+ All Categories
Home > Documents > Development of Biopolymers from Soybean Oil Andrew Cascione & Nacú Hernández Dr. Christopher...

Development of Biopolymers from Soybean Oil Andrew Cascione & Nacú Hernández Dr. Christopher...

Date post: 15-Dec-2015
Category:
Upload: lilly-ratcliff
View: 214 times
Download: 1 times
Share this document with a friend
Popular Tags:
33
Development of Biopolymers from Soybean Oil Andrew Cascione & Nacú Hernández Dr. Christopher Williams and Dr. Eric Cochran 1 October 10, 2012
Transcript

Development of Biopolymers from Soybean

OilAndrew Cascione & Nacú Hernández

Dr. Christopher Williams and Dr. Eric Cochran

1

October 10, 2012

Introduction• Asphalt cement commonly modified with

an SBS tri-block copolymer • Kraton’s® formula for asphalt modifiers

20.2 m

Butadiene

• Byproduct of steam cracking process (ethylene production from crude)– (ethylene is also produced from natural

gas which yields no butadiene)

• Gas Phase (explosion hazard)• Polymerization of SBS– Anionic Polymerization• Costly/Oxygen sensitive• Organo metalic initiators

3

Butadiene Commodity Trends

$/ m

etric

ton

4

http://www.icis.com

Soybean Oil• Substitute of the rubbery block

• Triglycerides

• 4.6 double bonds

• Chemical modification

– Different polymerization techniques

5

$/ m

etric

ton

Butadiene and Soybean Oil Commodity Trends

6

http://www.indexmundi.com

Radical Polymerization-Mechanism• RP consists of 4 main events:

1. Decomposition • This step requires an Initiator capable of forming free radicals.

2. Initiation • The decomposed free radical fragment of the initiator attacks a

monomer, yielding a monomer-free radical.

3. Propagation • Monomer-free radical or polymer-free radicals can attack other

monomers to increase the chain length by 1.

7

Radical Polymerization-Mechanism4. Termination

(a) Combination – Two polymer free radicals of different lengths combine to form a

single dormant polymer.

(a)Disproportionation – Two polymer free radicals of different lengths combine to form

two distinct dormant polymers.

8

Polymers via Free Radical Polymerization

• Multifunctional nature – Potential to crosslink with at least

one other polytriglyceride– When a fraction of 1/N have

crosslinked (N=# of repeat units)

• Polymers reach their “gel point”• Thermosets

(Courtesy of Richard LaRock)

Linear polymer chains

Ability to flow Will not flowSoybean Oil

9

Atom Transfer Radical Polymerization (ATRP)

10

Atom Transfer Radical Polymerization (ATRP)

11

Atom Transfer Radical Polymerization (ATRP)

12

SB Biopolymer

SBS Biopolymer

Soybean Oil

Results

13

Rheological Measurements

14

SBO- Homopolymer SBS Triblock copolymer

log 10 aTlog 10 aT

T

G’

200

120

160

Asphalt Polymer Blends

• Virgin PG XX-34 blended with…

• 3% Kraton SBS D1101 • 3% Kraton SBS D1118• 3% SB Diblock Biopolymer• 3% SBS Triblock Biopolymer

• Blended polymer and asphalt in shear mixer at 180°C for 2 hours

15

Unaged Binder G* (KPa)

16

Unaged Binder Phase Angle

17

High Temperature Performance Grade

18

Asphalt-PolymerBlend

Mass Loss

XX-34 0.43 %

Kraton D1101 0.77 %

Kraton D1118 0.89 %

SB Biopolymer 2.79 %

SBS Biopolymer 2.48 %

SBS* Biopolymer 0.93 %

Not So Good

Big Improvement!19

Low Critical Temperatures

XX-34 Kraton D1101

Kraton D1118

SB Biopolymer

-35.3 -34.7 -34.7 -34.5

PG -34 PG -28

SBS Biopolymer

SBS* Biopolymer

-33.8 -33.1

20

Continuous Grade Range

86.7

94.2

89.589.2

95.2

93.4

21

Multiple Stress Creep and Recovery(MSCR) Test – Simulated Data

γp = peak strain

γr = recovered strain

γp = unrecovered Strain

22

Asphalt-PolymerBlend Temp °C

Jnr

3.2kPa-1Traffic Level Traffic Level

Criteria

XX-34 46 1.55 HHeavy (1.01 – 2.00)

SBS Biopolymer 46 0.90 VVery Heavy (0.51 – 1.00)

Asphalt-PolymerBlend Temp °C

Jnr

3.2kPa-1Traffic Level Traffic Level

Criteria

XX-34 46 1.55 HHeavy (1.01 – 2.00)

Asphalt-PolymerBlend Temp °C

Jnr

3.2kPa-1Traffic Level Traffic Level

Criteria

Multiple Stress Creep and Recovery(MSCR) Test

23

Asphalt-PolymerBlend Temp °C

Jnr

3.2kPa-1Traffic Level Traffic Level

Criteria

XX-34 46 1.55 HHeavy (1.01 – 2.00)

SBS Biopolymer 46 0.90 VVery Heavy (0.51 – 1.00)

Kraton D1101 46 0.50 EExtremely Heavy (0.00 – 0.50)

SBS* Biopolymer 46 0.33 EExtremely Heavy (0.00 – 0.50)

SBS* Biopolymer20.2%

Kraton 1101 25.0%

XX-34 4.1%

SBS Biopolymer 6.6%

Passing % Recovery

Failing % Recovery

24

Master Curves• Frequency Sweep in DSR from 16 °C - 70 °C• Fit G* data to CAM Model

• Estimated Shift Factors using WLF

• Used Shift Factors to shift δ data

25

26

27

28

29

30

31

Next Steps

• Optimization of block copolymer• Comprehensive experimental plan on the

blending method• Micrographs with supporting FTIR Analysis• HMA performance testing• Build Pilot Plant

32

Thank You! Any Comments or Questions?

33


Recommended