloid and Interface Science. 2007. 312(2): 247

- 255.

[185] S. Jitraruch, A. Dhawan, R. D. Hughes, C. Filippi, D. Soong, C. Philippeos, S. C.

Lehec, N. D. Heaton, M. S. Longhi, and R. R. Mitry. Alginate microencapsulated

hepatocytes optimised for transplantation in acute liver failure. PLoS One. 2014.

9(12): 1 - 23.

Page 70: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

136

[186] E. Um, D. S. Lee, H. B. Pyo, and J. K. Park. Continuous generation of hydrogel

beads and encapsulation of biological materials using a microfluidic droplet

merging channel. Microfluidics and Nanofluidics. 2008. 5(4): 541 - 549.

[187] C. Kim, K. S. Lee, Y. E. Kim, K. J. Lee, S. H. Lee, T. S. Kim, and J. Y. Kang.

Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability.

Lab On A Chip. 2009. 9(9): 1294 - 1297.

[188] R. Rathinamoorthy and L. Sasikala. Polysaccharide fibers in wound

management. International Journal of Pharmacy and Pharmaceutical Sciences.

2011. 3(3): 38 - 44.

[189] V. V. Malkar, T. Mukherjee, and S. Kapoor. Aminopolycarboxylic acids and

alginate composite-mediated green synthesis of Au and Ag nanoparticles.

Journal of Nanostructure in Chemistry. 2015. 5(1): 1 - 6.

[190] J. E. Wintter, W. M. Lauter, and P. A. Foote. Derivatives of alginic acid. Journal

of the American Pharmaceutical Association. 1955. 44(1): 48 - 51.

[191] M. Janarthanan and K. M. Buvaeswari. Seaweeds used as a source of alginate in

textile industry. International Journal of Current Research and Development.

2014. 2(1): 48 - 55.

[192] L. Pereira, S. F. Gheda, and P. J. A. Ribeiro-Claro. Analysis by vibrational

spectroscopy of seaweed polysaccharides with potential use in food,

pharmaceutical, and cosmetic industries. International Journal of Carbohydrate

Chemistry. 2013. 2013(537202): 1 - 7.

[193] S. Pistone, D. Qoragllu, G. Smistad, and M. Hiorth. Formulation and preparation

of stable cross-linked alginate-zinc nanoparticles in the presence of a monovalent

salt. Soft Matter. 2015. 11(28): 5765 - 5774.

[194] T. Sone, E. Nagamori, T. Ikeuchi, A. Mizukami, Y. Takakura, S. Kajiyama, E.

Fukusaki, S. Harashima, A. Kobayashi, and K. Fukui. A novel gene delivery

system in plants with calcium alginate micro-beads. Journal of Bioscience and

Bioengineering. 2002. 94(1): 87 - 91.

[195] Y. Zhou, S. Kajiyama, H. Masuhara, Y. Hosokawa, T. Kaji, and K. Fukui. A new

size and shape controlling method for producing calcium alginate beads with

Page 71: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

137

immobilized proteins. Journal of Biomedical Science and Engineering. 2009.

2(5): 287 - 293.

[196] O. Smidsrod and G. Skjak-Brik. Alginate as immobilization matrix for cells.

Trends in Biotechnology. 1990. 8: 71 - 78.

[197] W. K. Majure, N. W. Vandervort, P. J. David, B. D. Deeter, G. J. Melchior, J. R.

Brazzle, K. R. Muzyk, F. R. Miranda, T. W. Cheung, and O. G. Bain. Plant

treatment compositions and methods for their use. Patent EP2608674A1. 2012.

[198] D. Murphy. Phase Contrast Microscopy In Fundamentals of Light Microscopy

and Digital Imaging. New York: Wiley-Liss. 2001.

[199] M. Hoppert. Microscopic Techniques in Biotechnology. Germany: Wiley-Vch

Verlag. 2003.

[200] K. Maxwell and G. N. Johnson. Chlorophyll fluorescence-a practical guide.

Journal of Experimental Botany. 2000. 51(345): 659 - 668.

[201] H. C. Ishikawa-Ankerhold, R. Ankerhold, and G. P. Drummen. Advanced

fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM.

Molecules. 2012. 17(4): 4047 - 4132.

[202] M. Havrdova, K. Polakova, J. Skopalik, M. Vujtek, A. Mokdad, M. Homolkova,

J. Tucek, J. Nebesarova, and R. Zboril. Field emission scanning electron

microscopy (FE-SEM) as an approach for nanoparticle detection inside cells.

Micron. 2014. 67: 149 - 154.

[203] Y. Yuan, Y. Shimada, S. Ichinose, and J. Tagami. Qualitative analysis of

adhesive interface nanoleakage using FE-SEM/EDS. Dental Materials. 2007.

23(5): 561 - 569.

[204] Y. J. Kim and C. R. Park. Technical review: principle of field emission-scanning

electron microscopy (FE-SEM) and its application to the analysis of carbon

nanostructures. Carbon Letters. 2001. 2(3&4): 202 - 211.

[205] R. J. Markovich and C. Pidgeon. Introduction to fourier transform infrared

spectroscopy and applications in the pharmaceutical sciences. Pharmaceutical

Research. 1991. 8(6): 663 - 675.

Page 72: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

138

[206] A. A. Baravkar, R. N. Kale, and S. D. Sawant. FTIR Spectroscopy: principle,

technique and mathematics. International Journal of Pharma and Bio Sciences.

2011. 2(1): 513 - 519.

[207] J. Kapuscinski. DAPI: a DNA-specific fluorescent probe. Biotechnic &

Histochemistry. 1995. 70(5): 220 - 233.

[208] G. Manzini, M. L. Barcellona, M. Avitabile, and F. Quadrifoglio. Interaction of

diamidino-2-phenylindole (DAPI) with natural and synthetic nucleic acids.

Nucleic Acids Research. 1983. 11(24): 8861 - 8876.

[209] A. Sukenik, O. Hadas, S. Stojkovic, N. Malinsky-Rushansky, Y. Viner-Motzini,

and J. Beardall. Fluorescence microscopy reveals variations in cellular

composition during formation of akinetes in the cyanobacterium Aphanizomenon

ovalisporum. European Journal of Phycology. 2009. 43(3): 309 - 317.

[210] N. Spackova, T. E. Cheatham, F. Ryjacek, F. Lankas, L. Van Meervelt, P.

Hobza, and J. Sponer. Molecular dynamics simulations and thermodynamics

analysis of DNA-drug complexes. Minor groove binding between 4',6-

diamidino-2-phenylindole and DNA duplexes in solution. Journal of the

American Chemical Society. 2003. 125(7): 1759 - 1769.

[211] D. E. Pegg. Viability assays for preserved cells, tissues, and organs. Cryobiology.

1989. 26(3): 212 - 231.

[212] A. W. Hayes and R. Press. Principles and Methods of Toxicology. New York:

CRC Press Taylor & Francis. 1994.

[213] V. Breguet, U. V. Stockar, and I. W. Marison. Characterization of alginate lyase

activity on liquid, gelled, and complexed states of alginate. Biotechnology

Progress. 2007. 23(5): 1223 - 1230.

[214] R. J. Trotman, C. E. Camp, A. Ben-Bassat, R. DiCosimo, L. Huang, G. A. Crum,

F. S. Sariaslani, and S. L. Haynie. Calcium alginate bead immobilization of cells

containing tyrosine ammonia lyase activity for use in the production of p-

hydroxycinnamic acid. Biotechnology Progress. 2007. 23(3): 638 - 644.

[215] Y. Oh, X. Xu, J. Y. Kim, and J. M. Park. Maximizing the utilization of

Laminaria japonica as biomass via improvement of alginate lyase activity in a

Page 73: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

139

two-phase fermentation system. Biotechnology Journal. 2015. 10(8): 1281 -

1288.

[216] J. B. Hansen and L. K. Nakamura. Distribution of alginate lyase activity among

strains of bacillus circulans. Applied and Environmental Microbiology. 1985.

49(4): 1019 - 1021.

[217] S. Sakai, S. Ito, Y. Ogushi, I. Hashimoto, N. Hosoda, Y. Sawae, and K.

Kawakami. Enzymatically fabricated and degradable microcapsules for

production of multicellular spheroids with well-defined diameters of less than

150 microm. Biomaterials. 2009. 30(30): 5937 - 5942.

[218] B. Zhu and H. Yin. Alginate lyase: review of major sources and classification,

properties, structure-function analysis and applications. Bioengineered. 2015.

6(3): 125 - 131.

[219] T. Y. Wong, L. A. Preston, and N. L. Schiller. Alginate lyase: review of major

sources and enzyme characteristics, structure-function analysis, biological roles,

and applications. Annual Review of Microbiology. 2000. 54: 289 - 340.

[220] H. S. Kim, C.-G. Lee, and E. Y. Lee. Alginate lyase: structure, property, and

application. Biotechnology and Bioprocess Engineering. 2011. 16(5): 843 - 851.

[221] P. Soni and K. Suchdeo. Exploring the serial capabilities for 16x2 LCD interface.

International Journal of Emerging Technology and Advanced Engineering.

2012. 2(11): 109 - 112.

[222] I. Notingher, J. R. Jones, S. Verrier, I. Bisson, P. Embanga, P. Edwards, J. M.

Polak, and L. L. Hench. Application of FTIR and Raman spectroscopy to

characterisation of bioactive materials and living cells. Spectroscopy. 2003. 17(2,

3): 275 - 288.

[223] K. T. Thong. Development of a novel liquid crystal based 3D micro-tissues

culture technique and microfluidic vibrational cleaner. Master Thesis. Universiti

Tun Hussein Onn Malaysia. 2016.

[224] J. T. Whitton and J. D. Everall. The thickness of the epidermis. The British

Journal of Dermatology. 1973. 89(5): 467 - 476.

Page 74: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

140

[225] P. Smrdel, M. Bogataj, and A. Mrhar. The influence of selected parameters on

the size and shape of alginate beads prepared by ionotropic gelation. Journal of

Pharmaceutical Sciences. 2008. 76(1): 77 - 89.

[226] D. F. Elger, B. C. Williams, C. T. Crowe, and J. A. Roberson. Engineering Fluid

Mechanics. 10th Ed. Singapore: John Wiley & Sons Singapore. 2014.

[227] J. Zhao and L. Yang. Simulation and experimental study on the atomization

character of the pressure-swirl nozzle. Open Journal of Fluid Dynamics. 2012.

2(4A): 271 - 277.

[228] H. S. M. Aly, M. N. M. Jaafar, and T. M. Lazim. Spray and atomization

characterictics of liquid. 1st Ed. Malaysia: Penerbit UTM Press. 2013.

[229] B. Watson. Mobile Equipment Hydraulics: A Systems and Troubleshooting

Approach. USA: Delmar Cengage Learning. 2010.

[230] A. Surjosatyo and F. N. Ani. A numerical study of air flow in a coaxial pipe.

Jurnal Teknologi. 2001. 24(A): 1 - 15.

[231] S. Haeberle, L. Naegele, R. Burger, F. Von Stetten, R. Zengerle, and J. Ducree.

Alginate bead fabrication and encapsulation of living cells under centrifugally

induced artificial gravity conditions. Journal of Microencapsulation. 2008.

25(4): 267 - 274.

[232] D. Gareau. Automated identification of epidermal keratinocytes in reflectance

confocal microscopy. Journal of Biomedical Optics. 2011. 16(3): 030502.

[233] R. Sharma. Gadolinium toxicity: epidermis thickness measurement by magnetic

resonance imaging at 500 MHz. Skin Research and Technology. 2010. 16(3): 339

- 353.

[234] S. B. Hoath and D. G. Leahy. The organization of human epidermis: functional

epidermal units and phi proportionality. The Journal of Investigative

Dermatology. 2003. 121(6): 1440 - 1446.

[235] F. A. Leblond, G. Simard, N. Henley, B. Rocheleau, P. M. Huet, and J. P. Halle.

Studies on smaller (approximately 315 micron) microcapsules: IV. Feasibility

and safety of intrahepatic implantations of small alginate poly-L-lysine

microcapsules. Cell Transplantation. 1999. 8(3): 327 - 337.

Page 75: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

141

[236] P. Lee and M. A. Rogersn. Effect of calcium source and exposure-time on basic

caviar spherification using sodium alginate. International Journal of Gastronomy

and Food Science. 2012. 1(2): 96 - 100.

[237] H. J. Kong, D. Kaigler, K. Kim, and D. J. Mooney. Controlling rigidity and

degradation of alginate hydrogels via molecular weight distribution.

Biomacromolecules. 2004. 5(5): 1720 - 1727.

[238] M. Guvendiren and J. A. Burdick. Stiffening hydrogels to probe short- and long-

term cellular responses to dynamic mechanics. Nature Communications. 2012. 3:

792.

[239] N. Cao, X. B. Chen, and D. J. Schreyer. Influence of calcium ions on cell

survival and proliferation in the context of an alginate hydrogel. ISRN Chemical

Engineering. 2012. 2012(516461): 9.

[240] W. Zhang and X. He. Microencapsulating and banking living cells for cell-based

medicine. Journal of Healthcare Engineering. 2011. 2(4): 427 - 446.

[241] J. Friedrich, R. Ebner, and L. A. Kunz-Schughart. Experimental anti-tumor

therapy in 3-D: spheroids-old hat or new challenge. International Journal of

Radiation Biology. 2007. 83(11-12): 849 - 871.

[242] C. Y. Chen, C. J. Ke, K. C. Yen, H. C. Hsieh, J. S. Sun, and F. H. Lin. 3D porous

calcium-alginate scaffolds cell culture system improved human osteoblast cell

clusters for cell therapy. Theranostics. 2015. 5(6): 643 - 655.

[243] S. V. Bhujbal, B. de Haan, S. P. Niclou, and P. de Vos. A novel multilayer

immunoisolating encapsulation system overcoming protrusion of cells. Scientific

Reports. 2014. 4: 6856.

[244] K. Kevekordes. Using light scattering measurements to study the effects of

monovalent and divalent cations on alginate aggregates. Journal Of

Experimental Botany. 1996. 47(298): 677 - 682.

[245] M. Nagpal, S. K. Singh, and D. Mishra. Synthesis characterization and in vitro

drug release from acrylamide and sodium alginate based superporous hydrogel

devices. International Journal of Pharmaceutical Investigation. 2013. 3(3): 131 -

140.

Page 76: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

142

[246] H. Daemi and M. Barikani. Synthesis and characterization of calcium alginate

nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles.

Scientia Iranica. 2012. 19(6): 2023 - 2028.

[247] D. Dianawati, V. Mishra, and N. P. Shah. Role of calcium alginate and mannitol

in protecting Bifidobacterium. Applied and Environmental Microbiology. 2012.

78(19): 6914 - 6921.

[248] K. Kesavan, G. Nath, and J. K. Pandit. Sodium alginate based mucoadhesive

system for gatifloxacin and its in vitro antibacterial activity. Scientia

Pharmaceutica. 2010. 78(4): 941 - 957.

[249] Z. Movasaghi, S. Rehman, and I. U. Rehman. Fourier transform infrared (FTIR)

spectroscopy of biological tissues. Applied Spectroscopy Reviews. 2008. 43: 134

- 179.

[250] E. P. U. Otero, G. S. N. Eliel, E. J. S. Fonseca, J. M. Hickmann, R. Rodarte, E.

Barretoc, and K. J. Jalkanen. Study of cancer cell lines with Fourier transform

infrared (FTIR)/vibrational absorption (VA) spectroscopy. Current Physical

Chemistry. 2012. 2: 1 - 14.

[251] P. Smrdel, M. Bogataj, and A. Mrhar. The influence of selected parameters on

the size and shape of alginate beads prepared by ionotropic gelation. Journal of

Pharmaceutical Sciences. 2008. 76(1): 77 - 89.

[252] Q. Zuo, J. Lu, A. Hong, D. Zhong, S. Xie, Q. Liu, Y. Huang, Y. Shi, L. He, and

W. Xue. Preparation and characterization of PEM-coated alginate microgels for

controlled release of protein. Biomedical Materials. 2012. 7(3): 035012.

[253] K. Horigome, T. Ueki, and D. Suzuki. Direct visualization of swollen microgels

by scanning electron microscopy using ionic liquids. Polymer Journal. 2016.

48(3): 273 - 279.

[254] Y. R. Lou, L. Kanninen, B. Kaehr, J. L. Townson, J. Niklander, R. Harjumaki, C.

Jeffrey Brinker, and M. Yliperttula. Silica bioreplication preserves three-

dimensional spheroid structures of human pluripotent stem cells and HepG2

cells. Scientific Reports. 2015. 5: 13635.

[255] J. Paul. The cancer cell in vitro: a review. Cancer Research. 1962. 22: 431 - 440.

Page 77: DEVELOPMENT OF AN ELECTRONIC AEROSOL …eprints.uthm.edu.my/id/eprint/10211/1/Leong_Wai_Yean.pdfjangkaan polimerisasi kapsul mikro adalah 10 minit selepas rendam dalam larutan kalsium

143

[256] R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson. The

biology of cancer: metabolic reprogramming fuels cell growth and proliferation.

Cell Metabolism. 2008. 7(1): 11 - 20.

[257] R. A. Cairns, I. S. Harris, and T. W. Mak. Regulation of cancer cell metabolism.

Nature Reviews Cancer. 2011. 11(2): 85 - 95.

[258] D. B. Nandini and R. V. Subramanyam. Nuclear features in oral squamous cell

carcinoma: a computer-assisted microscopic study. Journal of Oral and

Maxillofacial Pathology. 2011. 15(2): 177 - 181.

[259] D. Zink, A. H. Fischer, and J. A. Nickerson. Nuclear structure in cancer cells.

Nature Reviews Cancer. 2004. 4(9): 677 - 687.

[260] C. K. Griffith, C. Miller, R. C. Sainson, J. W. Calvert, N. L. Jeon, C. C. Hughes,

and S. C. George. Diffusion limits of an in vitro thick prevascularized tissue.

Tissue Engineering. 2005. 11(1-2): 257 - 266.

[261] S. Sakai, I. Hashimoto, Y. Ogushi, and K. Kawakami. Peroxidase-catalyzed cell

encapsulation in subsieve-size capsules of alginate with phenol moieties in

water-immiscible fluid dissolving H2O2. Biomacromolecules. 2007. 8(8): 2622 -

2626.

[262] C. F. Amstein and P. A. Hartman. Adaptation of plastic surfaces for tissue

culture by glow discharge. Journal of Clinical Microbiology. 1975. 2(1): 46 - 54.

[263] P. Thevenot, W. Hu, and L. Tang. Surface chemistry influence implant

biocompatibility. Current Topics in Medicinal Chemistry. 2008. 8(4): 270 - 280.

[264] A. S. Curtis, J. V. Forrester, C. McInnes, and F. Lawrie. Adhesion of cells to

polystyrene surfaces. The Journal of Cell Biology. 1983. 97(5 Pt 1): 1500 - 1506.

[265] W. S. Ramsey, W. Hertl, E. D. Nowlan, and N. J. Binkowski. Surface treatments

and cell attachment. In Vitro Cellular & Developmental Biology-Animal. 1984.

20(10): 802 - 808.


Recommended