+ All Categories
Home > Documents > Development of heterogeneous catalysts for clean hydrogen...

Development of heterogeneous catalysts for clean hydrogen...

Date post: 27-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
173
Development of heterogeneous catalysts for clean hydrogen production from biomass resources Laura Pastor Pérez
Transcript
Page 1: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Development of heterogeneous catalysts for clean hydrogen production from

biomass resources

Laura Pastor Pérez

Page 2: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Departamento de Química Inorgánica – Instituto Universitario de Materiales

Facultad de Ciencias

“Development of heterogeneous catalysts

for clean hydrogen production from

biomass resources”

Laura Pastor Pérez

Programa de Doctorado en Ciencia de Materiales

Tesis presentada para aspirar al grado de

DOCTORA POR LA UNIVERSIDAD DE ALICANTE

MENCIÓN DE DOCTORA INTERNACIONAL

Dirigida por:

Antonio Sepúlveda Escribano

Catedrático de Química Inorgánica de la Universidad de Alicante

Julio 2016

Page 3: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 4: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

LIST OF CONTENTS

1 Abstract / Resumen……………………………………………………….……………….

CAPÍTULO I: Introducción general y objetivos

1. LOS COMBUSTIBLES FÓSILES Y SU PROBLEMÁTICA…………………….. 7

2. EL HIDRÓGENO: ALTERNATIVA ENERGÉTICA RENOVABLE Y NO

CONTAMINANTE………………………………………………………………………… 9

2.1 Pilas de combustible………………………………………………………………. 10

2.2 Producción de hidrógeno………………………………………………………….. 11

3. BIOMASA………………………………………………………………………………... 13

3.1 Métodos de producción de H2 y otros combustibles a partir de biomasa….. 14

3.2 Biocombustibles……………………………………………………………………. 17

3.2.1 Bioetanol………………………………………………………………………. 17

3.2.2 Biodiésel……………………………………………………………………….. 18

3.3 Valorización del glicerol…………………………………………………………... 19

4. REFORMADO CATALÍTICO DE GLICEROL…………………………………….. 21

5. REACCIÓN DE DESPLAZMIENTO DEL GAS DE AGUA (WGS).……………. 25

7. OBJETIVOS………………………………………………………………………..…… 28

8. REFERENCIAS………………………………………………………………………… 29

CHAPTER II: Low temperature glycerol steam reforming on bimetallic PtSn/C

catalysts: on the effect of the Sn content

Abstract……………………………………………………………………………………... 35

1. INTRODUCTION…………………………………………………………………….... 36

2. EXPERIMENTAL SECTION………………………………………………………… 38

2.1 Catalysts preparation…………………………………………………………….. 38

2.2 Catalysts characterization……………………………………………………….. 38

2.3 Catalytic test..……………………………………………………………………… 39

3. RESULTS AND DISCUSSIONS…………………………………………………….. 40

3.1 Catalysts characterization……………………………………………………….. 40

3.1.1 Chemical analysis……………………………………………………………. 40

3.1.2 X-ray photoelectron spectra……….……………………………………….. 41

3.1.3 Transmission electron microscopy………..…………………..…………… 42

Page 5: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

3.1.4 H2-Temperature programmed reduction……………….………………... 43

3.2 Catalytic behaviour………………………..……………………………………… 44

4. CONCLUSIONS………………………………………………………………………... 49

5. REFERENCES……………………………………………………………………......... 49

CHAPTER III: Multicomponent NiSnCeO2/C catalysts for the low-temperature

glycerol steam reforming

Abstract……………………………………………………………………………………... 55

1. INTRODUCTION……………………………………………………………………..... 56

2. EXPERIMENTAL SECTION………………………………………………………… 58

2.1 Catalysts preparation…………………………………………………………….. 58

2.2 Catalysts characterization……………………………………………………….. 59

2.3 Catalytic tests……………………………………………………………………… 60

3. RESULTS AND DISCUSSIONS…………………………………………………….. 61

3.1 Catalysts characterization……………………………………………………….. 61

3.1.1 Textural properties …………………………………………………….…… 61

3.1.2 H2-temperature programmed reduction………………………………… 62

3.1.3 XPS characterization of reduced catalysts………………………….…… 63

3.2 Catalytic behaviour……………………………………………………………….. 65

3.3 XRD post-reaction characterization…………………………………………….. 69

4. CONCLUSIONS………………………………………………………………………... 71

5. REFERENCES……………………………………………………………………......... 72

CHAPTER IV: Aqueous phase reforming of glycerol for hydrogen production

over Pt, Ni andPt-Ni catalysts supported on CeO2

Abstract……………………………………………………………………………………... 77

1. INTRODUCTION……………………………………………………………………..... 78

2. EXPERIMENTAL SECTION………………………………………………………… 80

2.1 Catalysts preparation…………………………………………………………….. 80

2.2 Catalysts characterization……………………………………………………….. 81

2.3 Catalytic activity measurements……...………………………………………… 82

3. RESULTS AND DISCUSSIONS…………………………………………………….. 83

3.1 Catalysts characterization……………….…...………………………………….. 83

3.1.1 Textural and chemical characterization………………………………….. 83

Page 6: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

3.1.2 X-ray diffraction……………………………………………………………… 84

3.1.3 H2-temperature programmed reduction.…………………………………. 84

3.1.4 X-ray photoelectron spectra……….……………………………………….. 86

3.1.5 Transmission electron microscopy……….………………………………... 88

3.2 Catalytic test..……………………………………………………………………… 88

3.2.1 XPS post-reaction characterization……………………………………….. 93

3.2.2 TEM post-reaction characterization………………………………………. 95

3.2.3 “In situ“ ATR-IR spectroscopy…………….………..……………………… 95

4. CONCLUSIONS………………………………………………………………………... 100

5. REFERENCES……………………………………………………………………......... 101

CHAPTER V: CeO2-promoted Ni/activated carbon catalysts for the water-gas

shift (WGS) reaction

Abstract……………………………………………………………………………………... 107

1. INTRODUCTION………………………………………………………………………. 108

2. EXPERIMENTAL SECTION………………………………………………………… 110

2.1 Catalysts preparation…………………………………………………………….. 110

2.2 Catalysts characterization……………………………………………………..… 111

2.3 Catalytic tests……………………………………………………………………… 112

3. RESULTS AND DISCUSSIONS…..………………………………………………… 113

3.1 Catalysts characterization……..………………………………………………… 113

3.1.1 Textural and chemical characterization………………………………….. 113

3.1.2 X-ray diffraction……………………………………………………………… 115

3.1.3 H2-temperature programmed reduction………………………………….. 116

3.1.4 XPS characterization of reduced catalysts………………………………. 118

3.1.5 Transmission electron microscopy………………………………………… 119

3.2 Catalytic behaviour……………………………………………………………….. 120

4. CONCLUSIONS……………………………………………………………………….. 126

5. REFERENCES…………………………………………………………………………. 127

CHAPTER VI: Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

Abstract……………………………………………………………………………………... 133

1. INTRODUCTION……………………………………………………………….……… 134

2. EXPERIMENTAL SECTION………………………………………………………… 136

Page 7: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

2.1 Catalysts preparation…………………………………………………………….. 136

2.2 Catalysts characterization……………………………………………………….. 136

2.3 WGS Catalytic tests………………………………………………………………. 138

3. RESULTS AND DISCUSSIONS…………………………………………………….. 138

3.1 Catalysts characterization……………………..………………………………… 138

3.1.1 Textural and chemical characterization………………………………….. 138

3.1.2 OSCC and OSC………………………………………………………………. 139

3.2 WGS Behaviour……………………………………………………………………. 141

4. CONCLUSIONS………………………………………………………………………... 145

5. REFERENCES…………………………………………………………………………. 146

General conclusions / Conclusiones generales………………………………………… 149

List of Publications………………………………………………………………………... 165

Page 8: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

1

ABSTRACT

Chapter I is focused in the current energy crisis and provides a brief introduction

to the use of hydrogen as an energy carrier, mentioning the different methods that

can be used for production/purification of hydrogen from renewable resources. This

chapter also includes a description of the role that biomass can play as an alternative

to fossil fuels, and its conversion into biofuels and value-added chemicals.

Catalytic reforming of glycerol for hydrogen-rich streams or synthesis gas

production is presented as a potential, promising alternative route that has attracted

attention in recent years. This reaction is often carried out in metal-based catalysts

supported on stable materials.

Chapter II explores Sn addition effect on the properties and stability of Pt catalysts

supported on carbon in glycerol steam reforming reaction. To this end, a series of

samples with different Pt/Sn atomic ratios were prepared and characterized.

The high price of noble metals motivates the search and use of cheaper and more

abundant metals that also provide a good catalytic behaviour in this reaction.

Therefore, in Chapter III Ni-based catalyst promoted by ceria for glycerol steam

reforming were used. Furthermore, it is necessary to optimize the use of the CeO2 due

to its limited availability and extensive applications. Thus, in this Chapter CeO2 was

dispersed on activated carbon of high surface area, obtaining great cerium oxide

surface exposed with a remarkable reduction on the ceria loading. Also the effect of

tin was studied in these catalysts.

Several advantages are obtained when glycerol reforming is carried out in liquid

phase. For instance, the produced gas obtained is rich in H2 and poor in CO. This is

due to the moderate temperatures and high pressures employed, favouring the water

gas shift reaction. Furthermore, the overall energy consumption is reduced by the fact

that glycerol is converted into hydrogen in an aqueous liquid phase rather than in the

gas phase, eliminating the need to vaporize the high-boiling biomass derived

oxygenated. Moreover, glycerol upgrading at low temperature prevents the

undesirable thermal decomposition reaction of glycerol when high temperatures are

used.

Page 9: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

2

In this context, in Chapter IV, a comparative study of the catalytic properties of

three samples, Pt/CeO2, Ni/CeO2 and Pt-Ni/CeO2 is tested in glycerol aqueous phase

reforming reaction. In addition, in-situ attenuated total reflectance spectroscopy was

employed to obtain relevant information about reaction intermediates and the

evolution of the catalysts during the reaction. This study allowed to propose the more

likely reaction pathways.

For clean energy production, pure hydrogen is required as a feed gas for electricity

generation in low temperature fuel cells. To obtain clean hydrogen, the reforming

stream generated must be processed in several steps, including CO elimination via

water-gas shift reaction.

In Chapter V the same series of Ni catalysts promoted by CeO2 supported in carbon

were tested in the low temperature water gas shift. Two different feed gas mixtures

were used in this study: an idealized one (only CO and H2O) and, a post-reforming

surrogate stream (CO, CO2, H2 and H2O).

To conclude, in Chapter VI, the catalyst which presented the best catalytic

behaviour in the previous chapter was studied in greater depth, linking its properties

with catalytic activity. Finally this sample was submitted to several stability tests

under more demanding reaction conditions aiming to check its potential application in

an integrated fuel processor.

Page 10: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

3

RESUMEN

El Capítulo I trata la actual crisis energética y hace una breve introducción sobre el

uso del hidrógeno como vector energético, mencionando los diferentes métodos que

pueden utilizarse para la producción/purificación de hidrógeno a partir de recursos

renovables. También incluye una breve descripción del papel que puede jugar la

biomasa como alternativa a los combustibles fósiles, y su conversión a biocombustibles

y productos químicos de valor añadido.

El reformado catalítico de glicerol para la producción de gas de síntesis o corrientes

ricas en hidrógeno se presenta como una ruta potencial, alternativa y prometedora

que ha llamado la atención en los últimos años. Esta reacción se suele llevar a cabo

sobre catalizadores basados en metales soportados en materiales estables.

En el Capítulo II se estudia el efecto de la adición de Sn sobre las propiedades y la

estabilidad de catalizadores de Pt soportado en carbón en la reacción de reformado de

glicerol en fase gas. Para ello, se preparó y caracterizó una serie de catalizadores con

diferentes relaciones atómicas Pt/Sn.

El alto precio de los metales nobles motiva la búsqueda y empleo de metales más

baratos y abundantes que también tengan un buen comportamiento catalítico en esta

reacción. Por ello, en el Capítulo III se emplearon catalizadores basados en Ni

promovidos por óxido de cerio para el reformado de glicerol. Por otro lado, se hace

necesario optimizar el uso del CeO2 debido a su disponibilidad limitada y sus extensas

aplicaciones. Así, en este trabajo se dispersó CeO2 sobre carbón activado de alta área

superficial, obteniendo una gran superficie de óxido de cerio expuesta al mismo

tiempo que se redujo su consumo. También se estudió el efecto de la presencia de

estaño en estos catalizadores.

Se consiguen varias ventajas al realizar el reformado de glicerol en fase líquida.

Así, se obtienen corrientes más ricas en H2 con menor cantidad de CO. Esto se debe al

empleo de temperaturas moderadas y presiones altas, que favorecen la reacción de

desplazamiento del gas de agua. También se suprime la necesidad de evaporar la

disolución acuosa de glicerol, por lo que el requerimiento energético es menor y se

evitan reacciones indeseadas de descomposición térmica.

Page 11: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

4

De este modo, en el Capítulo IV se hizo un estudio comparativo sobre las

propiedades catalíticas de tres muestras, Pt/CeO2, Ni/CeO2 y Pt-Ni/CeO2, en la

reacción de reformado de glicerol en fase líquida. Además, se empleó espectroscopía de

reflectancia total atenuada in situ para obtener información relevante sobre los

intermedios de reacción y la evolución de los catalizadores durante la reacción,

permitiendo así proponer los caminos de reacción más probables.

Para obtener corrientes de hidrógeno suficientemente puro para su uso es las pilas

de combustible, la corriente obtenida después del reformado debe ser procesada en

varias etapas, entre las que se incluyen la eliminación del CO por medio de la reacción

de desplazamiento del gas de agua (water-gas shift, WGS).

En el Capítulo V se estudió la serie de catalizadores de Ni promovidos por CeO2

soportados en carbón en la reacción de desplazamiento del gas de agua a bajas

temperaturas. Para este estudio se emplearon diferentes corrientes de entrada, tanto

ideales (sólo CO y H2O) como reales (CO, CO2, H2 y H2O). Por último, en el Capítulo

VI, el catalizador que presentó mejor comportamiento catalítico en el apartado

anterior fue estudiado en mayor profundidad, relacionando sus propiedades con la

actividad catalítica, sometiéndolo finalmente a ensayos de estabilidad en condiciones

más exigentes.

Page 12: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CAPÍTULO I

Introducción general

y objetivos

Page 13: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 14: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

7

1. LOS COMBUSTIBLES FÓSILES Y SU PROBLEMÁTICA

Los combustibles fósiles (petróleo, carbón y gas natural) constituyen en la

actualidad la principal fuente de energía a nivel mundial. Según datos recientes de

consumo energético el petróleo, el carbón y el gas natural suministran alrededor del

90 % de la energía total consumida [1]. El consumo a gran escala de estos recursos

naturales ha permitido a nuestra sociedad alcanzar cotas de desarrollo nunca antes

vistas aunque, al mismo tiempo, también se ha originado una alta dependencia hacia

los mismos. Uno de los sectores que mejor representa esta dependencia es el

transporte, pues depende casi en exclusiva del suministro de petróleo para su

funcionamiento [2]. De entre todos los sectores de la sociedad también es el transporte

el que ha experimentado un crecimiento más fuerte en los últimos años, y en la

actualidad es responsable de casi un tercio de la energía total consumida en el mundo.

Por otro lado, el consumo masivo de combustibles fósiles lleva asociado importantes

problemas económicos, sociales y medioambientales. La primera preocupación está

relaciona con su disponibilidad. Las reservas de combustibles fósiles son finitas, y el

actual ritmo de consumo aumenta cada año para satisfacer la creciente demanda de

países industrializados y el rápido desarrollo de economías emergentes como China e

India. Las proyecciones de consumo energético auguran un aumento del 35 % en el

consumo mundial de energía en los próximos 20 años [3]. Por tanto, teniendo en

cuenta la velocidad actual de consumo y los niveles de las reservas de combustibles

fósiles, se ha estimado que el petróleo, el gas natural y el carbón se agotarán dentro de

los próximos 40, 60 y 120 años, respectivamente [4].

Figura 1. Consumo de energía por fuente [1].

1980 1990 2000 2010 2020 2030 20400

20

40

60

80

100

1202015 Proyecciones

Petróleo y otros líquidos

Cu

atri

mill

ón

Btu

Carbón

Nuclear

Biocumbustibles

Renovables

Gas natural

Otros combustibles

Page 15: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

8

Otra desventaja de los combustibles fósiles es que su combustión para la

producción de energía genera emisiones netas de gases tales como CO2, CO y otros

gases que han contribuido y aún contribuyen a generar y potenciar el efecto

invernadero, la lluvia ácida y la contaminación del aire, suelo y agua. Estudios

recientes demuestran que la quema de combustibles fósiles para la producción de

energía es responsable de un 70 % del calentamiento global [4].

El tercer gran problema del uso de los combustibles fósiles es su distribución

geográfica desigual. Los países de Oriente Próximo controlan más de un 60 % de las

reservas mundiales de petróleo y el 40 % del gas natural disponible en el mundo.

Además, sólo tres países (China, Rusia y Estados Unidos) monopolizan dos tercios de

los yacimientos de carbón existentes en la actualidad [3]. Esta situación origina

multitud de problemas y tensiones internacionales, y obliga a transportar el

combustible fósil largas distancias para suministrar a los países no productores.

Figura 2. Producción mundial de petróleo (2015) [3].

Por estas y otras razones, es necesario buscar nuevas alternativas energéticas, y

esto se ha convertido en uno de los temas más investigados en los últimos años, y aún

está pendiente de desarrollar.

Con este objetivo los gobiernos, mediante ambiciosas directivas, están estimulando

el uso de fuentes de energías renovables que puedan sustituir a los combustibles

fósiles en el actual sistema energético [5]. Estas fuentes renovables de energía

deberían, además, estar bien distribuidas por el mundo y no contribuir a la

acumulación de gases de efecto invernadero en la atmósfera. Recursos naturales como

el sol, el viento, los recursos geotérmicos, el agua acumulada en pantanos y la biomasa

cumplen con estos requisitos, y permiten el desarrollo de tecnologías limpias con

> 10

7 - 10

4 - 7

2 - 4

1 - 2

< 1

Millones de barriles por día

Page 16: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

9

potencial para sustituir las actuales basadas en los combustibles fósiles. Esta

sustitución será progresiva en el tiempo y también selectiva, pues no todas las formas

renovables de energía pueden sustituir a los combustibles fósiles. De este modo,

estudios recientes indican que la energía solar, la eólica, la geotérmica y la

hidroeléctrica están naturalmente diseñadas para generar calor y electricidad en

instalaciones estacionarias, lo que permite una eventual sustitución del carbón y el

gas natural [6]. Por otro lado, la biomasa es la única fuente renovable de carbono

orgánico disponible en la Tierra y, por tanto, este recurso natural está considerado

como el sustituto ideal del petróleo para la producción de combustibles y productos

químicos [7]. Los biocombustibles, o combustibles generados a partir de biomasa,

generan significativamente menos emisiones de gases causantes de efecto invernadero

que los combustibles de origen fósil, y pueden incluso llegar a ser neutros en el

balance de carbono si se desarrollan métodos eficientes de producción [8,9]

2. EL HIDRÓGENO: ALTERNATIVA ENERGÉTICA RENOVABLE Y NO

CONTAMINANTE

Son muchas las posibilidades que ofrece el hidrógeno para cubrir las demandas

energéticas futuras, y por ello es uno de los grandes candidatos a suplir estas

necesidades. Esto viene impulsado por a su gran abundancia como elemento y su

distribución en infinidad de compuestos. Se considera una alternativa frente al

acuciante problema del cambio climático, ya que su uso evita la producción de gases

de efecto invernadero y el empleo de los combustibles fósiles. Actualmente, incluso se

plantea una futura economía basada en el hidrógeno que reemplace en la mayor

proporción posible a la existente basada en los combustibles fósiles.

Sin embargo, conviene aclarar que el hidrógeno no es un recurso energético, ya que

no se encuentra libre en la naturaleza y, por tanto es necesario producirlo a través de

diferentes métodos y haciendo uso de otras fuentes de energía primarias, tanto

renovables como no renovables. En este sentido, el hidrógeno es considerado como un

portador de energía o, más comúnmente llamado, un vector energético [10].

También cabe destacar que el hidrógeno presenta varias ventajas en comparación

con otros portadores de energía. Por ejemplo, no es tóxico, se quema rápidamente con

poca radiación de calor y, debido a su baja densidad en comparación con el aire, se

Page 17: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

10

diluye rápidamente en espacios abiertos. Además, el aprovechamiento de la energía

química del hidrógeno no se ve limitada por el ciclo de Carnot, debido a que puede ser

convertida directamente en energía eléctrica utilizando las pilas de combustible,

suprimiendo así el paso intermedio del acondicionamiento térmico de un ciclo de

potencia. Por otro lado, el hidrógeno contiene casi el triple de energía por unidad de

masa que los demás combustibles. Por ejemplo H2 gas (300 bar, 25 °C) contiene una

energía de 33,3 kWh/kg, mientras que el gas natural (1 bar, 25 °C) o la gasolina

presentan 12,7 y 12,3 kWh/kg respectivamente. Sin embargo, al ser tan poco denso, su

contenido energético por unidad de volumen es muy bajo, lo que supone ciertos

problemas de almacenamiento y transporte [11].

2.1 Pilas de combustible

Las pilas de combustible son una de las tecnologías más prometedoras para el

futuro de una industria energética limpia [12,13]. Se trata de un dispositivo

electroquímico que convierte la energía química almacenada en un combustible, como

el hidrógeno, en energía eléctrica con un abastecimiento continuo de reactivos. Tienen

aplicación en un amplio rango de dispositivos, que van desde sistemas estacionarios

para producir energía eléctrica a gran escala, hasta dispositivos móviles para

alimentar equipos microelectrónicos o unidades de energía auxiliares [14,15].

Existe una gran variedad de pilas de combustible, algunas ya comercializadas y

otras en proceso de desarrollo e investigación, con diferencias en los reactivos y en el

electrolito utilizado, la temperatura de trabajo y su eficiencia. Hoy en día, se emplea

hidrógeno como combustible en las llamadas pilas de membrana de intercambio

protónico (PEMFC, de la terminología inglesa Proton Exchange Membrane Fuel Cell

(Figura 3)).

Page 18: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

11

Figura 3. Esquema general de una PEMFC.

La combustión de hidrógeno en la pila de combustible se considera una alternativa

energética "verde", ya que el único subproducto es el agua, con la ventaja adicional,

como se ha mencionado anteriormente, de que el hidrógeno como combustible posee

alrededor de tres veces más energía neta por unidad de masa, que los combustibles

fósiles y derivados [16].

2.2 Producción de hidrógeno

Como se ha mencionado anteriormente, el hidrógeno es un portador energético que

tiene que ser producido a partir de compuestos que lo contengan, tales como

hidrocarburos, amoniaco, hidruros, biomasa, etc. [17].

La opción más empleada a corto plazo es la producción de hidrógeno mediante el

reformado de hidrocarburos. No obstante, el producto de este proceso es una mezcla de

hidrógeno y óxidos de carbono como componentes principales. El CO2 puede ser

eliminado fácilmente, ya que éste no afecta a la pila de combustible. En cambio, la

presencia de CO en la corriente de reformado obtenida [18] es un gran inconveniente

para las PEMFC ya que su ánodo, comúnmente fabricado en Pt o Pt-Ru, se envenena

por la fuerte adsorción irreversible de moléculas de CO en su superficie.

Por este motivo, la cantidad de CO presente en la corriente de hidrógeno que

alimenta a la pila de combustible debe ser lo más baja posible. Se necesitan menos de

50 ppm en el caso de ánodos de Pt-Ru, y menos de 10 ppm para los ánodos de Pt para

Hidrógeno Oxígeno

Cat

aliz

ado

r

Cat

aliz

ado

r

Exceso de H2

(para reutilizar)Agua

Energía eléctrica

Ele

ctro

lito

Page 19: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

12

envenenar el electrocatalizador [19], de forma que la vida útil del ánodo de PEMFC

se reduce drásticamente. Para evitar este envenenamiento y obtener corrientes de

hidrógeno suficientemente puras, la corriente obtenida después del reformado debe

ser procesada en varias etapas, entre las que se incluyen la eliminación del CO por

medio de la reacción de desplazamiento del gas de agua (water-gas shift, WGS), la

oxidación preferencial de CO y/o la reacción de metanación [20,21].

De esta forma, las distintas etapas de procesado de combustible convierten los

hidrocarburos líquidos o gaseosos (el contenido de energía por unidad de volumen es

mucho mayor que en el hidrógeno en las mismas condiciones) en una corriente rica en

H2 y casi libre de CO, según la secuencia esquematizada en la Figura 4.

Figura 4. Etapas de procesado de combustible para la producción de hidrogeno limpio.

Por ende, para que el empleo de hidrógeno como alternativa a los combustibles

fósiles sea viable, es necesario desarrollar catalizadores eficientes para cada uno de

estos procesos. En concreto, esta memoria se centra en el desarrollo y optimización de

catalizadores para los dos primeros procesos de procesado: reformado y reacción de

desplazamiento del gas de agua (WGS).

COMBUSTIBLECH4 + H2O CO + 3H2

CalorCalor

CO + H2O ↔ CO2 + H2

ReformadoWGS

CO + ½ O CO2

PROX

Metanación

CO + 3H2 H2O + CH4

Calor

CalorH2

O2

H2O

2H2 + O2 2H2O

Page 20: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

13

3. BIOMASA

La biomasa, en términos energéticos, se define como la materia orgánica originada

en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía

[22]. Puede ser de origen vegetal, derivada de todo tipo de plantas, o de origen animal,

incluyendo los abonos y el estiércol. La biomasa está compuesta por materia orgánica

en la que la energía solar se encuentra almacenada en forma de enlaces químicos. Su

composición elemental está formada por C, H, O y N, con cantidades pequeñas de

azufre y otros elementos. Los carbohidratos constituyen la parte más importante de la

biomasa energética de origen vegetal, que contiene cantidades variables de celulosa

(80-40 % del peso), hemicelulosa (30-15 % del peso) y lignina (25-10 % del peso)

dependiendo de su procedencia (Figura 5) [23,24,25,26].

Figura 5. Estructura de diferentes fracciones de la biomasa vegetal (lignocelulosa, celulosa,

lignina y hemicelulosa).

En la actualidad es la cuarta fuente de energía más importante del mundo, y es el

recurso renovable más versátil. Representa alrededor del 15 % del consumo de energía

primaria y el 38 % del consumo energético en los países en desarrollo [27]

Page 21: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

14

Figura 6. Ciclo de la biomasa.

Además del gran potencial energético que tiene la biomasa, la reducción del CO2

neto que es liberado a la atmósfera hace que su uso sea muy atractivo y amigable con

el medio ambiente, reduciendo el impacto ambiental en comparación con el uso de

combustibles fósiles. Este CO2 liberado al gasificar, pirolizar o reformar la biomasa, es

nuevamente fijado por las plantas mediante la fotosíntesis (Figura 6) [28,29].

3.1 Métodos de producción de H2 y otros combustibles a partir de biomasa

Aunque el hidrógeno es una alternativa viable, en la actualidad no existe una sola

fuente energética que pueda reemplazar por completo al petróleo. Se hace necesaria la

búsqueda de alternativas paralelas para dar solución al problema energético, y dentro

de éstas, la biomasa es una de las fuentes energéticas renovables y sostenibles con

mayor aceptación.

A pesar de ser el compuesto principal para alimentar las pilas de combustible de

membrana (PEMFC), el hidrógeno también puede ser utilizado como intermedio para

la producción de biocombustibles, de igual modo que lo es en la producción de gasolina

y diésel. Por tanto, la producción de hidrógeno y los procesos que lleva involucrados

pueden ser parte integral de las futuras biorefinerías, de igual modo que ya lo son

para las refinerías de petróleo actuales. Según los expertos, todos los beneficios de una

economía basada en el hidrógeno sólo se alcanzan cuando el hidrógeno se obtiene a

partir de recursos renovables como la biomasa [30]. A ello se suma que la biomasa,

además de poder ser utilizada como fuente de producción de hidrógeno, es también

uno de los precursores más atractivos para la síntesis de combustibles y productos

químicos.

Fotosíntesis

CO2

CO2

Bosque

Biomasa

Transformación de la biomasa

Combustión

Page 22: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

15

Por otra parte un sistema energético basado en la utilización de biomasa como

combustible puede ayudar a igualar la economía, ayudando a mejorar la de países que

no tienen reservas de petróleo y hacer además un sistema menos dependiente de las

fluctuaciones de su precio. También hay que tener en cuenta que la compatibilidad

con las infraestructuras existentes para el uso de combustibles convencionales ha sido

un factor clave que ha permitido la rápida expansión de los biocombustibles [8].

Uno de los primeros inconvenientes que se planteó en relación con la producción a

gran escala de biocombustibles fue el problema que podía surgir por el uso de tierras

dedicadas al cultivo de alimentos. Esto impulsó la creación de los biocombustibles de

segunda generación, que se obtienen a partir de biomasa no comestible y, más

específicamente, de material lignocelulósico. Teniendo en cuenta que, además, la

biomasa lignocelulósica tiene un crecimiento más acelerado, menor coste (comparada

con la biomasa alimentaria) y mayor disponibilidad (su producción no está limitada a

pequeñas áreas) este tipo de materia constituye un recurso atractivo y viable para

sustituir al petróleo [31,32,33].

Figura 7. Ejemplos de biocombustibles de primera y segunda generación.

La producción de biocombustibles a partir de material lignocelulósico involucra la

eliminación de oxígeno y la formación de enlaces C-C, controlando el peso final de los

hidrocarburos formados e intentando emplear la menor cantidad de hidrógeno

procedente de una fuente externa. Esto se consigue mediante dos etapas principales,

primero la conversión del material lignocelulósico en productos químicos plataforma

(líquidos o gaseosos), lo que implica la eliminación parcial de oxígeno, y en segundo

BIOCOMBUSTIBLES DE PRIMERA GENERACIÓN

BIOCOMBUSTIBLES DE SEGUNDA GENERACIÓN

Cereal

Almidón

Azúcares

Cultivos de aceite

Algas

Residuos

Paja, Bagazo, Cáscaras

Deshechos de uva y posos

Estiércol animal

Brea celulósica y glicerina cruda

Page 23: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

16

lugar la formación de los hidrocarburos junto con la eliminación final de grupos

oxigenados mediante procesos catalíticos.

Debido a la complejidad química y estructural de la biomasa lignocelulósica, se han

desarrollado diferentes métodos para convertir este material en productos químicos y

combustibles. Las tecnologías actuales implican tres rutas principales, como se

muestra en la Figura 8, que incluyen la producción de gas de síntesis (CO + H2) por

gasificación, la producción de bioaceites por pirólisis o licuefacción, o la hidrólisis de la

biomasa para producir unidades de monómeros de azúcar. El gas de síntesis se puede

utilizar para producir hidrocarburos (diésel o gasolina), metanol y otros combustibles.

Los bioaceites son posteriormente mejorados para que puedan ser utilizados como

combustibles en el transporte. También, a partir de los azúcares y otros productos

intermedios se puede producir etanol, gasolina y gasóleo para su uso en este sector.

Otro método para la producción de biocombustibles es hacer crecer cultivos

energéticos con estructuras de alta densidad energética, que pueden ser convertidas

fácilmente en combustibles líquidos como aceites vegetales o hidrocarburos [34].

Figura 8. Estrategias para la producción de combustibles a partir de biomasa

lignocelulósica [32].

La biomasa y los biocombustibles parecen ser la clave para el abastecimiento de las

necesidades energéticas básicas de nuestra sociedad, por medio de la producción

BIOMASA

Celulósica (desechos forestales, agrícolas, cultivos energéticos, plantas acuáticas)

Gasificación Pirólisis/Licuef. Hidrólisis

Gas de síntesis Bio-aceites Azúcares líquidos Lignina

Fish

er-T

rop

sch

Met

an

ol

WG

S

Des

hid

roxi

gen

.

Zeo

lita

s

Ferm

enta

ció

n

Des

hid

rata

ció

n

Pro

cesa

do

F.A

c

Va

lori

zaci

ón

Alcanos Metanol H2 Combustibles líquidos EtanolHidroc.

aromáticosAlcanos liq./ H2

Gasolina esterificada

Page 24: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

17

sostenible de combustibles líquidos para el transporte y productos químicos, sin

comprometer las necesidades de futuras generaciones. Un objetivo importante del

siglo XXI para la academia, la industria y el gobierno debe ser conseguir una

utilización eficiente y económica de los recursos de la biomasa.

3. 2 Biocombustibles

El bioetanol y el biodiésel son actualmente los biocombustibles líquidos más

utilizados para el transporte. Se utilizan como aditivos o sustitutivos de combustibles

convencionales derivados del petróleo como la gasolina y el diésel, respectivamente.

Esta compatibilidad con las infraestructuras existentes para los combustibles

convencionales es el factor clave que ha permitido una rápida expansión de los

biocombustibles. De esta forma, la producción mundial de bioetanol y biodiésel ha

crecido exponencialmente en los últimos años, alcanzando en la actualidad un 2 % del

total de los combustibles consumidos en el mundo [8]. Otro factor que explica el rápido

desarrollo de estos biocombustibles es la simpleza de las tecnologías para su

producción, lo que ha permitido la construcción de un gran número de biorefinerías en

los últimos años.

3.2.1 Bioetanol

El bioetanol es el biocombustible más producido en la actualidad. Representa más

del 80 % de la producción total de biocarburantes y su producción continúa

aumentando. Los dos principales productores de bioetanol son EE.UU y Brasil, que

acaparan cerca de un 90 % de la producción mundial de este biocombustible. El

bioetanol se produce por fermentación anaeróbica de disoluciones acuosas diluidas de

azúcares derivados de la biomasa a temperaturas suaves (30-50 °C). El bioetanol

producido se purifica por destilación para eliminar el agua, y una vez purificado ya es

apropiado para su uso directo como combustible o aditivo. El bioetanol se suele añadir

a la gasolina en bajas concentraciones (5-10 % en volumen, E5-E10) ya que para la

utilización de mezclas ricas en etanol (E-85 y superior) es necesaria la modificación de

los vehículos. Como se ha comentado más arriba, la utilización de biomasa comestible

para la producción de etanol es un problema añadido, pues produce competición con

tierras dedicadas al cultivo de alimentos y, por ello, la investigación se centra

Page 25: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

18

actualmente en la producción de bioetanol a partir de fuentes de biomasa no

comestibles como la lignocelulósica [35]. Finalmente, es necesario indicar que su alta

miscibilidad con agua y su baja densidad energética en comparación con la gasolina

también son importantes limitaciones para la implementación del bioetanol como

combustible para el transporte [36].

3.2.2 Biodiésel

El biodiésel es el segundo biocombustible más empleado a nivel mundial y el

primero en Europa, representando el 80 % del mercado de los biocombustibles

actuales en Europa. La producción mundial de biodiésel ha crecido exponencialmente,

y se espera que alcance los 45 billones de litros en 2020 [37]. El biodiésel es una

mezcla de ésteres metílicos de cadena larga derivados de aceites vegetales como

girasol, soja, palma o colza. El proceso industrial de producción del biodiésel involucra

la reacción entre los triglicéridos de estos aceites vegetales y metanol, en presencia de

un catalizador básico (normalmente NaOH o KOH) a temperaturas suaves, en un

proceso denominado transesterificación (Figura 9).

Figura 9. Esquema del proceso de transesterificación para la producción de biodiésel.

En este proceso se producen grandes cantidades de glicerol (1,2,3-propanotriol)

junto con el biodiésel. Éste se separa por decantación del glicerol (mucho más denso) y

se purifica para su uso directo como combustible. Al igual que el bioetanol, el biodiésel

se usa en forma de mezclas diluidas (B-5, B-20) con diésel convencional, ya que el

biodiésel puro (B-100) no es compatible con los motores diésel actuales. Además, en la

actualidad también se está investigando la utilización de triglicéridos no comestibles,

como aceites usados y algas, para la producción de biodiésel [36].

Page 26: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

19

3.3 Valorización de glicerol

El glicerol, como se ha mencionado anteriormente, es el principal producto de

desecho de la creciente industria del biodiésel. Como consecuencia del proceso de

transesterificación de triglicéridos con metanol (Figura 9), se generan 100 Kg de

glicerol (en forma de disoluciones acuosas concentradas) por cada tonelada de

biodiésel producido.

Figura 10. Aplicaciones industriales del glicerol [38].

A pesar del gran número de aplicaciones actuales que posee el glicerol (Figura 10)

la sobreproducción generada por la industria del biodiésel excede con creces su

demanda actual, generando un remanente importante de glicerol crudo en la

industria. Además, el glicerol también se puede obtener como subproducto de la

conversión de lignocelulosa en etanol [39], que se espera sea una de las industrias más

importantes para la producción de biocombustibles en los próximos años. Por tanto,

un reto importante para la industria de los biocombustibles consiste en la búsqueda

de vías para la valorización de este glicerol residual, mejorando de esta forma la

economía de los procesos de producción de biocarburantes. En este sentido, se estima

que la venta del glicerol residual permitiría reducir los costes de producción del

biodiesel en un 6 % [40], y que la coproducción de glicerol y bioetanol disminuya los

costes de producción e incremente los márgenes de beneficio en la producción de

bioetanol lignocelulósico [41].

Una de los procesos que permitiría el consumo a gran escala de glicerol sería su uso

como combustible en el sector del transporte. Sin embargo, a diferencia del bioetanol,

el glicerol no se puede añadir directamente a los combustibles convencionales debido a

su baja solubilidad en hidrocarburos. Además, es un compuesto viscoso e inestable a

Medicamentos /Drogas18%

Resinas8%

Triacetín10%

Explosivos2%

2%Celofán2%

Detergentes

Tabaco6%

Otros 11%

Alimentos 11%

Plásticos14%

Cuidado personal16%

Glicerol

OH

OHHO

Page 27: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

20

altas temperaturas, por lo que se desaconseja su uso en motores de combustión. Por

tanto, una ruta interesante para la utilización del glicerol a gran escala implicaría

ajustar sus propiedades a la de los hidrocarburos. Por ello, la conversión del glicerol

en gas de síntesis (mezcla de CO e H2) o en una corriente rica en H2 mediante procesos

de reformado, y su posterior conversión en alcanos a través de tecnologías bien

conocidas como la síntesis de Fischer-Tropsch (F-T) o la posterior purificación de la

corriente de H2 mediante las reacciones de WGS y PROX, son vías con un gran

potencial [42].

La estructura química del glicerol, con tres grupos hidroxilo adyacentes, determina

las propiedades físicas y químicas de este compuesto. Es una sustancia

completamente soluble en agua, con un elevado punto de ebullición (290 °C) y con una

alta y variada reactividad química que puede ser aprovechada para la producción de

un gran número de compuestos. Algunas de las rutas catalíticas más importantes

para la transformación de glicerol en combustibles y productos químicos de alto valor

añadido se detallan en la Figura 11.

Figura 11. Principales rutas catalíticas para la valorización de glicerol a combustibles y

productos químicos.

El glicerol es un componente básico para la síntesis de numerosos productos

químicos, como ácidos glicéridos, propilenglicol, 1,3-propanodiol, poliésteres

ramificados y polioles. La oxidación selectiva, la hidrogenólisis y la deshidratación son

Page 28: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

21

las rutas más utilizadas para generar estos productos [43,44,45,46]. Muchos de estos

procesos son conocidos desde hace tiempo, pero no fueron investigados en profundidad

por el alto precio del glicerol. El desarrollo de la industria del biodiésel y el

consiguiente abaratamiento del glicerol ha relanzado la investigación en este campo

[47]. El desafío, en la mayoría de estos procesos, es el control de la alta reactividad del

glicerol que, en muchas ocasiones, impide la obtención de buenas selectividades a los

productos deseados. Para ello es imprescindible la preparación de catalizadores

adecuados y la determinación de condiciones de reacción óptimas.

4. REFORMADO CATALÍTICO DE GLICEROL

Como se ha indicado anteriormente, una de las rutas más interesantes para la

valorización de glicerol es el reformado catalítico. Esta reacción permite la

transformación de disoluciones acuosas de glicerol en una corriente gaseosa de CO,

CO2 e H2 sobre catalizadores metálicos soportados. Esta ruta se ha desarrollado con

rapidez en los últimos años como consecuencia de su aplicación en la producción

catalítica de H2 a partir de bioetanol utilizando catalizadores basados en Ni, Co y

metales nobles (Pt, Ru, Rh) a altas temperaturas (600-800 °C) [48]. El reformado

catalítico de glicerol ofrece una serie de ventajas con respecto al mismo proceso con

etanol. En primer lugar, la mayor reactividad química del glicerol en comparación con

el etanol permite realizar el reformado a temperaturas más bajas (250-400 °C). En

estas condiciones las reacciones no deseadas que conducen a la formación de coque

están cinéticamente controladas, facilitando un control óptimo sobre la composición de

la fase gas y alargando la vida media del catalizador. Además, el proceso de reformado

de glicerol es más versátil que el del etanol. En el reformado catalítico de glicerol las

condiciones de reacción y los catalizadores pueden ser seleccionados para producir gas

de síntesis para procesos de F-T o síntesis de metanol [42] o, alternativamente,

corrientes ricas en H2 mediante el acoplamiento del reformado con la reacción de

desplazamiento del gas de agua (Figura 11) [49]. Por otro lado, el reformado de

glicerol da lugar a un mayor número de productos secundarios en comparación con el

del etanol, que es una molécula más sencilla y menos reactiva.

El glicerol, por tanto, puede actuar como fuente renovable de gas de síntesis o de

hidrógeno mediante procesos de reformado catalítico. En la actualidad, las principales

Page 29: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

22

rutas para la producción de gas de síntesis e/o hidrógeno a partir de biomasa se basan

en su gasificación en atmósfera parcialmente oxidante a temperaturas entre 900-1100

°C. Mediante esta tecnología se obtiene una corriente de gas de síntesis diluida, con

cierto grado de impurezas procedentes de la biomasa (que hay que eliminar para

posteriores procesos de F-T) y con poco control de la relación H2/CO debido a las altas

temperaturas empleadas. El reformado catalítico de glicerol ofrece una interesante

alternativa al proceso de gasificación, ya que se obtiene gas de síntesis sin diluir y

libre de impurezas a temperaturas considerablemente más bajas (250-400 °C). El uso

de temperaturas bajas durante el reformado es muy interesante, pues permite el

acoplamiento directo (en un sólo reactor) con reacciones de F-T [50] o WGS [49]

(reacciones exotérmicas y por tanto, favorecidas a bajas temperaturas) reduciendo así

la complejidad del proceso. De esta forma, el calor necesario para llevar a cabo el

reformado endotérmico podría ser teóricamente suministrado por las reacciones

exotérmicas de F-T o WGS, mejorando así la eficiencia térmica del proceso.

Comúnmente, el reformado catalítico de glicerol se lleva a cabo sobre catalizadores

metálicos soportados. Industrialmente, la mayoría de los procesos de reformado

emplean catalizadores de Ni soportado sobre Al2O3. El Ni es un metal muy atractivo

para este tipo de procesos, ya que tiene una relación actividad/precio excelente [51], lo

que permite incorporar altas cargas de metal al catalizador, alcanzándose actividades

catalíticas similares a las obtenidas con los metales nobles pero a costes más

reducidos. Sin embargo, el Ni se desactiva por la sinterización de las partículas y por

la formación de depósitos de coque sobre su superficie [52,53,54,55]. Las principales

reacciones que pueden tener lugar durante el reformado de glicerol sobre

catalizadores metálicos se detallan en la Figura 12.

Page 30: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

23

Figura 12. Esquema de reacción para el reformado catalítico de disoluciones acuosas de

glicerol sobre catalizadores metálicos. (*) indica unión con la superficie catalítica [30].

El primer paso en el reformado es la adsorción del glicerol sobre la superficie

metálica. Este proceso tiene lugar a través de reacciones de deshidrogenación. A

continuación, los intermedios adsorbidos pueden sufrir reacciones de rotura de enlaces

C-C o C-O que darán lugar a los distintos productos de reacción. De esta forma, la

rotura de enlaces C-C da lugar a la formación de CO e H2. El CO en presencia de agua

puede reaccionar mediante la reacción de WGS para producir CO2 y más H2. Por

tanto, si se pretende generar una corriente rica en H2 en el reformado de glicerol, se

deben seleccionar condiciones de reacción y catalizadores que favorezcan reacciones de

rotura de C-C junto con la WGS. En caso contrario, si lo que se pretende es producir

una corriente rica en gas de síntesis debemos usar catalizadores y condiciones que

favorezcan reacciones de rotura C-C pero no así el proceso de WGS. De esta forma,

operando a bajas presiones y altas concentraciones de glicerol (o bajas concentraciones

de agua) se disminuye la presión parcial de agua en el reactor y se consigue desplazar

el equilibrio WGS hacia el CO. Alternativamente, se puede inhibir la reacción de WGS

mediante el uso de soportes inertes que no sean capaces de activar la molécula de

agua.

Como se indica en la Figura 12, si las condiciones de reacción no son

cuidadosamente controladas, tanto el CO como el CO2 pueden reaccionar con el H2

formado para producir metano (a través de procesos de metanación sobre el metal),

Page 31: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

24

mientras que el CO y el H2 pueden generar alcanos mediante procesos de F-T. Estos

procesos conllevan consumo de H2 y, por tanto, se deben evitar en el reactor de

reformado.

Al contrario de los procesos de escisión de enlaces C-C, la rotura de enlaces C-O

conlleva la formación de alcanos (productos indeseados) a través de la formación

intermedia de alcoholes. Esta rotura de enlaces C-O también se puede producir

mediante procesos de deshidratación (en sitios ácidos del soporte, por ejemplo) seguido

de hidrogenación del intermedio insaturado sobre el metal (Figura 12). Los procesos

de deshidrogenación sobre el metal y posterior reordenamiento generan ácidos

orgánicos. Estos intermedios de reacción, que se encuentran con frecuencia en la fase

acuosa obtenida tras el proceso de reformado, pueden reaccionar sobre el metal y

producir alcanos y CO2 a través de procesos de descarboxilación.

Por otro lado, cabe destacar que el reformado catalítico de glicerol en disolución

acuosa puede llevarse a cabo en fase vapor (si se opera a temperaturas elevadas y

presiones bajas) o, alternativamente, en fase líquida, si se trabaja a temperaturas

moderadas y presiones elevadas (por encima de la presión de vapor del agua a la

temperatura de reacción). Ambas estrategias tienen sus ventajas e inconvenientes.

Por ejemplo, trabajar en fase líquida permite ahorrar la energía necesaria para

vaporizar disoluciones acuosas de glicerol pero, por el contrario, obliga a operar a

elevadas presiones. Estas elevadas presiones favorecen la presión parcial del agua,

favoreciendo la reacción WGS, por lo que el reformado en fase líquida está

especialmente indicado para la producción de corrientes ricas en H2 con bajos niveles

de CO. El reformado en fase vapor permite mayor flexibilidad en la producción de H2 o

gas de síntesis (seleccionando, por ejemplo, el catalizador adecuado) y, además, opera

a mayores temperaturas, lo que incrementa la velocidad de reacción. Sin embargo, el

reformado en fase vapor necesita de catalizadores estables a altas temperaturas que,

por otro lado, favorecen las reacciones de formación de coque y la consiguiente

desactivación del catalizador de reformado.

De forma general, el reformado de glicerol es un proceso endotérmico que se puede

definir como la combinación entre la pirólisis y la reacción de desplazamiento del gas

de agua. Viene determinado por la siguiente reacción química:

Page 32: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

25

donde x indica el grado de participación de la reacción de desplazamiento del gas de

agua. X puede tener valores desde 0, en cuyo caso se trataría de una pirólisis, hasta 3,

que sería la reacción de reformado de glicerol con vapor de agua.

Termodinámicamente, el proceso está favorecido a altas temperaturas y presiones

bajas, mientras que la reacción de WGS se inhibe a altas temperaturas y no está

afectada por la presión.

Por tanto, la relación molar teórica H2/CO en el gas de síntesis obtenido a partir de

glicerol es de 1,3. Al introducir agua en el reactor esta relación puede aumentar a

consecuencia de las reacciones de WGS produciéndose, además, un cambio notable en

la relación molar CO/CO2 de la corriente gaseosa de salida. La reacción de WGS juega,

por tanto, un papel importante a la hora de regular la relación molar H2/CO del gas de

salida producido.

5. REACCIÓN DE DESPLAZAMIENTO DEL GAS DE AGUA (WGS)

La reacción de desplazamiento de gas de agua o WGS (de sus siglas en inglés

“water-gas shift”) es una reacción exotérmica y reversible, cuya constante de

equilibrio disminuye al aumentar la temperatura [13,56].

Pese a ser un proceso aparentemente sencillo, el mecanismo de reacción ha sido y

continua siendo un tema de debate, habiéndose propuesto dos tipos de mecanismos

sobre la base de resultados cinéticos y evidencias espectroscópicas [57] Además, el tipo

de mecanismo puede variar en función del catalizador y de las condiciones de reacción

empleadas. Uno de ellos es el llamado mecanismo redox o mecanismo regenerativo

tipo Eley-Rideal, en el cual el agua oxida la superficie del catalizador y el CO vuelve a

reducir la superficie oxidada. Este proceso ha sido descrito frecuentemente como un

Page 33: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

26

proceso bi-funcional, en el que el CO adsorbido sobre el metal es oxidado por el soporte

(que participa activamente en la reacción) y el agua suple la vacante de oxígeno

formada en la superficie del soporte [58,59].

Figura 13. Esquema del mecanismo redox para la reacción de WGS.

Por otro lado, el segundo mecanismo propuesto es el mecanismo asociativo o tipo

Langmuir-Hinshelwood, que transcurre a través de la formación de grupos

formiato/carboxilato superficiales. En este caso,el agua adsorbida o disociada forma

grupos hidroxilos reactivos que se unen al CO, formando un formiato/carboxilo

superficial que posteriormente se descompone en CO2 y H2 [60].

Figura 14. Esquema del mecanismo asociativo para la reacción de WGS.

La reacción de WGS es una reacción clásica, y a la vez muy relevante y con una

amplia trayectoria histórica en la industria química. Desde principios del año 1940, la

CO

Soporte

C

O

MO

CO2

H2O

Soporte

CO2

M

Soporte

MO

H

H

Soporte

H

MOH

Soporte

H2

MO

H2

CO

CO2

H2O

Soporte

M

H2

Soporte

M

C

O

Soporte

M

C

O

O

H

H

Soporte

M

C

O

O H H

Soporte

M

C

O

O H H

Page 34: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

27

reacción de WGS ha representado un paso importante en el proceso industrial de

producción de hidrógeno. Fue con el desarrollo del proceso Haber-Bosch para la

producción de amoníaco, cuando comenzó su aplicación práctica [57]. En este proceso,

la reacción de WGS se combina con el reformado de gas natural o con la gasificación

de carbón para producir una mezcla adecuada H2/CO para la síntesis de amoníaco. A

partir de este momento, la reacción de WGS ganó importancia y se convirtió en parte

inseparable de diversos procesos industriales, tales como la síntesis de metanol, la

producción de hidrocarburos alternativos como combustible a través de la reacción de

Fisher-Tropsch y la conversión de hidrocarburos mediante reacciones de reformado,

entre otras muchas aplicaciones.

Como se ha señalado antes, el hecho de que la reacción sea exotérmica hace que

esté favorecida termodinámicamente a bajas temperaturas y cinéticamente a altas

temperaturas. Por tanto, se puede lograr un rendimiento significativamente mejor

llevando a cabo primero la reacción a temperaturas relativamente altas (HTWGS:

high-temperature WGS), aprovechando una alta velocidad de reacción, cuando la

composición del gas está lejos del equilibrio. Acto seguido, para seguir convirtiendo el

CO restante, se baja la temperatura de reacción (LTWGS: low-temperature WGS),

cuando la termodinámica comienza a limitar la conversión de CO [61]. Por tanto, la

menor temperatura a la cual se puede alcanzar una máxima concentración de CO está

determinada por la actividad del catalizador y por la temperatura de rocío del gas

[62].

Los primeros catalizadores empleados para la reacción de WGS a alta temperatura

fueron mezclas de óxidos de Fe-Cr. Presentan la ventaja de su bajo coste y una

resistencia razonable a los venenos azufrados, pero solo son activos en un intervalo de

temperatura entre 400-500 °C [61]. En un intento de mejorar la actividad de estos

catalizadores se han realizado numerosos estudios en los que adicionan pequeñas

cantidades de metales nobles tales como Pt, Pd, Rh [63,64]. Más tarde se utilizaron

catalizadores basados en óxidos de Cu-Zn para la reacción de WGS a baja

temperatura en una serie de reactores adiabáticos para el suministro de hidrógeno en

condiciones industriales. El problema que presentan estos catalizadores es su carácter

pirofórico por encima de los 300 °C, lo que los hace indeseables por cuestiones de

seguridad, limitando sus aplicaciones. Algunos estudios sobre catalizadores de cobre

soportados en óxido de cerio demuestran que se obtiene una estabilidad térmica

Page 35: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

28

mayor que con los catalizadores convencionales Cu-Zn [61]. Adicionalmente, estos

catalizadores comerciales solo resultan activos a bajas velocidades espaciales, lo que

implica grandes volúmenes de reactor y limita su campo de aplicación a sistemas

estacionarios.

Recientemente, la reacción de WGS ha cobrado un renovado interés debido a su

papel crucial en la producción de hidrógeno puro para aplicaciones en pilas de

combustible [21,65]. Independientemente de los compuestos empleados para el

reformado, ya sean hidrocarburos o moléculas procedentes de la biomasa, la reacción

de WGS suele estar acoplada a ésta para modular la relación H2/CO que se obtiene a

la salida. Esta reacción es el proceso que recibe la mayor cantidad de CO (entre 1-13

% de CO en función del gas de reformado [57]. Esta concentración debe ser reducida

hasta aproximadamente el 1 % (v/v) antes de alimentar la siguiente unidad de

procesado. Por otro lado, la reciente aparición de esta tecnología basada en pilas de

combustible, y su empleo en equipos electrónicos móviles, hace necesario redefinir los

requisitos que debe tener un catalizador para ser empleado en estas unidades. Por lo

tanto, se hace indispensable el desarrollo de nuevos catalizadores no pirofóricos,

activos a bajas temperaturas (y que por tanto permitan conversiones elevadas de

acuerdo al equilibrio) y capaces de funcionar a velocidades espaciales elevadas. Estas

propiedades permitirían reducir considerablemente el volumen de la unidad de WGS

para su aplicación en los procesos integrados de generación de hidrógeno puro in situ

que alimente dispositivos móviles.

6. OBJETIVOS

En los últimos años, el interés y las regulaciones ambientales se han incrementado

en el ámbito público, político y económico, puesto que la calidad de vida está

directamente relacionada con un medioambiente limpio. Con este fin aparece el

concepto de “Química Verde” (también llamada química sostenible), que consiste en

una filosofía del uso de la Química dirigida hacia el diseño de productos y procesos

químicos que impliquen la reducción o eliminación de sustancias químicas peligrosas.

En este marco, la Catálisis juega un papel fundamental en el logro y mejora de estas

metas ambientales y económicas. La necesidad de desarrollar nuevos catalizadores,

más eficientes y selectivos, está directamente relacionada con la compatibilidad de los

Page 36: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

29

productos y los procesos químicos, con el medioambiente. La Catálisis representa una

parte muy importante en el desarrollo de nuevos procesos químicos sostenibles a

través de la Química Verde.

Teniendo en cuenta lo anteriormente expuesto, es necesario buscar alternativas

para los procesos de producción y/o limpieza de corrientes de hidrogeno, y el uso de

productos derivados de la biomasa. Se trataría de diferentes procesos catalíticos en los

cuales es indispensable el desarrollo de catalizadores eficientes para cada uno de ellos,

y sin los cuales no sería posible garantizar el éxito de la tecnología basada en el H2 y

las pilas de combustibles.

Dada la diferente naturaleza de estos procesos catalíticos y la multitud de

condiciones de reacción en que pueden transcurrir, cada uno de ellos requiere

catalizadores con características específicas. En la presente Tesis Doctoral, las

reacciones estudiadas han sido el reformado catalítico de glicerol (tanto en fase gas

como en fase líquida) y la reacción de desplazamiento del gas de agua (WGS). Para

ello, en este estudio se han desarrollado catalizadores de muy variada naturaleza

orientados a la optimización de cada uno de estos procesos. El conjunto de

catalizadores que se irán presentado abarcan desde metales nobles como el Pt, hasta

metales de transiciónmás económicos como el Ni. Adicionalmente, algunos parámetros

fundamentales en Catálisis como, por ejemplo, el método de preparación, la carga

metálica y su dispersión, así como el efecto del soporte, han sido evaluados de distinta

manera según la reacción considerada.

7. REFERENCIAS

[1]. EIA Annual Energy Review 2015,

http://www.eia.gov/forecasts/AEO/pdf/0383(2015).pdf.

[2]. D. Simonetti, J.A. Dumesic, ChemSusChem 1 (2008) 725-733.

[3]. Energy Information Administration, International Energy Outlook 2015

http://www.eia.gov/forecasts/ieo/0484(2015).pdf

[4]. BP statistical review of world energy 2015. http://bp.com/statisticalreview.

[5]. Directive 2003/30/EC of the European Union Parliament, Official Journal of the

European Union

Page 37: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

30

[6]. F. Kreith, D.Y. Goswami, in Handbook of Energy Efficiency and Renewable

Energy, CRC Press: Taylor and Francis Group, Boca Raton, FL, 2007

[7]. A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C. A.

Eckert, et al. Science 311 (2006) 484-489.

[8]. IEA, Technology Road map: Biofuels for Transport, 2011.

http://www.iea.org/papers/2011/biofuels_roadmap.pdf

[9]. C.E. Wyman, Appl. Biochem. Biotechnol. 45-46 (1994) 897-915.

[10]. Argonne National Laboratory, “Basic research needs for the hydrogen economy”

Second print, Report on the Basic Energy Sciences Workshop on Hydrogen

Production, Storage, and Use (2003)

[11]. J.I. Linares-Hurtado, B. Yolanda-Moratilla, El hidrógeno y la energía, Anales de

mecánica y electricidad / mayo-junio (2007)

[12]. A. Boudghene Stambouli, E. Traversa, Renew. Sust. Energ. Rev. 6 (2002) 295‐

304.

[13]. C. Ratnasamy, J.P. Wagner, Catal. Rev. 51 (2009) 325-440.

[14]. J.H. Wee, Renew. Sust. Energ. Rev. 11 (2007) 1720‐1738.

[15]. EG and G services, Fuell Cell Handbook, 5 ed., Morgantown, Virginia (2000) 9-

35.

[16]. E. Berger. BMW GroupCleanEnergy ZEV Symposium, September (2006)

[17]. A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energ. Fuel 19 (2005) 2098-

2106.

[18]. J.R. Rostrup-Nielsen, K. Aasberg-Petersen, in Fuel Cell technology and

applications, Eds. W. In Vielstich, H.A. Gasteiger, A. Lamm, Wiley: Chichester

(2003) 159-176.

[19]. P. Djinovic, C. Galletti, S. Specchia, V. Specchia, Catal. Today 164 (2011) 282-

287.

[20]. C. Song, Catal. Today 77 (2002) 17-49.

[21]. G. Kolb, in Fuel Processing for Fuel Cells, Eds. G.Kolb, Wiley-VCH, Weinheim

(2008).

[22]. DRAE, Dictionario de la Real Academia Española.

[23]. G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044−4098.

[24]. H.B. Goyal, D. Seal, R.C. Saxena, Renew. Sust. Energ. Rev. 12 (2008) 504–517.

[25]. R.C. Saxena, D. Seal, S. Kumar, H.B. Goyal, Renew. Sust. Energ. Rev. 12 (2008)

1909–1927.

Page 38: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Capítulo I

31

[26]. J. Ramage, J. Scurlock, Biomass. In: Boyle, G. (Ed.), Renewable Energy-Power

for a Sustainable Future, Oxford University Press, Oxford (1996).

[27]. Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energ. 34 (2009) 8799–8817.

[28]. A. Demirbas, Energ. Convers. Manage. 50 (2009) 14-34.

[29]. S. Schuck, Int. J. Environ. Stud. 63 (2006) 823-835.

[30]. R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964-967.

[31]. D.L. Klass, Biomass for Renewable Energy and Fuels, Vol. 1, Elsevier,

Barrington (2004) 193-212.

[32]. G.W. Huber, J.A. Dumesic, Catal. Today 111 (2006) 119-132.

[33]. J.C. Serrano-Ruiz, R.M. West, J.A. Dumesic, Annu. Rev. Chem. Biomol. Eng. (1)

2010 79-100.

[34]. K. Bendz, EU-25 Oilseeds and Products Biofuels Situation in the European

Union 2005; GAIN Report No.E35058; USDA Foreign Agricultural Service:

Washington, DC, 2005.

[35]. T. Foyle, L. Jennings, P. Mulcahy, Bioresour. Technol. 98 (16), 3026‐3036 (2007)

3026‐3036.

[36]. S. Al-Zuhair, Biofuels Bioprod. Bioref. 1 (2007) 57-66.

[37]. Biodiesel Magazine, http://www.biodieselmagazine.com/ article.jsp

article_id=4080

[38]. S. Katryniok, S. Paul, V. Bellière-Baca, P. Rey, F. Dumeigni, Green Chem. 12

(2010) 2079-2098.

[39]. G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science 308 (2005) 1446-

1450.

[40]. M.J. Haas, A.J. McAloon, W.C. Yee, T.A. Foglia, Bioresour. Technol. 97 (2006)

671–678.

[41]. C.E. Wyman, Biotechnol. Prog. 19 (2003) 254-262.

[42]. R.R. Soares, D.A. Simonetti, J.A. Dumesic, Angew. Chem. Int. Ed. 45 (2006)

3982-3985.

[43]. M. Pagliaro, M. Rossi, Future of glycerol, new usages for a versatile raw

material, RSC publishing, Cambridge, UK (2008).

[44]. N. Ueda, Y. Nakagawa, K. Tomishige, Chem. Lett. 39 (2010) 506-507.

[45]. A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem. 10 (2008)

13-30.

[46]. E. Taarning, S. Saravanamurugan, M.S. Holm, J. Xiong, R.W. West, C.H.

Christensen, ChemSusChem 2 (2009) 625-627.

Page 39: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Introducción general y objetivos

32

[47]. C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu, Chem. Soc. Rev. 37 (2008) 527-

549.

[48]. M. Nia, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energ. 32 (2007) 3238-

3247.

[49]. E.L. Kunkes, R.R. Soares, D.A. Simonetti, J.A. Dumesic, Appl. Catal. B 90

(2009) 693-698.

[50]. D.A. Simonetti, R. Hansen, E.L. Kunkes, R.R. Soares, J.A. Dumesic, Green

Chem. 9 (2007) 1073-1083.

[51]. J. Rostrup-Nielsen, Catalytic Steam Reforming, in: J. Anderson, M. Boudart

(Eds.), Catalysis, Springer Berlin Heidelberg (1984) 1–117.

[52]. C.H. Bartholomew, Catal. Rev. 24 (1982) 67-112.

[53]. C.H. Bartholomew, Appl. Catal. A 212 (2001) 17-60.

[54]. J. Rostrup-Nielsen, D.L. Trimm, J. Catal. 48 (1977) 155-165.

[55]. D.L. Trimm, Catal. Today. 49 (1999) 3-10.

[56]. P. Ramímez de la Piscina, N. Homs, Chem. Soc. Rev. 37 (2008) 2459-2467.

[57]. J.R. Ladebeck, J.P. Wagner in Handbook of Fuel Cells- Fundamentals,

Technology and Applications Eds. W. Vielstich A. Lamm H. A. Gasteiger, Wiley

(2003) 190-201.

[58]. Y.Li, Q.Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B 27 (2000) 179-187.

[59]. M. Mavrikakis, Mechanistic Studies of Low Temperature Water-Gas-Shift

Reaction, Topsøe Catalysis Forum, Hornbæk, Denmark (2005).

[60]. T. Shido, Y. Iwasawa, J. Catal. 141 (1979) 109-105.

[61]. R. Farrauto, S. Hwang, L. Shore, W. Ruettinger, J. Lampert, T. Giroux, Y. Liu,

O. Ilinich, Annu. Rev. Mater. Res. 33, (2003) 1-27.

[62]. T. Giroux, S. Hwang, Y. Liu, W. Ruettinger, L. Shore, Appl. Catal. B 56 (2005)

95-110.

[63]. T. Bunluesin, R.J. Gorte, G.W. Graham, Appl. Catal. B 15 (1998) 107-114.

[64]. D.L. Trimm, Appl. Catal. A 296 (2005) 1-11.

[65]. G. Jacobs, E. Chenu, P. M. Patterson, L. Williams, D. Sparks, G. Thomas, B. H.

Davis, Appl. Catal. A 262 (2004) 177-187.

Page 40: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CHAPTER II

Low temperature glycerol steam

reforming on bimetallic PtSn/C catalysts:

on the effect of the Sn content

GGrraapphhiiccaall aabbssttrraacctt

Page 41: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 42: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

35

Abstract

Steam reforming of glycerol to produce syngas or H2-enriched streams is a

promising route that has caught the attention of many researchers around the world.

This reaction is typically carried out over metal-based catalysts supported on stable

materials. Herein we report a study on the effect of Sn on the catalytic properties of

Pt/C in the aforementioned reaction. A series of Pt-Sn/C catalysts with different Pt:Sn

ratios were prepared and characterized using ICP, H2-TPR, TEM and XPS techniques,

and they were tested in the glycerol steam reforming reaction at 350 ºC and

atmospheric pressure. The best performance was observed for the catalysts with low

tin contents. It was found that Sn promoted oxidation reactions and inhibited

methanation. Furthermore, the presence of Sn improved the stability of the catalysts

when operating at harsher conditions of temperature and glycerol concentration. A

promoter effect of Sn hindering platinum sintering and the formation of coke

precursors is proposed as the origin of the observed behaviour.

Keywords: Bimetallic catalysts; PtSn/C; Glycerol steam reforming; Deactivation.

Page 43: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

36

1. INTRODUCTION

Fossil fuels are the world’s main energy source, but supplies are diminishing while

the consumers’ demand is progressively growing. In this scenario, there is a need to

develop clean and suitable energy alternatives to satisfy the global requirements.

Herein, next-generation biofuels, such as biodiesel, have become the most considered

substitutes for conventional fossil fuels due to technical, economic, and environmental

sustainability.

Biodiesel is comprised of mono-alkyl esters of long-chain fatty acids, which are

derived from vegetable oils or animal fats [1-3]. In the biodiesel synthesis process an

important amount of glycerol, ca. 10 wt%, is obtained as by-product. Although glycerol

is used as raw material in chemical industry, for instance in food, pharmaceutical,

cosmetic, and tobacco industries, the supply of glycerol is larger than the demand due

to the increasing biodiesel production. This over stock of glycerol obligates scientific

researchers to develop processes which transform it into valuable products and, in

this way, to improve the economic viability of the biodiesel production [4,5].

With this perspective, the conversion of glycerol to hydrogen via steam reforming

(GSR: glycerol steam reforming) is an interesting alternative [6]. This reaction is very

attractive since glycerol reforming can be performed using well-known technologies,

conducted at atmospheric pressure, at relatively low temperatures due to the

reactivity of the alcohol, and using conventional fixed-bed reactors [7]. The use of low

temperatures during reforming is very interesting because it allows direct coupling

(in one reactor) with Fischer-Tropsch (FT) reactions [8] or water-gas shift (WGS) [9].

However, glycerol steam reforming involves complex reactions affecting the hydrogen

selectivity and producing high carbon formation rates [10,11].

The glycerol steam reforming reaction can be represented as follows:

C3H8O3 (g) + 3H2O (g) 3CO2 (g) + 7H2 (g)

Thus, it is the combination of two reactions, glycerol decomposition (C3H8O3 (g) →

3CO (g) + 4H2) and water-gas shift (CO (g) + H2O (g) ↔ CO2 (g) + H2 (g)).

Page 44: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

37

Many metal catalysts have been reported for the GSR, among which Ru, Rh, Ir, Pd,

Pt, Co and mainly Ni are the most representative ones, being the Pt-based catalysts

among the most effective for its efficient C-C, O-H and C-H bond cleavages with high

activity and selectivity levels [12-14]. The use of bimetallic formulations has been

considered as a strategy to enhance the catalytic performance of Pt based catalysts. It

is well-established that the second metal may influence the first one through

electronic interactions and/or by modifying the morphology of the active sites. Among

the metallic promoters, Sn is one of the most preferable options. Sn addition as

promoter of catalytic activity and selectivity has been extensively studied in reactions

such as hydrogenations in the field of fine chemistry, alkane dehydrogenation and

methane reforming. In all the cases it has been observed that Sn addition improves

significantly the catalyst activity, selectivity and/or stability [15, 16].

The nature of the support influences the catalytic performance of the catalysts in

steam reforming reactions. Catalysts with Pt supported on Al2O3, ZrO2, CeO2/ZrO2,

MgO/ZrO2 and carbon have been studied, and it was found that the oxide-supported

systems are deactivated during the reaction, while carbon-supported catalysts showed

a stable conversion of glycerol to synthesis gas for at least 30 hours [6]. High levels of

unsaturated hydrocarbons such as ethylene were found in the gas stream of the

catalyst suffering a more rapid deactivation. These unsaturated compounds, formed

by dehydration reactions on the substrate, are precursors in the formation of coke,

and may explain the observed deactivation [17]. Due to its relatively inert chemical

nature, carbon does not catalyse such dehydration reactions and, therefore, it exhibits

an excellent performance in the reforming of aqueous glycerol solutions. Furthermore,

this material has excellent stability under hydrothermal conditions (moderate

temperatures and high concentrations of water) [6,18].

In this paper, a series of Pt-Sn/C catalysts with different Sn contents were

evaluated in the glycerol steam reforming reaction, in order to determine the effect of

tin content on the activity, selectivity and stability of carbon-supported Pt catalysts.

Page 45: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

38

2. EXPERIMENTAL SECTION

2.1 Catalysts preparation

A commercial activated carbon (RGC-30) with a high BET surface area (1598 m2/g)

was used as support. The monometallic catalyst, Pt/C, was prepared by impregnating

the dry support (110 ºC, overnight) with an acetone solution (10mL per gram of

support) of H2PtCl6·6H2O (Sigma-Aldrich 99.5 %) with the appropriate concentration

to obtain a Pt loading of 5 wt%. After stirring for 12 h, the excess of solvent was

slowly evaporated at 40 ºC under vacuum in a rotary evaporator. Then, the sample

was dried at 110 ºC until complete removal of the solvent.

Bimetallic PtSn catalysts were prepared by sequential impregnation. Tin addition

to the dried Pt/C sample was carried out using the proper amount of SnCl2 (99 %,

Sigma-Aldrich) dissolved in acetone (10 mL of solution per gram of solid) to obtain

Pt:Sn atomic ratios of 50:1, 10:1, 1:1, 1:5. After stirring for 12 h, the solvent was

removed under vacuum at 40 ºC. In this way five catalysts were prepared, which were

labelled as Pt/C, Pt-Sn/C (50:1), Pt-Sn/C (10:1), Pt-Sn/C (1:1) and Pt-Sn/C (5:1).

2.2 Catalysts characterization

The Pt content of Pt/C and Pt-Sn/C catalysts was determined by burning off the

catalysts in air at 800 ºC and analysing the residue (dissolved in aqua regia) by ICP-

OES (Perkin Elmer, Optima 4300 DV).

Temperature-programmed reduction (TPR) with H2 measurements were carried

out on the fresh (dried) catalysts in a U-shaped quartz cell using a 5% H2/He gas flow

of 50 mL/min, with a heating rate of 10 ºC/min. Before the TPR run, the catalyst were

pre-treated with flowing He (50 mL/min) at 150 ºC for 1 h. Hydrogen consumption was

followed by on-line mass spectrometry (Pfeiffer, OmniStar GSD 301).

X-Ray photoelectron spectroscopy (XPS) analyses were performed with a VG-

Microtech Multilab 3000 spectrometer equipped with a hemispherical electron

analyser and a Mg-Kα (h = 1253.6 eV; 1 eV = 1.6302·10-19 J) 300 W X-ray source. The

powder samples were pressed into small Inox cylinders. Before recording the spectra,

Page 46: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

39

the samples were maintained in the analysis chamber until a residual pressure of ca.

5 × 10−7 N/m2 was reached. The spectra were collected at pass energy of 50 eV. The

intensities were estimated by calculating the integral of each peak, after subtracting

the S-shaped background, and by fitting the experimental curve to a combination of

Lorentzian (30 %) and Gaussian (70 %) lines. The binding energy (BE) of the C l s

peak of the support at 284.6 eV was taken as an internal standard. The accuracy of

the BE values is ± 0.2 eV. Samples were reduced “ex-situ” in flowing H2 for 2 h at 250

ºC and conserved in octane before the analysis.

Conventional TEM analysis was carried out with a JOEL model JEM-210 electron

microscope working at 200 kV and equipped with a INCA Energy TEM 100 analytical

system and a SIS MegaView II camera. Samples for analysis were suspended in

methanol and placed on copper grids with a holey-carbon film support. Catalysts were

analysed before (samples reduced at 250 ºC, 2h) and after being used in the glycerol

steam reforming reaction.

2.3 Catalytic tests

The catalytic behaviour of the prepared catalysts in the glycerol steam reforming

reaction was evaluated under mild and harder reaction conditions in a fixed bed

reactor (Microactivity Refererence). Prior to the activity test, catalysts were in-situ

reduced under 50 mL/min of H2 at 250 ºC during 2 h. Then, the H2 stream was

changed to He, and the temperature was risen up to that of the reaction test, 350 or

400 ºC. The reaction was carried out at atmospheric pressure, with a feeding (0.05

mL/min) containing 10 or 30 % w/w glycerol in water. This 10 % w/w glycerol feed

composition is similar to that of the glycerol residue obtained from the biodiesel

production process after alcohol removal and acid neutralization of the glycerol

fraction. Activity tests were performed using 0.200 g of catalyst diluted with SiC, to

avoid thermal effects. The composition of the gas stream exiting the reactor was

determined by gas chromatography (Agilent Technologies), with two columns

(Carboxen-1000 and Porapak-Q) and two detectors (FID and TCD).

The catalytic performance was evaluated in terms of conversion into gaseous

products (based on a carbon balance between the inlet and the outlet of the reactor),

Page 47: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

40

selectivity to main reaction products (where “i” is CO2, CO and CH4) and also

hydrogen yield, which were defined as:

3. RESULTS AND DISCUSSION

3.1 Catalysts characterization

3.1.1 Chemical analysis

Table 1 presents the results of ICP analysis of the Pt content of the different

catalysts. It can be seen that the actual metal loading is very close to the nominal one

in all cases, this evidencing the efficiency of the impregnation method. Unfortunately,

the analysis method used did not allow for the determination of the Sn content due to

the volatility of the SnCl4 formed during the digestion process. Thus, these values were

estimated by XPS analysis.

% Conversion =C in the gas products

C fed into reactor· 100

% “i” selectivity =“i” produced experimentally

C atoms in the gas products· 100

% H2 Yield =H2 produced experimentally

H2 calculated according to Eq (1)· 100

Page 48: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

41

Table 1. Atomic ratios and binding energies of the Pt 4f7/2 and Sn 3d5/2 levels in catalysts

reduced at 250 ºC, and Pt loading.

* Determined by ICP analysis.

3.1.2 X-ray photoelectron spectra (XPS)

The binding energies of the Pt 4f7/2 and Sn 3d5/2 levels for the catalysts reduced in

flowing hydrogen at 250 ºC for 2 h are reported in Table 1. XPS results show that Pt is

completely reduced in all the catalysts, as the spectra show only one peak centred at

71.3 eV, which is assigned to metallic Pt. It is noteworthy to mention that a small

shift to lower binding energies can be observed in the PtSn/C catalysts compared to

the monometallic Pt/C catalyst. This shift may indicate the formation of Pt-Sn alloy

phases, as the differences in electronegativity of Pt and Sn could lead to charge

transfer from the less-electronegative Sn to the more-electronegative Pt [19,20]. In

fact, the analysis of the Sn 3d5/2 level indicates the presence of two contributions

(Table 1). The first one, centred at a binding energy around 486.2-486.4 eV, is

assigned to oxidized tin species, Sn(II, IV), and the second one, at around 485.2 eV,

corresponds to metallic tin (Sn(0)) [21]. Thus, the presence of metallic tin in the

catalysts reduced at 250 ºC opens up the possibility for the existence of Pt-Sn alloy

phases after this treatment, although this cannot be readily assessed by XPS [22,23].

It has also to be taken into account that the use of a relatively inert support such as

carbon decreases the possibility of a strong interaction between the tin precursor and

the support, this facilitating the Pt-Sn interaction and the formation of Pt-Sn alloy

phases [24]. Results obtained for the Pt/Sn atomic ratios are also presented in Table 1.

They confirm that the intended amount of tin has been deposited.

Catalyst Binding energies (eV)

Sn(0)/[Sn(II,IV)+Sn(0)] Pt/Sn (at/at) *Pt (wt%)

Pt 4f7/2 Sn 3d5/2

Pt/C 71.4 -- -- 4.8

Pt-Sn/C (50:1) 71.3 485.2 - 486.4 0.048 46.3 4.9

Pt-Sn/C (10:1) 71.3 485.2 - 486.3 0.107 11.4 4.8

Pt-Sn/C (1:1) 71.3 485.2 - 486.2 0.086 0.87 4.6

Pt-Sn/C (1:5) 71.2 485.2 - 486.3 0.074 0.28 4.7

Page 49: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

42

3.1.3 Transmission electron microscopy (TEM)

Figure 1 shows the TEM images of all samples, before and after being used in the

glycerol steam reforming reaction (350 ºC, 1 atm, 10 % w/w glycerol). It can be seen

that before the reaction, (left column) platinum and tin particles are well dispersed on

the carbon support, with a homogeneous distribution of the active phase over the

catalyst’s surface and no agglomerations being observed. It is important to point out

that it was not possible to distinguish between Pt and Sn, as both species appear in

the images as dark dots.

Figure 1. TEM images before (left column) and after glycerol steam reforming (right

column) for a), b) Pt/C; c), d) Pt-Sn/C (50:1); e), f) Pt-Sn/C (10:1); g), h) Pt-Sn/C (1:1) and i), j)

Pt-Sn/C (5:1) catalysts. (Scale 5 nm).

Page 50: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

43

TEM micrographs of all catalyst were also taken after reaction (right column) and

some agglomerations can be observed in this case. It can be seen that a considerable

sintering of the metal particles has been produced to different extents depending on

the sample. In this way, it is noteworthy to note that agglomerations in the tin-

containing catalysts are less evident than in the monometallic Pt/C catalyst, and a

lesser amount of agglomerates are formed when the amount of tin in the catalyst is

increased. This indicates that Sn provides a stabilizing effect on the Pt particles

avoiding their sintering, as it has also been observed in other works. [15,25]. Under

these conditions, the presence of coke is not observed. It is well known that Sn

inhibits the reactions leading to the formation of coke precursors, and improves in

this way the stability of the catalysts under reaction conditions [24].

3.1.4 Temperature programmed reduction

Figure 2 shows the TPR profiles of the carbon-supported Pt-Sn catalysts after the

drying process. The TPR profile of the carbon support only shows one H2 consumption

peak at high temperature (530-830 ºC). This peak appears in all the catalysts, and it

has been attributed to the reaction of H2 with reactive surface sites created by

decomposition of surface functional groups (mainly those that evolve as CO) on the

support [26]. For the monometallic Pt/C catalyst three H2 consumption peaks can be

clearly observed. The first one (150-250 ºC) is assigned to the reduction of the

impregnated metal chloride complex to form metallic Pt particles; the second one, at

intermediate temperatures (250-350 ºC), can be attributed to H2 consumption by

oxygen surface functionalities present on the support. Hydrogen which is previously

chemisorbed and dissociated on Pt particles is transported to the carbon surface by

spillover, where it reacts with the oxygen groups located at the metal-carbon interface

[27]. The third peak at higher temperatures (500-700 ºC) is attributed to hydrogen

consumption by the reduction of oxygen superficial groups on the carbon support that

are not located near the metal particles.

Page 51: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

44

Figure 2. H2-TPR profiles for the fresh dried catalysts.

On the other hand, the H2-TPR profiles for the bimetallic catalysts differ as the

amount of tin is increased. The peak at low temperatures becomes more pronounced

with the increase of the amount of tin. The reduction profile of Pt-Sn/C (50:1) is very

similar to that of the Pt/C catalyst. The increase of the amount of Sn produces a more

intense peak due to the reduction of both platinum and tin precursors, this revealing

the close proximity and strong interaction between both species. Thus, tin is reduced

at lower temperature due to the presence of platinum in the catalysts [28,29]. The

observed reduction process at intermediate temperatures can be attributed to the

reduction of oxidised Sn species (Sn(II) and/or Sn(IV)) that are not in intimate contact

with Pt. Interestingly, no high temperature reduction peaks are observed in these

profiles, what can be due to the partial blockage/decomposition of the oxygen surface

groups during the impregnation with the tin precursor and drying.

Based on the reduction profiles shown, and considering that the reduction

treatment applied previously to the reforming reaction is carried out at 250 ºC, we can

assume that the bimetallic catalysts are, before reaction, composed of metallic Pt, a

fraction of oxidized tin species (Sn (II)/Sn (IV)) and metallic Sn, likely forming alloy

phases with Pt. This conclusion is also supported by XPS data (Table 1).

3.2 Catalytic behaviour

The catalytic behaviour of the prepared catalysts in terms of gas phase conversion

as a function of time on stream, after being reduced at 250 ºC, is reported in Figure 3.

0 100 200 300 400 500 600 700 800 900 1000

Inte

nsity

(a.

u.)

Pt/C

Temperature (ºC)

Pt-Sn/C (50:1)

Pt-Sn/C (10:1)

Pt-Sn/C (1:1)

Pt-Sn/C (1:5)

Carbon

Page 52: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

45

The steam reforming of glycerol was performed at atmospheric pressure, 350 ºC and

0.05 mL/min of a 10 % w/w of aqueous glycerol solution. The gas phase analysis was

carried out every 30 min by on line chromatography. A blank run without catalyst

was also performed, and negligible glycerol conversion was obtained.

Figure 3. Gas phase conversion vs. time on stream of the different catalysts in glycerol

steam reforming at 350 ºC.

The gas phase conversions, after an initial increase during the first 2-3 h on

stream, were stable during the period of time studied (7.5 h). For the monometallic

catalyst, Pt/C, and the bimetallic catalysts with low tin content (Pt-Sn/C (50:1) and

Pt-Sn/C (10:1)) the conversion was complete, with all the glycerol solution being

transformed to gaseous products. A decrease of the gas phase conversion was observed

with the increase of the tin content in the samples. For Pt-Sn/C (1:1) the conversion

was about 78 %, and for the catalyst with the highest Sn content (Pt-Sn/C (1:5)) the

conversion was very low, about 10 %. This low conversion may be due to excessive

blocking of the active sites of Pt by the large amount of Sn present. In fact, a certain

free adjacent active sites of Pt are needed to adsorb and activate the glycerol molecule

(cleavage of C-C bond) so that it can be reformed [30].

The composition of the gas phase product stream is reported in Table 2. These

results were obtained when the conversion reached a stable value, after 5 h on

stream. It can be observed in Table 2 that the H2/CO molar ratio is close to 1 for the

monometallic catalyst and for the bimetallic catalysts with low Sn contents. For the

samples with higher Sn content an increase of this ratio was observed, reaching a

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

Gas

pha

se c

onve

rsio

n (%

)

Time (h)

Pt/C

Pt-Sn/C (50:1)

Pt-Sn/C (10:1)

Pt-Sn/C (1:1)

Pt-Sn/C (1:5)

Page 53: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

46

value of 3.56 for the Pt-Sn/C (1:5) catalyst. Furthermore, the CO/CO2 molar ratio

tends to decrease with increasing the amount of tin in the catalysts.

Table 2. Phase gas composition (molar ratios) and conversion in glycerol steam reforming at

350 ºC for all samples.

Catalyst H2/CO CO/CO2 CH4/H2 Gas phase conv. (%)

Pt/C 0.97 3.46 0.09 100

Pt-Sn/C (50:1) 1.00 3.10 0.08 98

Pt-Sn/C (10:1) 0.98 2.60 0.12 100

Pt-Sn/C (1:1) 1.28 2.78 0.16 78

Pt-Sn/C (1:5) 3.56 0.13 0.01 9

These results point to an enhancement of the water-gas shift reaction, which would

be favoured by tin species. There are few reports in the literature on the role of Sn in

the water-gas shift reaction. Recently, Gupta and Hegde reported the catalytic

behaviour of a Ce0.78Sn0.2Pt0.02O2-δ catalyst, which was able to convert over 99.5 % CO

to H2 at 300 ºC [31]. In this case, the role of tin species was claimed to be the

stabilization of the catalyst surface against the formation of deactivating carbonate

species. On the other hand, Azzam et al. studied the role of the support in Pt-based

catalysts for water gas shift [32], including a titania-supported bimetallic 0.5%Pt-

0.3%Sn catalyst. Although it was less active than other catalysts studied, such as Pt-

Re/TiO2, it showed a high catalytic stability at 300 ºC.

Values for the CH4/H2 molar ratio in Table 2 show that methane formation is very

low for all catalysts. In fact, nearly no methane was produced by the catalyst with the

highest amount of tin, Pt-Sn/C (1:5). The low methane formation is indicative of the

role of tin in inhibiting hydrogenation reactions between CO/CO2 and the H2 formed

[15].

The H2, CO, CO2 and CH4 selectivities (after 5 hours of reaction, time when

catalytic activity is stable) are presented in Figure 4. The effect of tin is clearly

observed. The CO2 selectivity slightly increases with the amount of Sn while the CO

selectivity decreases. This change is more pronounced with the Pt-Sn/C (1:5) catalyst,

so the Sn addition in large amounts promotes the CO oxidation producing H2-rich gas

streams and not streams for syngas. Furthermore the H2 selectivity increases with Sn

Page 54: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

47

addition except for the catalyst with the highest amount of Sn, but this could be

explained as due to the low conversion to gas phase and the possible H2 consumption

in the formation of liquid products.

Figure 4. Selectivity for the gaseous products in the GSR at 350 ºC.

Finally, considering the above results a stability test (not shown) was carried out

with the Pt/C and Pt-Sn/C (1:1) catalysts, in order to determining the effect of tin

during longer reaction (24 hours) in the same temperature conditions (350 ºC). In both

cases, the conversion to gas phase products remained stable during all the

experiment.

In view of these results, it was decided to test these catalysts under harder reaction

conditions: higher temperature (400 ºC) and a more concentrated of glycerol feed

solution (30 % w/w glycerol in water). The results of these experiments are shown in

Figure 5.

Under these conditions the monometallic Pt/C was nearly inactive, producing only

about 5 % conversion in the first hour on stream. In contrast, for the bimetallic

catalyst Pt-Sn/C (1:1) the conversion decreased with respect to reaction under milder

reaction conditions (78 % versus 50 %), but an excellent performance stability, for

almost 10 hours on stream, was obtained under these harder reaction conditions.

0

10

20

30

40

50

60

70

CO2 CO CH4 H2 H2 Yield

Se

lectivity,

%

Pt/C

Pt-Sn/C (50:1)

Pt-Sn/C (10:1)

Pt-Sn/C (1:1)

Pt-Sn/C (1:5)

CO2 CO CH4 H2 H2 Yield

Se

lectivity (

%)

Page 55: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

48

Figure 5. Gas phase conversion vs time of reaction for Pt/C and Pt-Sn/C (1:1) catalysts at

400 ºC and feed of 30 % w/w of glycerol.

The formation of coke is favoured at high reaction temperature and with high

glycerol concentration in the feed stream. This fact can explain the fast deactivation of

the Pt/C catalyst, which showed a good activity and stability under milder reaction

conditions. It is well known that Sn is able to inhibit coke formation reactions in

processes such as the dehydrogenation of hydrocarbons [24]. Thus, by electronic

and/or geometric effects Sn is able to modify the catalytic properties of Pt, inhibiting

reactions that form coke precursors and, thereby, improving the stability of the

catalyst. The effect of Sn may be similar in the reforming reaction of glycerol.

Probably a strong Pt-Sn interaction (as indicated by the results of TPR, Figure 2)

inhibits reactions that produce olefins (coke precursors) during glycerol reforming.

Furthermore, Sn has also a textural promoter effect, inhibiting the sintering of Pt

particles (as shown by TEM photographs) at these higher reaction temperature

conditions. Nevertheless, it has to be taken into account that the beneficial effects of

the presence of Sn become detrimental if a too high amount of this promoter is

present, as the amount of active Pt surface sites decrease and, thus, the catalytic

activity.

0 2 4 6 8 10

0

10

20

30

40

50

60

Time (h)

Pt-Sn/C (1:1)

Gas

pha

se c

onve

rsio

n (%

)

Pt/C

Page 56: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

49

4. CONCLUSIONS

The effect of Sn addition to Pt/C catalyst with different Pt:Sn ratios was

investigated in the glycerol steam reforming reaction. XPS and TPR-H2 data revealed

the close proximity and strong interaction between Pt and Sn. TEM images showed

that metal agglomerations in the tin-containing catalysts were less evident than in

the monometallic Pt/C catalyst, and a lesser amount of agglomerates were formed

when the amount of tin in the catalyst is increased.

Regarding catalytic tests, a good behaviour in terms of activity and stability was

obtained with bimetallic PtSn/C catalysts with low Sn/Pt ratios, both under mild

reaction conditions (10 wt% glycerol and 350 ºC) and under more severe conditions (30

wt% glycerol and 400 ºC). It was found that Sn promotes the CO oxidation reaction

producing H2-rich gas streams. Furthermore, the H2 selectivity increased with low

Sn/Pt ratios. Sn is also able to inhibit coke formation reactions and hinder Pt

sintering, thereby improving the stability of the catalyst.

7. REFERENCES

[1]. R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964-967.

[2]. R.C. Saxena, D.K. Adhikari, H.B. Goyal, Renew. Sustain. Energy Rev. 13 (2009)

167-178.

[3]. S.M. Kim, S.I. Woo, ChemSusChem 5 (2012) 1513-1522.

[4]. J.A. Melero, G. Vicente, M. Paniagua, G. Morales, P. Muñoz, Bioresour. Technol.

103 (2012) 142-151.

[5]. K.S. Avasthi, R.N. Reddy, S. Patel, Procedia Engineering 51 (2013) 423-429.

[6]. R.R. Soares, D.A Simonetti, J.A. Dumesic, Angew. Chem. Int. 45 (2006) 3982-

3985.

[7]. R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, Appl.

Catal. B 56 (2005) 171-186.

[8]. D.A. Simonetti, R. Hansen, E.L. Kunkes, R.R. Soares, J.A. Dumesic, Green

Chem. 9 (2007) 1073-1083.

[9]. E.L. Kunkes, R.R. Soares, D.A. Simonetti, J.A. Dumesic, Appl. Catal. B 90

(2009) 693-698.

Page 57: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Low temperature glycerol steam reforming on bimetallic PtSn/C catalysts: on the effect of the Sn content

50

[10]. P.R. Piscina, N. Homs, Chem. Soc. Rev. 37 (2008) 2459-2467.

[11]. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L Arias, M.B. Güemez, R.M. Navarro RM

et al. Catal. Comm. 10 (2009) 1275-1278.

[12]. S. Adhikari, S. Fernando, A. Haryanto, Catal. Today 129 (2007) 355-364.

[13]. P.J. Dauenhauer, J.R. Salge, L.D. Schmidt, J. Catal. 244 (2006) 238-247.

[14]. F. Pompeo, G. Santori, N.N. Nichio, Int. J. Hydrogen Energ. 35 (2010) 8912-

8920.

[15]. J.W. Shabaker, G.W. Huber, J.A. Dumesic, J. Catal. 222 (2004) 180-191.

[16]. J.W. Shabaker, D.A. Simonetti, R.D. Cortright, J.A. Dumesic, J. Catal. 231

(2005) 67-76.

[17]. M.C. Sánchez-Sánchez, R.M. Navarro, J.L.G. Fierro, Int. J. of Hydrogen Energ.

32 (2007) 1462-1471.

[18]. B. Kaya, S. Irmak, A. Hasanoglu, O. Erbatur, Int. J. Hydrogen Energ. 39 (2014)

10135-10140.

[19]. J.H. Kim, S.M. Choi, S.H. Nam, M.H. Seo, S.H. Choi, W.B. Kim, Appl. Catal. B

82 (2008) 89-102.

[20]. G.J. Siri, J.M. Ramallo-López, M.L. Casell, J.L.G. José Fierro, F.G. Requejo,

O.A. Ferretti, Appl. Catal. A 278 (2005) 239-249.

[21]. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, Powell CJ, Rumble

JR. NIST X-ray Photoelectron Spectroscopy Database, Gaithersburg (2007).

[22]. J. Ruiz-Martínez, F. Coloma, A. Sepúlveda-Escribano, J.A. Anderson, F.

Rodríguez-Reinoso, Catal. Today 133 (2008) 35-41.

[23]. F. Coloma, A. Sepúlveda-Escribano, J.L.G. Fierro, F. Rodríguez-Reinoso, Appl.

Catal. A 148 (1996) 63-80.

[24]. J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J. Catal. 246

(2007) 158-165.

[25]. S.M. Lima, A.M. Silva, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, Appl.

Catal. B 96 (2010) 387-398.

[26]. S.R. Miguel, O.A. Scelza, - nez, - nez de Lecea,

D. Cazorla-Amorós, A. Linares-Solano, Appl. Catal. A 170 (1998) 93-103.

[27]. S.R. Miguel, - nez, E.L. Jablonski, J.L.G. Fierro, D. Cazorla-

Amorós, O.A. Scelza, J. Catal. 184 (1999) 514-525.

[28]. M.C. Román-Martínez, D. Cazorla-Amorós, S.R. Miguel, O.A. Scelza, J. Jpn.

Petrol. Inst. 47 (2004) 164-178.

Page 58: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter II

51

[29]. G. Arteaga, A. Medina, O. Colina, D. Rodríguez, F. Domínguez, J. Sánchez,

Ciencia 16 (2008) 354-364.

[30]. C. Lamy, C. Coutanceau, RSC Energy and Environment Series No.6 (2012).

[31]. A. Gupta, M.S. Hegde, Appl. Catal. B 99 (2010) 279-288.

[32]. K.G. Azzam, I.V. Babich, K. Seshan, L. Lefferts, J. Catal. 251 (2007) 163-171.

Page 59: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 60: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CHAPTER III

Multicomponent NiSnCeO2/C catalysts

for the low-temperature glycerol steam

reforming

GGrraapphhiiccaall aabbssttrraacctt

Page 61: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 62: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

55

Abstract

In this work, the low-temperature hydrogen production via glycerol steam

reforming over activated carbon-supported Ni and Ni-Sn catalysts promoted by ceria

was studied. A combination of N2 adsorption, powder X-ray diffraction, temperature-

programmed reduction with H2, X-ray photoelectron spectroscopy and TEM analysis

were used to characterize the Ni-Sn-CeO2 interactions and the CeO2 dispersion over

the activated carbon support. The catalytic activity results show that the presence of

ceria enhances the water-gas shift reaction, thus promoting the selectivity towards

hydrogen. The inclusion of Sn stresses the influence of ceria in the displayed

performance. Moreover the formation of a Ni-Sn alloy seems to be an efficient way to

mitigate Ni sintering and therefore to improve the overall catalyst’s stability.

Keywords: H2 production; Nickel-tin; Glycerol; Ceria; Activated carbon.

Page 63: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

56

1. INTRODUCTION

Developing ways to utilize more effectively the abundant and renewable biomass

resources available should be imperative nowadays. This provides new sources of

energy and chemical intermediates, diminishing both the petroleum society

dependence and its consequent global warming effect [1]. The use of biomass as raw

material to produce hydrogen or synthesis gas is an interesting alternative route

because it is renewable and its CO2 emissions are almost neutral [2].

Among the multiple sources of biomass, the low-value glycerol that is produced as a

waste in biodiesel synthesis from the transesterification of vegetable oils and animal

fats is an interesting feedstock to be upgraded [3]. The production levels of biodiesel

are increasing constantly; therefore, finding a profitable outcome to waste glycerol

solutions can lower the manufacture costs of biodiesel [4].

Typically, glycerol is converted to more valuable products through reforming

reactions [5]. In this sense, steam reforming of glycerol is one of the most common

route. However, this process is rather endothermic and normally requires elevated

temperatures in order to obtain high performances. Alternatively, glycerol steam

reforming to produce H2 rich streams or H2/CO mixtures can be performed at

relatively low temperatures over metal-based catalysts in the so called low-

temperature steam reforming. This approach improves the economic viability of the

process, allowing the efficient combination of the endothermic conversions of glycerol

with the exothermic following steps in a hypothetical integrated process (water-gas

shift, Fischer-Tropsch or methanol synthesis). At the same time, the low temperature

steam reforming imposes some challenges in the catalyst design that have to be

covered.

On the other hand, the catalytic conversion of polyols to H2, CO and CO2 involves

the preferential cleavage of C-C bonds as opposed to C-O bonds [1], being Pt-based

catalysts the most effective system for this process. Indeed, we have recently

demonstrated the suitability of monometallic and bimetallic systems based on Pt and

Pt-Sn supported on carbon for glycerol upgrading [6]. In particular, the presence of Sn

benefits the catalyst’s stability allowing higher glycerol conversions during long term

periods. Furthermore, carbon supports seem to be a good choice since they are not

Page 64: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

57

able to catalyse dehydration reactions, due to their relatively inert chemical nature

under reaction conditions, while exhibiting an excellent performance in the reforming

of aqueous glycerol solutions when combined with a metallic active phase [7, 8].

Although Pt-based catalysts are more active in terms of specific activity, we

propose in this paper Ni as a potential candidate to replace Pt from the bimetallic

metal-Sn ensemble, since this transition metal represents a rather cheaper

alternative with good skills for reforming processes [9]. Furthermore, addition of Sn is

reported to avoid alkane formation by the methanation reaction over metallic Ni.

However, the catalytic activity of Ni-based catalysts is not modified by adding Sn

[10,11]. On the other hand, the formation of nickel carbide has been proposed as the

initial step of coke formation. The similar electronic structure of carbon and elements

of groups IV and V (Ge, Sn, Pb, etc.) may favour the interaction of these metals (free p

electrons) with Ni 3d electrons, thereby reducing the chance of nickel carbide

formation [12, 13].

And not least, the presence of an active support/promoter as ceria provides several

interesting advantages for a reforming catalyst. Its well-known activity in the WGS

reaction enriches hydrogen concentration in the reformate gas and reduces carbon

monoxide formation [14]. In addition, the excellent redox properties of this rare earth

oxide improve the redox reversibility of the metallic phase [15], and the basic

character of ceria mitigates coke formation, which is usually due to dehydration

reaction taking place in the catalyst´s acid sites [16]. Moreover, ceria dispersion on a

high surface carrier as activated carbon potentiates its catalytic skills, allowing to

obtain smaller oxide nanoparticles and higher oxygen mobility while reducing the

metal oxide spending [17].

In this way, a series of multicomponent NiSn/CeO2/C catalysts for hydrogen

production via glycerol reforming is proposed. One of the aims of this work is to

prepare optimized Ni-CeO2 catalysts, reducing the amount of ceria, in which the

interaction between the metal and the oxide is enhanced, thus improving the catalytic

activity. The reaction is carried out at relatively low temperatures and the catalytic

performance is compared to that of Sn-free NiCeO2/C systems. The effect of Sn on the

activity, stability and physicochemical properties of the catalysts is also a subject of

this study.

Page 65: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

58

2. EXPERIMENTAL SECTION

2.1 Catalysts preparation

The procedure used for the synthesis of the catalysts was similar to that reported

in our previous work [18]. The support was an industrial activated carbon (RGC30,

from Westvaco). This carbon was grinded and meshed (300-500 μm). The

corresponding amount of Ce(NO3)3·6H2O (99.99 %, Sigma–Aldrich) to obtain 20, 30

and 40 wt.% of CeO2 was dissolved in acetone. Dried carbon was added to the solution,

in a proportion of 10 mL/gsupport, with stirring. After 12 h, the excess of solvent was

slowly removed under vacuum at 40 ºC, and the solid was then dried in the oven

overnight. Finally, the dried solid was heat treated during 4 h at 350 ºC under flowing

He (50 mL/min), with a heating rate of 1 ºC/min, in order to slowly decompose the

cerium nitrate to form CeO2, and trying to avoid the modification of the carbon

surface by the evolved nitrogen oxides [19].Three CeO2/C samples were prepared with

different nominal CeO2 loadings: 20, 30 and 40 wt.%.

Nickel addition to the CeO2/C solid was carried out using the proper amount of

Ni(NO3)2·6H2O (99.9 %, Sigma-Aldrich) in acetone to obtain 15 wt.% Ni, using 10 mL

of solution per gram of solid. After stirring for 12 h, the solvent was removed under

vacuum at 40 ºC. Finally the solid was treated at 350 ºC for 4 h under flowing He (50

mL/min). For the sake of comparison, Ni/C and Ni/CeO2 catalysts were also

synthesized. The ceria support was prepared by homogeneous precipitation from an

aqueous solution of Ce(NO3)3·6H2O (99.99 %, Sigma-Aldrich) containing an excess of

urea. The solution was heated at 80 ºC and kept at this temperature, with slow

stirring, during 12 h. The solid formed was filtered and calcined at 350 ºC for 4 h. The

CeO2 support prepared in this way was impregnated with the Ni precursor as

described for the carbon supported catalysts. In this way, five samples were prepared,

which were labelled as Ni/C, Ni20CeO2/C, Ni30CeO2/C, Ni40CeO2/C and Ni/CeO2.

In addition, Ni-Sn catalysts were prepared by sequential impregnation. Tin

addition to the dried NiCeO2/C samples was carried out using the proper amount of

SnCl2 (99 %, Sigma-Aldrich) dissolved in acetone (10 mL of solution per gram of solid)

to obtain catalysts with a Ni:Sn atomic ratio of 10:1. After stirring for 12 h, the

solvent was removed under vacuum at 40 ºC. Five tin-containing catalysts were

Page 66: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

59

prepared, which were labelled as NiSn/C, NiSn20CeO2/C, NiSn30CeO2/C,

NiSn40CeO2/C and NiSn/CeO2.

2.2 Catalysts characterization

The textural properties of the supports were characterized by nitrogen

adsorption measurements at -196 °C. Gas adsorption experiments were performed in

a home-made fully automated manometric equipment. Prior to the adsorption

experiments, samples were out-gassed under vacuum (10-4 Pa) at 150 °C for 4 h. The

specific surface area was estimated after application of the BET equation.

X-Ray powder diffraction patterns were recorded on a Bruker D8-Advance with

a Göebel mirror and a Kristalloflex K 760-80 F X-Ray generation system, fitted with a

Cu cathode and a Ni filter. Spectra were registered between 20 and 80° (2θ) with a

step of 0.05° and a time per step of 3 seconds.

Temperature-programmed reduction (TPR) with H2 measurements were

carried out with the calcined catalysts in a U-shaped quartz cell using a 5 % H2/He

gas flow of 50 mL/min, with a heating rate of 10 °C/min. Hydrogen consumption was

followed by on-line mass spectrometry (Pfeiffer, OmniStar GSD 301).

X-Ray photoelectron spectroscopy (XPS) analyses were performed with a VG

Microtech Multilab 3000 spectrometer equipped with a hemispherical electron

analyzer and a Mg-Kα (h = 1253.6 eV; 1 eV = 1.6302·10-19 J) 300-W X-ray source. The

powder samples were pressed into small Inox cylinders. Before recording the spectra,

the samples were maintained in the analysis chamber until a residual pressure of ca.

5·10−7 N·m-2 was reached. The spectra were collected at pass energy of 50 eV. The

intensities were estimated by calculating the integral of each peak, after subtracting

the S-shaped background, and by fitting the experimental curve to a combination of

Lorentzian (30 %) and Gaussian (70 %) lines. The binding energy (BE) of the C l s

peak of the support at 284.9 eV was taken as an internal standard. The accuracy of

the BE values is ± 0.2 eV.

Page 67: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

60

2.3 Catalytic tests

The catalytic behaviour of the prepared catalysts in the glycerol steam reforming

reaction was evaluated under mild reaction conditions in a fixed bed reactor

(Microactivity Refererence). Prior to the activity tests, catalysts were in-situ reduced

under 50mL/min of H2 at 350 ºC during 2 h. The reaction was carried out during 30 h,

at atmospheric pressure and 350 ºC, with a feeding (0.05 mL/min) containing 10 w/w

glycerol in water. Activity tests were performed using 0.200 g of catalyst diluted with

SiC, to avoid thermal effects. The composition of the gas stream exiting the reactor

was determined by gas chromatography (Agilent Technologies), with two columns

(Carboxen-1000 and Porapak-Q) and two detectors (FID and TCD).

The catalytic performance was evaluated in terms of conversion into gaseous

products (based on a carbon balance between the inlet and the outlet of the reactor),

selectivity to main reaction products (where ―i‖ is CO2, CO and CH4) and also

hydrogen yield, which were defined as:

% Conversion =C in the gas products

C fed into reactor· 100

% “i” selectivity =“i” produced experimentally

C atoms in the gas products· 100

% H2 Yield =H2 produced experimentally

H2 calculated according to Eq (1)· 100

Page 68: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

61

3. RESULTS AND DISCUSSION

3.1 Catalysts characterization

3.1.1 Textural properties

Table 1 shows the specific surface area (N2, -196 °C, BET), the micropore volume

(Vmicro, N2, -196 °C, D-R) and the volume of mesopores (Vmeso) for the prepared samples

and the parent carbon support. The textural parameters of bulk ceria are also

included for sake of comparison.

Table 1.Textural properties of supports and catalysts.

Samples SBET(m2/g) Vmicro(cm3/g) Vmeso(cm3/g)

C 1487 0.52 0.62

CeO2 101 0.04 0.07

Ni/C 1238 0.45 0.52

Ni20CeO2/C 807 0.28 0.34

Ni30CeO2/C 677 0.23 0.28

Ni40CeO2/C 512 0.19 0.21

Ni/CeO2 70 0.03 0.04

NiSn/C 1228 0.41 0.52

NiSn20CeO2/C 800 0.25 0.35

NiSn30CeO2/C 676 0.23 0.29

NiSn40CeO2/C 502 0.17 0.20

NiSn/CeO2 69 0.02 0.03

The N2 adsorption isotherms at -196 °C for all the carbon-based materials (not

shown) correspond to a combination of Type I and Type IV isotherms, which are

characteristic of materials containing both micro- and mesopores. In fact, the

mesoporous volume is always slightly larger than the microporous one. Data in Table

1 show a continuous decrease of the BET surface area for the Ni-ceria-loaded carbons

as the amount of ceria increases, and the same trend is observed for both the

micropore and the mesopore volumes. This effect has been previously reported [19]

and it is attributed to the blockage of porosity by Ni and ceria crystallites to a certain

extent. It has also to be taken into consideration that ceria addition decreases the

Page 69: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

62

textural parameters of these materials, as compared with those of the parent Ni-

carbon, as an effect of the increase of mass and the much lower porosity of ceria as

compared with carbon.

It has to be noted the much lower surface area of the ceria support and of the ceria-

supported nickel catalyst as compared to that their carbon-supported counterparts.

The impregnation stage with the tin precursor also produces a smooth decrease in

the BET surface area of the catalysts, which is also attributed to presence of Sn in low

concentration.

3.1.2 H2-temperature-programmed reduction

Temperature programmed reduction studies were conducted in order to assess the

redox properties of the catalysts and to analyze the interaction between the different

metallic species and the support. Figure 1 shows the H2-TRP profiles of the prepared

materials. The profile obtained with the Ni/C catalyst presents two peaks at low and

medium temperatures, respectively. The first peak, centred at 240 ºC, is ascribed to

the reduction of small and well dispersed nickel oxide particles, while the peak at

higher temperature accounts for the reduction of medium size NiOx species, as

described elsewhere [18]. For the Ni/CeO2 catalyst two reduction zones were observed.

The low temperature one, between 150 and 400 ºC, is related to the reduction of NiOx

particles in contact with ceria and also to the surface reduction of ceria, while the

peak at high temperatures (700-900 ºC) is due to the bulk ceria reduction normally

observed in this temperature range [20]. The ternary NiCeO2/C systems show

intermediate redox behaviour with both NiOx and CeO2 contributions. More

specifically, three reduction processes were observed in the H2-TPR profiles for

NixCeO2/C. The first low temperature peak is attributed to the reduction of highly

dispersed NiO on the support, and the intermediate ones correspond to the surface

reduction of ceria with different degree of interaction with nickel particles. Several

types of Ni species coexist depending of the Ni/Ce ratios. In addition, for solids with

higher ceria loadings, Ni-Ce solid solution and well dispersed NiO phase may coexist,

as has been reported before [21,22]

Page 70: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

63

Figure 1. H2-TPR profiles for NiCeO2/C (—) and NiSnCeO2/C (---) catalysts.

The addition of Sn provokes notable changes in the TPR profiles. In principle, one

should expect an enhanced reducibility due to the electronic Ni-Sn interaction.

Indeed, Ni is a more electronegative element than Sn (1.9 vs. 1.5 in Pauling scale) and

thus, the electronic transfer from Sn to Ni is plausible and should facilitate Ni

reducibility. However the situation is much more complex due to the heterogeneity of

the studied catalysts. For instance, the profile of Ni/C shows two peaks as commented

above due to two types of Ni particles with different size. Sn addition makes the

reduction process more homogeneous, merging both reduction peaks in a broader

reduction zone centred at 350 ºC. This effect is somewhat repeated along the whole

series of catalysts. Basically all the Sn-promoted catalysts show only one reduction

zone involving the reduction of CeO2, NiO and SnOx together. This fact may indicate

the role of Sn as an electronic bridge between Ni and Ce, favouring the electronic

transfer between both species, this resulting in a more homogenous reduction profiles.

3.1.3 XPS characterization of reduced catalysts

Further insights on the chemical modifications of the catalysts after reduction in

H2 at 350 ºC were investigated by XPS. The samples were reduced ex-situ and

conserved in octane until the analysis. The binding energies (B.E.) of the main peaks

of the Ni 2p3/2 and Sn 3d5/2 energy levels are summarized in Table 2. In the absence of

NiSn/CeO2

Ni20CeO2C

NiSn20CeO2/C

NiSn30CeO2/C

NiSn40CeO2/C

0 100 200 300 400 500 600 700 800 900 1000

Inte

nsity

(a.

u.)

Ni/C

Ni20CeO2/C

Ni30CeO2/C

Ni40CeO2/C

Temperature (ºC)

Ni/CeO2

Ni/C

NiSn/C

Ni/C

NiSn/C

Ni20CeO2/C

NiSn20CeO2/C

Ni30CeO2/C

NiSn30CeO2/C

Ni40CeO2/C

NiSn40CeO2/C

Ni/CeO2

NiSn/CeO2

Page 71: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

64

tin, the reduced catalysts exhibited complex Ni 2p3/2 spectra, pointing to the

presence of different nickel species. For instance, the band at ca. 852.6 eV is assigned

to metallic Ni0 species, while the bands at about 854.7 and 856 eV are ascribed to NiO

and Ni(OH)2 species, respectively [23,24]. The presence of ceria shifts the Ni2+ bands

towards higher binding energies, what indicates a strong Ni-CeO2 interaction in good

agreement with the TPR data. This interaction may modify the structure and

electronic properties of Ni, this enhancing the catalytic behaviour of these materials

[25]. Furthermore, such a strong interaction depends also on the ceria particle size

and dispersion, as deduced from the different position of the bands in the carbon-

supported catalysts as compared to those of Ni supported on bulk ceria. In any case, it

should be mentioned that Ni was not completely reduced in any of the samples after

the reduction treatment.

Table 2. Binding energies of the Ni 2p3/2 and Sn 3d5/2 levels in catalysts reduced at 350 ºC.

1 values in parenthesis indicate the percentage of metallic Ni and Sn calculated from XPS

areas

The situation is more complex for the tin containing samples. Table 2 summarizes

the positions (binding energies) of the Sn 3d5/2 XPS bands observed for the Sn-doped

samples. This band is constituted by two contributions. The peak centred at ca. 485

Catalysts Ni 2p3/2 (eV) Sn 3d5/2 (eV)

Ni2+

Ni0 Sn

2+,4+ Sn

0

Ni/C 854.1 - 856.3 852.3 (38)1 -- --

NiSn/C 854.1 - 856.2 852.8 (38) 486.4 484.9 (27)1

Ni20CeO2/C 854.8 - 856.9 852.8 (33) -- --

NiSn20CeO2/C 854.8 - 856.6 852.9 (49) 486.4 485.0 (49)

Ni30CeO2/C 854.2 - 856.5 852.6 (35) -- --

NiSn30CeO2/C 854.7 - 856.7 852.7 (55) 486.4 485.0 (33)

Ni40CeO2/C 854.7 - 856.8 852.7 (35) -- --

NiSn40CeO2/C 855.2 - 857.2 853.0 (50) 486.7 485.6 (41)

Ni/CeO2 855.4 - 857.6 853.6 (35) -- --

NiSn/CeO2 854.7 - 857.6 852.6 (51) 486.4 484.9 (16.5)

Page 72: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

65

eV is attributed to Sn0 while the peak centred at 486.4 eV is related to oxidized tin

species [11]. It is worth mentioning that the presence of metallic Sn can be associated

to the formation of a Ni-Sn alloy, as pure tin oxide is known to reduce only at above

527 ºC [26]. Indeed, Shabaker et al. demonstrated, by using Mossbauer spectroscopy,

the presence of Ni3Sn after a reduction treatment similar to that employed this work

[27]. In fact, and according to our Ni/Sn atomic ratio, Ni3Sn is the possible alloy when

the Ni-Sn phase diagram is considered [28].

Furthermore, tin addition also modifies the Ni XPS features. In particular, the

presence of Sn promotes Ni reducibility leading to a higher concentration of metallic

Ni species (calculated values shown in Table 2). This observation agrees with the

redox features discussed in the TPR section, and underlines the intimate Ni-Sn

contact. The presence of reduced Ni can be linked to the above mentioned formation of

a Ni-Sn alloy. However, reduced Ni particles and Ni3Sn species are indistinguishable

by photoelectron spectroscopy. In any case, the Ni-Sn interaction is evident, and

correlates well with the results obtained in the TPR experiments. In fact, this Ni-Sn

contact is also influenced by the presence of ceria and its loading. In this sense, it

must be underlined that 30 wt.% of CeO2 seems to be the optimal loading to provide

an adequate environment facilitating the chemical interactions among the active

phase and the promoters. As shown in Table 2, NiSn30CeO2/C is the catalyst with the

highest concentration of reduced Ni and with a richer proportion of Sn0.

3.2 Catalytic behaviour

The catalytic behaviour of the prepared multicomponent catalysts in terms of gas

phase conversion as a function of time on stream, after being reduced at 350 ºC, is

reported in Figure 2. The steam reforming of glycerol was performed at atmospheric

pressure, 350 ºC and 0.05 mL/min of a 10% w/w of aqueous glycerol solution. The

reaction was carried out for 30 h in order to assess the deactivation process and to

determine the effect of tin during these long reaction runs. The study of the catalytic

stability is, from the industrial application point of view, as relevant as the catalytic

activity. The gas phase analysis was carried out every 30 min by on line

chromatography. A blank run with only the carbon support was also performed, and

negligible glycerol conversion was obtained.

Page 73: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

66

Figure 2. Gas phase conversion vs. time on stream for (A) NiCeO2/C catalysts and (B)

NiSnCeO2/C catalysts in glycerol steam reforming at 350 ºC.

It can be seen in Figure 2 that there is a clear effect of the ceria loading on the

catalytic activity, being the sample containing 30 wt.% CeO2 the most active one

(Figure 2A). Furthermore, in all cases, catalysts with CeO2 were the most active

materials. On the contrary, Ni/C shows a lower activity, this assessing the

determinant role of ceria in this reaction due to its well-known redox properties, and

also its ability to improve the stability and the catalytic performance of these

catalysts by the synergistic effect between the Ni and CeO2.

On the other hand, two different activity windows can be distinguished. Firstly, at

early reaction stages (less than 3 h), all the studied samples displayed good catalytic

activity reaching high glycerol conversions. In this range most of the catalysts exhibit

comparable conversions, with the NiSn30CeO2/C sample outstanding among the

others. This catalyst resulted to be the best one, reaching full alcohol conversion in

the first 5 h on stream. From then on glycerol conversion progressively dropped for all

the studied samples. Due to the complex nature of our catalysts, several factors might

be responsible of the observed deactivation. In the simplest system, Ni/C, deactivation

is mainly due to the sintering of metal particles. The absence of any other component

(apart from the mere support) to stabilize and prevent Ni agglomeration leads to

rapid Ni sintering, what explicates the activity depletion. In addition, C deposition is

favoured in these agglomerated Ni particles, this also contributing to the deactivation.

Figure 3 shows TEM micrographs of the Ni/C catalyst after reaction. It can be seen

that a considerable sintering of the metal particles has taken place (Figure 3A).

Page 74: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

67

Furthermore, the possibility of having coke covering the metal particles, although

difficult to assess due to the carbonaceous nature of the carbon support, has also to be

taken into account (Figure 3B). These processes also occurs in all the other catalysts

(see below), but the presence of ceria and tin slows down the sintering and coke

poisoning. Even so, the ceria-supported Ni catalyst also experienced a relatively fast

deactivation. A similarly quick deactivation was found by Dumesic et al. when basic

supports were applied in the low-temperature glycerol reforming [7]. Apparently, the

activity drop is caused by glycerol dehydration on the oxide catalyst support, which

leads to the formation of carbonaceous blocking species that are accumulated on the

surface [7, 29]. Very interestingly, the tin promoted materials seem to be less prone to

deactivation. Despite the fact that the activity falls for all the tin-doped samples after

5 h on stream, this drop is smoother compared to that of the tin-free samples. It seems

that tin allows greater glycerol conversion even when the catalyst is operating under

deactivation conditions. The addition of Sn improves catalytic stability, avoiding Ni

sintering, what is maybe due to the formation of Ni-Sn alloys.

Figure 3. TEM micrographs of the Ni /C catalyst after reaction at 350 °C during 30 h.

The H2/CO, CO/CO2, CH2/H2 molar ratios for the product streams at 25 h on stream

(when the steady state is reached) with NixCeO2/C and NiSnCeO2/C catalysts are

summarized in Table 3. The stoichiometric H2/CO ratio, if all glycerol were converted

into CO and H2 (C3O3H8→3CO + 4H2), is 1.3. In contrast, the H2/CO ratios obtained

over all samples were higher, this indicating a remarkable contribution from the

water-gas shift reaction (CO + H2O H2 + CO2). This behaviour is more clearly

evidenced in the CO/CO2 molar ratio, which is higher for Ni/C and NiSn/C (ceria-free

samples). Therefore, it can be partially concluded that ceria benefits the hydrogen

Page 75: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

68

yield and influences the products distribution since its presence is linked to the WGS

reaction [30].

Table 3. Gas phase composition (molar ratios) and conversion in glycerol steam reforming

at 350 ºC for all samples.

Catalyst H2/CO CO/CO2 CH4/H2 Gas phase conv. (%)

Ni/C 11.6 0.249 0.008 15

Ni20CeO2/C 43.1 0.062 0.012 34

Ni30CeO2/C 34.9 0.054 0.010 45

Ni40CeO2/C 32.1 0.072 0.008 35

Ni/CeO2 32.5 0.074 0.003 38

NiSn/C 5.6 0.849 0.006 18

NiSn20CeO2/C 11.6 0.302 0.009 40

NiSn30CeO2/C 9.4 0.479 0.016 52

NiSn40CeO2/C 7.9 0.294 0.012 41

NiSn/CeO2 12.9 0.173 0 26

The maximum H2/CO ratio was obtained for samples containing 20 wt.% ceria,

suggesting a promoted WGS activity when ceria is dispersed over a high surface area

carbon material, in good agreement with previous results [17]. For the Sn-containing

samples a decrease of this ratio was obtained, which can be due to the presence of tin

species blocking CeO2 active sites. Furthermore, the CO/CO2 molar ratio tends to

increase with the presence of tin in the catalysts, this indicating that Sn slows down

the WGS reaction in the multicomponent catalysts. On the other hand, the

methanation reaction seems to have a minor influence in our process. Values for the

CH4/H2 molar ratio in Table 3 show that methane formation remains low for all

catalysts.

The H2 yield and CO, CO2, CH4, CHx selectivities are presented in Figure 4. For all

the ceria-containing catalysts (Figure 4A) the H2 yield and selectivities to the

different product are rather similar, independently of the ceria content. However,

some pronounced differences were obtained upon tin addition. This change is more

notorious for the NiSn30CeO2/C catalyst, which showed the best catalytic behaviour

in terms of conversion and stability, and also reached a maximum H2 yield of about 48

Page 76: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

69

% (Figure 4B). In this respect, the beneficial effect we have observed by adding Sn to

the Ni30CeO2/C sample on the selectivity for H2 production may be caused by the

presence of Sn at Ni-defect sites, and by the formation of Ni-Sn surface alloy species,

such a Ni3Sn alloy, which maintain the high rates of C-C cleavage needed for H2

production [11]. Furthermore, the best catalytic behaviour obtained with the

NiSn30CeO2/C catalyst is in fair agreement with the characterization data discussed

above. This sample is the one with a higher concentration of reduced Ni and with a

richer proportion of Sn0, both metals synergistically interacting and thus favouring

the catalytic performance. For the remaining NiSnxCeO2/C samples a tendency was

observed: CO2 selectivity slightly increased with the amount of ceria while CO

selectivity decreased, an effect that backs up the WGS contribution ascribed to ceria.

Finally, tin addition affected to different extents the catalytic activity of these

samples, blocking part of ceria active sites. Therefore, a larger amount of CeO2 to

increase the water-gas shift contribution is needed.

Figure 4. H2 yield and selectivity for gas products in the GSR at 350 ºC for NiCeO2/C (A)

and NiSnCeO2/C (B) catalysts.

3.3 XRD post-reaction characterization

Post-reaction characterization provides some clues to back up the catalytic activity

discussion. Thus, XRD diffraction patterns of the spent catalysts are presented in

Figure 5. Some remarkable differences can be established between the studied

catalysts. As a general trend, cerium oxide presents smaller particle sizes and higher

amorphous character when supported on carbon. The typical fluorite cell reflexions

are sharper and more intense for the ceria bulk materials compared to ceria

(B) (A)

Page 77: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

70

supported on carbon. The later points to a greater ceria dispersion, which is beneficial

for the reforming reaction and underlines the fact that better catalytic skills can be

achieved with less amount of ceria if this oxide is dispersed in a high surface carrier

as carbon. Similar results were obtained in recent works using ceria-based catalysts

for WGS, with the oxide dispersed on an inert support [18,31]. On the other hand, the

XRD analysis confirms Ni sintering during the reforming reaction, especially for the

NixCeO2/C catalysts (Figure 5A). All these samples present the typical metallic Ni

reflections accounting for the Ni reduction and agglomeration during the process. Ni

particle size is around 19 nm for all the samples presented in Figure 5A, except for

the Ni/C solid, whose Ni particle size is somewhat larger than ca. 23 nm (values

estimated by the Scherrer equation). This is an interesting observation since,

apparently, the ceria-free systems underwent stronger sintering. In other words, it

seems that ceria mitigates to some extent metallic Ni agglomeration. It is well known

that the oxygen vacancies present on ceria are electron rich sites where metallic

particles preferentially nucleate [32]. This preferential nucleation of Ni on ceria’s

oxygen vacancies could explain the strong Ni-Ce interaction, which is evidenced also

in the TPR profile, and accounts for the higher resistance of the ceria-containing

materials to metal sintering.

Figure 5. XRD post-reaction characterization for NiCeO2/C (A) and NiSnCeO2/C (B)

catalysts.

20 25 30 35 40 45 50 55 60 65 70 75 80

*

º

º

+

+

*

NiSn/C

*

+ Ni3Sn

Ni metallic

NiSn20CeO2/C

NiO

CeO2

Inte

nsity

(a.

u.)

NiSn30CeO2/C

NiSn40CeO2/C

2 degree)

NiSn/CeO2

20 25 30 35 40 45 50 55 60 65 70 75 80

CeO2

NiOº

ºº

*

**

Ni/C

* Ni metallic

º

Ni20CeO2/C

Inte

nsity

(a.

u.)

Ni30CeO2/C

Ni40CeO2/C

2 degree)

Ni/CeO2

Page 78: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

71

The situation becomes more interesting when the NiSnXCeO2/C series of catalysts

are considered (Figure 5B). Some peaks ascribed to Ni-Sn alloy were identified for the

NiSn/C sample, in good agreement with the XPS data [33,34] In addition, some

reflexions related to metallic nickel and to nickel oxide were found for this sample.

Contrary to the NixCeO2/C series (Figure 5A), no peaks related to metallic Ni were

observed for the multicomponent NiSnxCeO2/C catalysts after reaction. Also, the

peaks of the alloy phase are broader and smoother for these samples. This is a crucial

difference between both series of catalysts, which reveals the absence of sintering of

metallic particles when the Ni-Sn-Ce ensemble is considered. Shabaker et al.

suggested that Sn migrates into the Ni particles to form Ni-Sn alloys during high-

temperature reduction [27]. Indeed, diffusion of Sn into Ni occurs rapidly at elevated

temperature, especially above the melting point of Sn (323 ºC) [35]. Therefore the use

of Sn in the metallic phase has a strong effect in the catalytic properties of NiCeO2/C

solids. The Ni-Sn alloy formed is better dispersed on the ceria-carbon support and,

what is more important, it presents a higher tolerance to sintering in comparison with

the monometallic NiCeO2/C systems, this enhancing the catalytic behaviour in terms

of larger hydrogen yields and stability with time on reaction.

4. CONCLUSIONS

We have developed a series of active ceria-promoted Ni and Ni-Sn catalysts

supported on carbon for the low-temperature glycerol steam reforming. Our most

active samples reached full glycerol conversion at early reaction stages with

reasonably good hydrogen yields. In fact, hydrogen production is boosted via WGS due

to the ability of ceria to carry out the shift process in the studied temperature window.

Additionally, the strong influence of the WGS is reflected in the CO/CO2 and the

H2/CO2 ratios, in such a way that the obtained gas stream is rich in hydrogen and

relatively poor in CO, an added value for further downstream processing.

The catalytic trends observed are a consequence of the complex nature of these

multicomponent systems. The presence of Sn modulates the redox properties, acting

as an electronic bridge between Ni and Ce and favouring the electronic transfer

between both species, this resulting in more homogenous reducibility profiles. Also,

our data indicate the formation of Ni-Sn alloy that plays a crucial role in the catalytic

Page 79: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

72

activity. The bimetallic Ni-Sn catalysts are more active and more stable than the

monometallic ones based exclusively on Ni. Apparently, the Ni-Sn alloy palliates the

metallic sintering thus maintaining a good metallic dispersion of the active phase

during the reaction. This effect is high-lightened in the presence of ceria. The Ni-Sn

alloy is better dispersed in the CeO2/C support than in the pure C one, this helping to

avoid the sintering process. Consequently, the presence of all the components Ni, Sn,

CeO2 and the carbon support is mandatory for an optimum performance. In the case

of CeO2, its dispersion on carbon leads to smaller ceria particles that are more active

in the shift process, this favouring the hydrogen production with a low ceria loading.

Overall, the results presented in this paper demonstrate that a successful glycerol

upgrading in mild conditions can be achieved without a noble metal based catalyst.

Herein, we propose a multicomponent system in which every component is carefully

selected with the aim to potentiate the catalytic performance, gaining stability and

selectivity towards a rich hydrogen stream with relatively low CO concentration.

7. REFERENCIAS

[1]. R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 107 (2002) 2411-2502.

[2]. A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411-2502.

[3]. J.M. Encinar, J.F. González, A. Rodríguez-Reinares, Ind. Eng. Chem. Res. 44

(2005) 5491-5499.

[4]. M.J. Hass, A.J. McAloon, W.C. Yee, T.A. Foglia, Bioresour. Technol. 97 (2006)

671-678.

[5]. C. Len, R. Luque, Sustain. Chem. Process. 2:1 (2014) 1-10.

[6]. L. Pastor-Pérez, A. Merlo, R. Buitrago-Sierra, M. Casella, A. Sepúlveda-

Escribano, J. Colloid Interface Sci. 459 (2015) 160-166.

[7]. R.R. Soares, D.A. Simonetti, J.A. Dumesic, Angew. Chem. Int. 45 (2006) 3982-

3985.

[8]. B. Kaya, S. Irmak, A. Hasanoglu, O. Erbatur, Int. J. Hydrogen Energ. 39 (2014)

10135-10140.

[9]. R.R. Davda, J.W. Shabaker, G.W. Huber, R.D. Cortright, J.A. Dumesic, Appl.

Catal. B 43 (2003) 13-26.

[10]. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300 (2003) 2075-2078.

Page 80: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter III

73

[11]. J.W. Shabaker, D.A. Simonetti, R.D. Cortright, J.A. Dumesic, J. Catal. 231

(2005) 67-76.

[12]. D.L. Trimm, Catal. Today 49 (1999) 3-10.

[13]. L.F. Bobadilla, A. Penkova, F. Romero-Sarria, M.A. Centeno, J.A. Odriozola, Int.

J. Hydrogen Energ. 39 (2014) 5704-5712.

[14]. T.R. Reina, E. Papadopoulou, S. Palma, S. Ivanova, M.A. Centeno, T. Ioannides,

J.A. Odriozola, Appl. Catal. B 150-151 (2014) 554-563.

[15]. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Guemez, M.C. Sanchez-

Sanchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energ. 35 (2010) 11622-

11633.

[16]. M. Ni, D.Y.C. Leung, M.K.H. Leung, Int. J. Hydrogen Energ. 32 (2007) 3238-

3247.

[17]. L. Pastor-Pérez, T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, A.

Sepúlveda-Escribano, Catalysts 5(1) (2015) 298-309.

[18]. L. Pastor-Pérez, R. Buitrago-Sierra, A. Sepúlveda-Escribano, Int. J. Hydrogen

Energ. 39 (2014) 17589-17599.

[19]. J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-

Escribano, F. Rodríguez-Reinoso, Mater. Res. Bull. 43 (2008) 1850-1857.

[20]. E. Van Ryneveld, A.S. Mahomed, P.S. Van Heerden, M.J. Green, H.B. Friedrich,

Green Chem. 13 (2011) 1819-1827.

[21]. M.M. Zyryanova, P.V. Snytnikov, R.V. Gulyaev, Y.I. Amosov, A.I. Boronin, V.A.

Sobyanin, Chem. Eng. J. 238 (2014) 189-197.

[22]. K. Chayakul, T. Srithanratana, S. Hengrasmee, Catal. Today 175 (2011) 420-

429.

[23]. J.H. Lin, V. Guliants, ChemCatChem 4 (2012) 1611-1621.

[24]. I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, A. Wokaun, Appl.

Catal. A 329 (2007) 68-78.

[25]. S.D. Senanayake, J.A. Rodriguez, D. Stacchiola, J Phys. Chem. C 116 (2012)

9544-9549.

[26]. A. Onda, T. Komatsu, T. Yashima, J. Catal. 201 (2001) 13-21.

[27]. J.W Shabaker, G.W Huber, J.A Dumesic, J. Catal. 222 (2004) 180-191.

[28]. C. Xu, B.E. Koel, Surface Sci. 327, 1-2 (1995) 38-46.

[29]. L.M. Martínez, T.M. Araque, J.C. Vargas, A.C. Roger, Appl. Catal. B 132-133

(2013) 499-510.

[30]. A Basinska, L Kępinski, F Domka, Appl. Catal. A 183 (1999) 143-153.

Page 81: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Multicomponent NiSnCeO2/C catalysts for the low-temperature glycerol steam reforming

74

[31]. T.R. Reina, S. Ivanova, J.J. Delgado, I. Ivanov, V. Idakiev, T. Tabakova, M.A.

Centeno, J.A. Odriozola, ChemCatChem 6 (2014) 1401-1409.

[32]. C. Zhang, A. Michaelides, D.A. King, S.J. Jenkins, J. Phys. Chem. C 113(16)

(2009) 6411-6417.

[33]. V. Milanova, T. Petrov, O. Chauvet, I. Markova. Rev. Adv. Mater. Sci. 37 (2014)

42-47.

[34]. M. Lu, Y. Tian, Y. Li, W. Li, X. Zheng, B. Huang, Int. J. Electrochem. Sci. 7

(2012) 760- 767.

[35]. M. Masai, K. Mori, H. Muramoto, T. Fujiwara, S. Ohnaka, J. Catal. 38 (1975)

128-134.

Page 82: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CHAPTER IV

Aqueous phase reforming of glycerol for

hydrogen production over Pt, Ni andPt-

Ni catalysts supported on CeO2

GGrraapphhiiccaall aabbssttrraacctt

Page 83: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 84: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

77

Abstract

Herein, efficient Pt/CeO2, Ni/CeO2 and Pt-Ni/CeO2 catalysts have been developed

for hydrogen production via glycerol aqueous-phase reforming. Fundamental

understanding of the catalytic behaviour was obtained due to broad range of

physicochemical techniques employed for the catalysts characterization. The

superiority of Pt over Ni for this reaction has been evidenced. Pt containing systems

exhibit higher glycerol conversions and greater liquid yields being the bimetallic Pt-Ni

catalyst the most active material presented in this study. Besides, noteworthy

catalytic activity toward gas phase products with the non-reduced samples was

obtained. Moreover, rather relevant information about the reaction intermediates

and the catalysts evolution during the reaction was obtained using in situ ATR

spectroscopy allowing an approach towards the most likely reaction pathways.

Keywords: H2 production; APR; Glycerol; Ni-Pt; Ceria; “In situ“ ATR-IR.

Page 85: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

78

1. INTRODUCTION

Hydrogen is considered as the most efficient and environmentally benign energy

fuel [1]. It allows additional flexibility in the selection of energy resources and could

play a major role mitigating effects of climate change. The depletion of fossil fuels and

the environmental problems associate to their use as energy sources have encouraged

the research towards this renewable and sustainable energetic vector [2, 3]. Although,

nowadays, hydrogen is produced from fossil fuels, considerable research has focused

on the production of hydrogen from renewable sources [4]. Dumesic and co-workers

pioneered a more suitable production of H2 from biomass-derived oxygenates through

catalytic processes, i.e., aqueous phase reforming (APR). This reaction requires

supported metal catalysts under mild conditions (200-250 ºC, 20-50 bar) to produce a

H2-rich stream with low levels of CO, which is a poison for the anode’s catalysts in

fuel cell applications [5, 6]. This process presents important advantages in comparison

to conventional steam reforming, which include diminished energy requirements by

the fact that oxygenates are converted into hydrogen in an aqueous liquid phase

rather than in the gas phase, thus eliminating the need to vaporize the high-boiling

biomass derived oxygenated. It also prevents the undesirable thermal decomposition

reaction of these oxygenates when high temperatures are used. Another particular

advantage is that the produced gas is rich in H2 and poor in CO due to water gas shift

reaction (WGS), which is thermodynamically favoured at the temperatures and

pressures that are employed in the APR process.

Among the different biomass-derived oxygenates that can be used for H2

production, glycerol has been targeted as one of the most adequate. Glycerol is

obtained in large quantities as a by-product in the production of bio-diesel, and its

carbon-oxygen ratio 1:1 is optimal for its use of glycerol in APR.

The APR process is in fact a combination of two processes, glycerol reforming and

water-gas shift. However, undesired reactions, such as carbon monoxide

hydrogenation, partial breaking of C-C, C-H, C-O bonds of glycerol and intermediates,

dehydrogenation and dehydration/hydrogenation of glycerol to diols might occur

(Figure 1). These unwanted reaction pathways are highly dependent on the catalyst

nature [7-11]. In this sense, the development of a catalyst active for C-C, C-H bond

scissions and also for water-gas shift reaction is a must. Additionally, this catalyst

Page 86: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

79

should not have acidity, as acid sites promote the formation of diols, mono-alcohols

and alkanes via C-O cleavage.

Figure 1. Reaction pathways for H2 production by reactions of oxygenated hydrocarbons

with water. Reproduced from ref [5].

Group VIII metals, particularly Pt, Pd and Ni, are especially effective for the APR

of glycerol. More specifically, Pt and Pd are highly selective to hydrogen, whereas Ni

shows a higher activity for alkane formation [12]. Pt is one of the preferred choices

due to its activity for C-C/C-H bond cleavage and WGS reaction, but the high cost of

this noble metal has stimulated the use of catalysts based on non-precious metals. Ni

is widely used due to its low cost, high availability and also good performance for C-C

scission. Ni catalytic activity can be improved by addition of Pt. Indeed, the positive

Pt-Ni synergetic effect has been reported elsewhere [13] Furthermore the use of Ni

catalysts will be considered as a cheaper alternative that has shown initial APR

activity comparable to that of Pt, but was subject to significant deactivation [14]. Thus

efforts have been made to improve catalytic behaviour of Ni combining it with other

metallic element.

Page 87: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

80

The catalytic activity of APR catalysts can be improved by additional metals. In

particular, the Pt-Ni system has been thoroughly studied in a range of applications

because of its synergic catalytic effect [7]. Crisafulli et al. reported that adding noble

metal to Ni catalyst for dry methane reforming reduces coke deposition and enhance

the stability [15]. Ko et al. showed that Pt-Ni bimetallic catalysts had more active

sites than monometallic ones, under the same pretreatment conditions. Huber et al.

found that the catalytic activity for Pt(3% wt)-base catalysts for APR increased after

alloying Pt with Ni, which decreased the strength with which CO and H2 interact with

the surface, thereby increasing the amount on catalytic sites available to react with

ethylene glycol [10].

The nature of the support moreover influences the efficiency of glycerol APR, being

the use of basic supports generally favourable for its high hydrogen selectivity.

Specifically, CeO2 improves initial glycerol conversion and hydrogen selectivity for

APR of glycerol promoting WGS reaction [16]. Additionally, ceria inhibits

dehydration, avoiding formation of unsaturated hydrocarbons that are coke

precursors, increasing catalytic stability by promoting carbon removal from the

metallic surface [17].

In this context, the aim of this work is to study Pt or/and Ni catalysts supported on

ceria, in aqueous-phase reforming reaction of glycerol for hydrogen production. The

goal is to reach high glycerol conversion towards gaseous products, especially H2, but

the presence of both gas and liquid products were also studied. The effect of the Pt

addition to Ni catalysts and the interactions of these metals with the support on the

catalytic activity for APR reaction were investigated. In addition, in-situ ATR

experiments are employed to gain some clues regarding the reaction intermediates

and possible pathways depending on the involved metal.

2. EXPERIMENTAL SECTION

2.1 Catalysts preparation

The CeO2 support was prepared by homogeneous precipitation from an aqueous

solution of Ce(NO3)3·6H2O (99.99 %, Sigma-Aldrich) containing an excess of urea. The

Page 88: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

81

solution was heated at 80 °C and kept at this temperature, with slow stirring, during

12 h. The solid formed was filtered and calcined at 350 °C for 4 h.

Platinum and nickel were incorporated to the CeO2 support by impregnation with

acetone solutions containing the adequate amount of H2PtCl6·6H2O (99.95 %, Alfa

Aesar) and/or Ni(NO3)2·6H2O (99.9 %, Sigma-Aldrich) to obtain 1 wt.% Pt or 5 wt.%

Ni, using 10 mL of solution per gram of solid. After stirring for 12 h, the solvent was

removed under vacuum at 40 °C in a rotary evaporator. Finally, the dried solids were

calcined at 350 °C for 4 h. In this way, three ceria-supported samples were prepared

and labelled as Pt/CeO2, Ni/CeO2 and PtNi/CeO2.

2.2 Catalysts characterization

The textural properties of the supports were determined by nitrogen adsorption

measurements at -196 °C. Gas adsorption experiments were performed in a home-

made fully automated manometric equipment. Prior to the adsorption experiments

samples were out-gassed under vacuum (10-4 Pa) at 250 °C for 4 h. The specific

surface area was estimated after application of the BET equation.

The actual metal loading was determined by inductively coupled plasma optical

emission spectroscopy (ICP-OES) in a Perkin–Elmer device (Optimal 3000). The

metals were extracted from the catalysts by digestion in aqua regia for 30 min, in a

microwave oven, at 200 °C.

X-Ray powder diffraction patterns were recorded on a Bruker D8-Advance with a

Göebel mirror and a Kristalloflex K 760-80 F X-Ray generation system, fitted with a

Cu cathode and a Ni filter. Spectra were registered between 20 and 80º (2θ) with a

step of 0.05º and a time per step of 3 seconds.

Transmission electron microgrphs were acquired on a JEOL electron microscope

(model JEM-2010) working at 200 kV, which It was equipped with an INCA Energy

TEM 100 analytical system and a SIS MegaView II camera. Samples for analysis

were suspended in ethanol and placed on copper grids with a holey-carbon film

support.

Page 89: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

82

Temperature-programmed reduction (TPR) with H2 experiments were performed

on the calcined catalysts in a U-shaped quartz cell, using a 5 % H2/He gas flow of 50

mL/min, with a heating rate of 10 °C/min. Samples were treated with flowing He at

150 °C for 1 h before the TPR run. Hydrogen consumption was followed by on-line

mass spectrometry (Pfeiffer, OmniStar GSD 301).

X-Ray photoelectron spectroscopy was performed with a K-ALPHA spectrometer

(Thermo Scientific). All spectra were collected using Al-Kα radiation (1486.6 eV),

monochromatized by a twin crystal monochromator, yielding a focused X-ray spot

with a diameter of 400_m, at 3 mA × 12 kV. The alpha hemispherical analyser was

operated at the constant energy mode, with survey scan pass energies of 200 eV to

measure the whole energy band and 50 eV in a narrow scan to selectively measure the

particular elements. Charge compensation was achieved with the system flood gun

that provides low energy electrons and low energy argon ions from a single source.

The powder samples were pressed and mounted on the sample holder and placed in

the vacuum chamber. Before recording the spectrum, the samples were maintained in

the analysis chamber until a residual pressure of ca. 5×10−7 N/m2 was reached. The

quantitative analysis were estimated by calculating the integral of each peak, after

subtracting the S-shaped background and fitting the experimental curve to a

combination of Lorentzian (30 %) and Gaussian (70 %) lines. Reduced samples (ex

situ) were conserved in octane solution (inert atmosphere). Suspensions were

evaporated in the XPS system under vacuum conditions.

2.3 Catalytic activity measurements

Aqueous-phase reforming reactions of glycerol were performed under semi-batch

conditions in a 40 mL stainless steel bench top Parr reactor with a back-pressure

regulator. The reactor was charged with 0.2 g of catalyst and 10 mL of a 10 % aqueous

solution of glycerol, a feed composition similar to that of the solutions obtained from

biodiesel production after alcohol removal and acid neutralization of the glycerol

fraction [18]. Reactions were carried out at 225 °C for 5 h with a constant pressure of

29 bars (pressurized with He). The gas phase reactions products (H2, CO, CO2, CH4)

were analyzed by online dual channel micro-GC with COX column and a TCD (Varian

CP4900). The liquid phase was analyzed with a Shimadzu HPLC equipped with an

Aminex HPX-87H column.

Page 90: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

83

In situ ATR-IR analysis of reactions were conducted in a 40 mL Parr stainless steel

autoclave equipped with a MT ReactIR 45 m ATR-IR sentinel with a diamond probe.

The experiments were performed in the same conditions described above. ATR-IR

spectra were recorded every 5 min during 5 h of reaction.

3. RESULTS AND DISCUSSION

3.1 Catalysts characterization

3.1.1 Textural and chemical characterization

The actual metal content in the catalysts is reported in Table 1. As it can be seen,

the values are very close to the nominal ones, this confirming the success of the

impregnation process.

Table 1 also shows the textural parameters of the ceria support and the three

catalysts, namely the specific surface area (N2, -196 °C, BET), the micropore volume

(Vmicro, N2, -196 °C, D-R) and the volume of mesopores (Vmeso). The N2 adsorption

isotherms at -196 ºC for all materials (not shown) correspond to the Type II according

to the IUPAC classification, which is characteristic of non-porous materials. All the

isotherms show a hysteresis cycle that corresponds to N2 condensation in mesopores

formed by particle agglomerations. Table 1 shows that the surface area of the ceria

support is hardly modified after the metal loading, the smaller values being mainly

due to the weight increase as metals are incorporated.

Table 1. Textural characteristics and metal loading of catalysts and crystallite size of the

CeO2 support.

S

BET(m

2/g) V

micro(cm

3/g) V

meso(cm

3/g) *dCeO2 (nm) **Pt (wt.%) **Ni (wt.%)

CeO2 101 0.04 0.07 12.1 -- --

Pt/CeO 105 0.05 0.09 12.7 1.17 --

PtNi/CeO2 80 0.04 0.06 11.6 1.20 5.01

Ni/CeO2 95 0.05 0.06 11.9 -- 4.80

*Calculated by the Scherrer equation using the (111) plane of CeO2.

**Determined by ICP analysis.

Page 91: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

84

3.1.2 X-ray diffraction

Figure 2 shows the XRD patterns of the support and the catalysts after calcination

at 350 ºC, where the characteristic CeO2 peaks (JCPDS 34-0394) at 28.6, 33.4, 47.8

and 56.7 º, corresponding to the reflections in the (111), (200), (220) and (331)

crystalline planes, respectively, of the cubic fluorite type phase, can be clearly

observed. By application of the Scherrer equation to the (111) diffraction peak, the

mean crystal sizes of CeO2 in the different catalysts have been determined and are

reported in Table 1. It can be seen that the XRD profile of the CeO2 support shows

very narrow diffraction peaks indicating high crystallinity and large crystal size. On

the other hand, diffraction peaks of Pt and Ni species were not observed, which is

attributed to a high dispersion of the supported metals.

Figure 2. XRD patterns of the support and catalysts calcined at 350 ºC.

3.1.3 H2-temperature-programmed reduction

H2-TPR measurements were employed in order to assess the type of reducible

species formed after the calcination treatment and to evaluate the interaction

between Pt-Ni and Pt or Ni with the support. The TPR profiles of the ceria support

and those of the ceria-supported Pt, PtNi, and Ni catalysts are presented in Figure 3.

The TPR profile of the CeO2 support shows two reduction peaks at around 450 and

20 30 40 50 60 70 80

CeO2

Pt/CeO2

Inte

nsity (

a.u

.)

PtNi/CeO2

2

Ni/CeO2

Page 92: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

85

800 °C, which are associated to the reduction of surface and bulk ceria, respectively

[19,20].

Figure 3. H2-TPR profiles of the support and catalysts calcined at 350 ºC.

The TPR profile obtained with Pt/CeO2 is also similar to those found in the

literature [21, 22. 23]. The intense peak centred at 300 °C is assigned to the surface

reduction of ceria in close contact with the metal, as well as the platinum reduction

(breakdown of Pt-O-CeO2 species created upon calcination). It has to be noted that

this peak appears at a lower temperature than for surface reduction in pure CeO2,

this being related to the easier hydrogen availability by spillover from the metal

surface. Finally, hydrogen consumption at 830 °C corresponds to the reduction of bulk

CeO2.

The H2-TPR profile of Ni/CeO2 reveals several peaks of hydrogen consumption

corresponding to the reduction of nickel species and ceria in different environments.

The first low temperature peak at 220 ºC can be attributed to the reduction of highly

dispersed NiO on the support [24], and the intermediates ones (at 250 and 340 ºC)

correspond to the surface reduction of ceria which interacts with nickel particles to

different extent, together with the reduction of NiO particles strongly interacting with

the ceria support, respectively [25,26,27]. It has been shown in the literature that

different Ni species can coexist in this system depending on the Ni/Ce ratio and the

0 100 200 300 400 500 600 700 800 900 1000

Pt/CeO2

Inte

nsid

ad

(u

.a.)

PtNi/CeO2

Ni/CeO2

Temperatura oC

CeO2

Temperature (ºC)

Inte

nsity (

a.u

.)

Page 93: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

86

calcination temperature, and that the presence of nickel can decrease the temperature

at which the surface of ceria is reduced [28,29]. Also, a small peak at high

temperatures (around 800 ºC) can also be observed, which is assigned to the reduction

of bulk ceria in the Ni/CeO2 catalyst [30].

The high temperature peak also appears in the TPR profile of PtNi/CeO2, as it

could be expected. But the low temperature region for this catalyst is very different

than those of its counterparts. On one hand, a small reduction peak appears centred

at around 75 ºC. The very low temperature allows to assign this peak to the reduction

of PtOx species that do not interact with the ceria support, maybe because they are

located on NiOx particles and they are not in contact with the support. The reduction

profile reveals two more broad and asymmetric bands at larger temperatures, which

seem to be composed of different contributions, this indicating the complex

composition of this catalyst and the different reduction processes that take place, such

as the reduction of NiOx species interacting to different extents with Pt and the

support and the surface reduction of ceria interacting with Pt and Ni species.

Furthermore, these processes are all of them favoured by the spillover of hydrogen

atoms from the platinum nanoparticles to the catalyst’s surface, this decreasing the

temperature at which reduction would proceed in the absence of platinum [31].

3.1.4 X-ray photoelectron spectra (XPS)

The chemical composition of the catalyst surface, and the chemical state of the

different components was assessed by XPS. The calcined samples were reduced ex-

situ at 350 ºC in flowing H2 (50 mL/min) and conserved in octane until the analysis, to

avoid re-oxidation. The binding energies (B.E.) of the main peaks, with the

corresponding deconvolutions of the Pt 4f7/2 and Ni 2p3/2 energy levels are summarized

in Table 2.

It can be seen from data in Table 2 that both Pt and Ni are in form of oxidized

species in the fresh calcined catalysts. After the reduction treatment at 350 ºC only a

part of Pt (around 60 %) and Ni (12 – 14 %) were in the metallic state.

Page 94: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

87

Table 2. XPS binding energies and surface atomic ratios in fresh (calcined and reduced) and

spent (calcined and reduced) catalysts in APR of glycerol.

*Atomic composition of carbonaceous species only calculated with the peak at ≈286.4 eV (C 1s)

After the reduction treatment at 350 ºC, only a part of Pt and Ni were in the

metallic state (Table 2), which is in agreement with the H2-TPR results. The Pt 4f7/2

binding energy (B.E.) in the reduced PtNi/CeO2 catalyst (71.4 eV) was slightly lower

than in Pt/CeO2 (71.8 eV). The platinum electronic environment is probably altered by

nickel, this making platinum electronically richer and therefore shifting the XPS Pt

peaks toward lower B.E. in the bimetallic sample compared to the monometallic one.

In fact, Pt presents higher electronegativity than Ni (according to Pauling scale) and

therefore, it can be expected that the interaction between Pt and Ni results in an

electronic transfer from the later to the former. If such effect occurs, the superficial

platinum particles will tend to maintain some negative density while Ni will have

positive density [32-33]. Furthermore, these results are in agreement with the H2-

TPR profiles, which showed overlap between Pt and Ni reduction peaks. For the

calcined Pt/CeO2 and PtNi/CeO2samples, two different contributions at around 73.2

and 74.8 eV appear, which are ascribed to Pt2+ and Pt4+, respectively. This can be

explained by the reduction of a certain amount of the starting Pt4+to Pt2+ upon the

decomposition of the platinum precursor during support impregnation [34].

Similarly, the Ni B.E. of the 2p3/2 level in the reduced Ni/CeO2 catalyst (852.3 eV) is

shifted towards lower values compared to the bimetallic sample (853.0 eV).This

indicates that the Pt-Ni interaction changes the Ni electronic environment by electron

transfer. The deconvoluted spectra (not shown) indicate the presence of Ni in different

chemical environments. For the reduced samples, a certain amount of Ni0 was

observed. This low amount of reduced nickel can be explained through the high

Sample

Pt 4f7/2 (eV) Ni 2p3/2 (eV) Pt0/Ptotal Ni0/Nitotal Pt/Ce Ni/Ce C/Ce

*Cspecie

s (%) Pt0 Pt2+ Pt4+ Ni0 Ni2+

Pt/CeO2 Calc.

Calc. spent

--

70.7

72.7

71.9

74.5

--

--

--

--

--

--

0.710

--

--

0.015

0.045

--

--

0.906

1.136

4.0

15.6

Red.

Red. spent

71.5

71.0

72.7

72.1

--

--

--

--

--

--

0.555

0.583

--

--

0.007

0.031

--

--

0.440

1.051

3.9

18.0

PtNi/CeO2 Calc.

Calc. spent

--

71.0

72.9

71.9

74.4

--

--

--

853.4-855.3

853.5-855.8

--

0.639

--

--

0.019

0.035

0.189

0.166

1.394

2.213

2.6

13.2

Red.

Red. spent

71.1

71.0

72.1

72.1

--

--

852.7

852.5

855.1-857.0

855.6

0.590

0.739

0.140

0.297

0.008

0.033

0.127

0.093

0.690

4.197

3.2

14.1

Ni/CeO2 Calc.

Calc. spent

--

--

--

--

--

--

--

--

853.5-855.5

854.0-855.9

--

--

--

--

--

--

0.205

0.118

1.343

1.610

3.8

9.7

Red.

Red. spent

--

--

--

--

--

--

852.0

852.9

854.1-856.2

855.4

--

--

0.122

0.304

--

--

0.129

0.099

1.088

1.670

6.1

12.2

Page 95: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

88

interaction Ni-Ce, in agreement with the H2-TPR results. This strong interaction

leads into a lower Ni reducibility [35,31]. Moreover, for both calcined and reduced Ni-

containing catalysts, different Ni2+ species appear, what is attributed to Ni with

different chemical environment (the two bands between 853.8 and 856.5 eV) [36,37].

Binding energies of these two Ni2+ species in the ceria-containing catalysts are

slightly larger than the values reported for pure compounds, which is indicative of

their interaction with ceria. The existence of a strong metal-support interaction

between Ni and CeO2 can modify the structure and electronic properties of Ni, which

could improve the catalytic behaviour of this system [38].

3.1.5 Transmission electron microscopy (TEM)

Figure 4 shows some representative TEM images of reduced samples. It can be

seen that the active phases are homogeneously dispersed on the support as no large

agglomerations are observed. It is important to point out that it was not possible to

distinguish Ni and Pt because of their similar electron density and high dispersion.

However, EDX experiments (not shown) revealed the presence of these metallic

species in direct contact.

Figure 4. TEM micrographs of catalysts reduced at 350 ºC. A) Pt/CeO2 (scale bar: 2 nm), B)

PtNi/CeO2 and C) Ni/CeO2 (scale bars: 5 nm).

3.2 Catalytic test

Glycerol APR experiments were run in a semi batch reactor (at 225 ºC and 29 bar)

during 5 hours, with a back pressure regulator to keep the system pressure constant

Page 96: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

89

at just above the vapour pressure of water at the reaction temperature. Some authors

have previously shown that a batch reaction system is a convenient and reliable tool

for initial screening studies of catalytic behaviour in the APR of oxygenates [10, 39].

The performance of the calcined and reduced catalysts in the APR of glycerol (10 wt.%

aqueous solution) is summarized in Figure 5, in which conversion of glycerol is

separated in conversion into gas products and conversion into liquids. In the gas

phase, CO, CO2, H2 and CH4 were detected. Alkanes larger than methane were only

detected in trace amounts and therefore no quantified. Furthermore, gas phase

products distribution for all catalysts is given in Figure 5.

Figure 5. Glycerol conversion into gas products (Gas phase products distribution in colour)

and into liquids (grey), obtained by APR of 10 wt.% glycerol with calcined and reduced

catalysts at 225 ºC and 29 bar.

For Pt/CeO2, the best glycerol conversion (86 %) was obtained with the calcined

sample, with also a higher conversion to gas phase products than the reduced sample.

In spite of the fact that no metallic platinum was detected in the fresh calcined

sample, a certain degree of reduction takes place upon reaction (Table 2). The surface

Pt/Ce atomic ratio in Table 2 indicates a relative higher amount of surface platinum

in the calcined sample than in the reduced catalyst. Then, it can be inferred that the

reduction process taking place during the APR reaction generates more dispersed

Page 97: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

90

metallic platinum sites than the conventional reduction treatment with hydrogen,

which could produce a certain degree of sintering and/or agglomeration. Thus, the

higher activity of the calcined catalyst as compared to its reduced counterpart can be

explained by a higher amount of surface metallic platinum sites. In fact, the activity

and H2 selectivity of supported metal APR catalysts has been correlated by other

authors with the metal dispersion, concluding that the rate of H2 formation decreased

with increasing the Pt particle size [40,32].

Despite the higher metallic loading in the Ni/CeO2 catalyst, a poorer glycerol

conversion was obtained. This underlines the superior performance of noble metals for

this catalytic process. Even though, good activity and a very high H2 selectivity were

obtained with the calcined Ni/CeO2 sample (Figure 5). Most of the glycerol was

transformed into gaseous products. In spite of the well-known methanation activity of

the nickel based catalysts, no methane was obtained. To be more specific, only the

reduced Ni/CeO2 sample and the Pt-containing catalysts produced low amounts of

methane. This indicates that only Ni metallic particles are able to carry out the

methanation side reaction, as metallic Ni was not detected by XPS neither in the

fresh calcined nor in the spent calcined catalyst (Table 2) [41,42].

The use of CeO2 as a support promotes the water gas-shift reaction converting

adsorbed CO into CO2. However, samples containing reduced Ni produce a small

amount of CO. It can be considered that the deactivation of metallic Ni species, due to

their high susceptibility to oxidation by water excess under APR conditions, results in

a loss of the activity for C-C/C-H bond scission. In this way, an increase of

intermediate products could be produced, whose decomposition to CO and CH4 can

explain the observed results [31].

Both the calcined and the reduced PtNi/CeO2 catalysts show a high glycerol

conversion degree. It has to be noted that the reduced PtNi/CeO2 sample is the best

catalyst in terms of total glycerol conversion (liquid + gaseous products). However the

improved catalytic activity could be due to the cooperative effect of Ni and Pt but also

to an additive effect of the total metallic loading. The Pt-Ni synergy is clearly

established in view of the physicochemical properties discussed above, namely XPS

and H2-TPR results. On the one hand, the addition of Pt improves the dispersion of Ni

species and facilitates the reduction of NiO to metallic Ni through a hydrogen

Page 98: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

91

spillover mechanism resulting in improved redox chemistry of the bimetallic system,

as it has been previously shown [43]. On the other hand, as it has been demonstrated

by the XPS results, the Ni-Pt interaction results in an electronic density transfer from

Ni to Pt, making the Pt-Ni interface an electric rich site to anchor and activate

molecules.

The additive effect was roughly evaluated by normalising glycerol conversion per

mole of active metal (Pt, Ni or Pt + Ni). The results of these calculations are shown in

Table 3. As shown in the table, the bimetallic catalysts presented slightly superior

activity than the monimetallic Ni system. However, the Pt/CeO2 catalyst resulted to

be the most efficient in terms of conversion per unit of active metal. Therefore,

although the Ni-Pt synergy may result in advanced catalytic properties like improved

redox and electronic features, in the studied reaction conditions a monometallic

system based on Pt seems to be the best option. Also when comparing PtNi/CeO2 vs

Ni/CeO2 the overall effect in the catalytic activity is not really remarkable thus

making the monometallic Ni a more sensible choice.

Table 3. Normalising glycerol conversion per mole of active metal for calcined and reduced

samples.

Sample gly. conv. (mol)/ M (mol)

Pt/CeO2 Calc.

Red.

915

782

PtNi/CeO2 Calc.

Red.

48

53

Ni/CeO2 Calc.

Red.

43

44

Glycerol conversion into liquid phase compounds has been also analysed. Figure 6

shows the distribution of liquid phase products distribution, grouped in their carbon

numbers, for all catalysts. It can be seen that the reduced catalysts generated a larger

amount of liquid products than their calcined counterparts. This can be explained by

the smaller number of available active sites because of sintering after reduction

(Table 2), this decreasing the capacity of cleavage the OHC intermediates into

gaseous products.

Page 99: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

92

On the other hand, calcined Pt/CeO2 catalyst promoted glycerol conversions with

higher gas phase formation and H2 selectivity than the calcined PtNi/CeO2 sample.

The better H2 selectivity obtained by Pt is due to high activity of this metal for

dehydrogenation reactions (C-H). The presence of Ni favours selectivity to OHC

intermediates, due to its high activity for the hydrogenation of CO/CO2 and for C-C/C-

O cleavage from oxygenated compounds via consecutive and/or parallel reactions

[44,45]. In this sense PtNi/CeO2 catalysts have an intermediate behaviour with a

moderate H2 selectivity and OHC intermediates.

Figure 6. Distribution of liquid phase products for calcined and reduced catalysts.

Figure 7 shows the possible reaction pathways during the APR of glycerol. The

main products obtained in the liquid phase after APR process were identified as lactic

acid (C3), acetic acid (C2), ethylene glycol (C2), acetaldehyde (C2), ethanol (C2) and

methanol (C1). Although the same products were formed over all catalysts, major

differences in product distribution were observed (Figure 6). Lactic acid (C3) is one of

the major products on Pt/CeO2 catalysts, and its formation is believed to involve

pyruvaldehyde as an intermediate, a conversion that is in turn base-catalyzed via

dehydration/hydrogenation [46,47]. The decrease of C3 and the increase of C2-C1

compounds such an EG, acetaldehyde, ethanol and methanol was a consequence of the

enhanced competition between the C-C/C-H against C-O bonds cleavage over the

PtNi/CeO2 and Ni/CeO2 catalysts.

Page 100: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

93

Figure 7. Possible reaction pathways during APR of glycerol.

3.2.1 XPS post-reaction characterization

The spent catalysts were analysed by XPS. This analysis provides useful

information about the surface state in the samples tested. Table 2 summarizes the

surface composition of all samples and the binding energy of the Pt 4f7/2 and Ni 2p3/2

core level in the spent catalysts. It also includes the surface Pt/Ce, Ni/Ce, and C/Ce

atomic ratios, as well as the relative content of carbonaceous species obtained by XPS

for fresh (calcined and reduced) and spent (calcined and reduced) catalysts.

The surface Pt/Ce and Ni/Ce atomic ratios in the reduced catalysts decreased as

compared to the calcined counterparts, this suggesting some sintering of Pt and Ni

particles after the reduction treatment. For Pt/CeO2 catalyst the slight sintering of

the particles produces consequent decreased of glycerol conversion. This sintering also

happens with PtNi/CeO2 and Ni/CeO2 catalysts but the beneficial effects obtained by

the reduction of the samples and metals interactions are more notorious than the

sintering effect, increasing slightly glycerol conversion in reduced samples.

Page 101: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

94

Besides, the Ni/Ce surface atomic ratio in the spent catalysts decreased as

compared to the fresh ones, this suggesting some sintering of Ni particles during the

APR of glycerol. However for platinum containing samples, the opposite trend is

observed. Although Pt sintering after reaction also occurs, as it will be discussed

below, the Pt/Ce atomic ratio is higher. A possible explanation of Pt/Ce increment is

the higher carbonaceous species covering ceria surface in relation to Ni/CeO2 sample.

In order to clarify this point the surface C/Ce atomic ratios and the content of

carbonaceous species were calculated (Table 2). Three carbon peaks were obtained in

the XPS spectra of the C 1s region. Surface carbon contamination appears as a peak

at 285.8 eV, the adsorbed CO species appear at 286.5 eV, and a high binding energy

peak (between 288-290 eV) is present when surface carbonates like species appeared

[48,11] For the estimation of the surface C/Ce atomic ratios and carbonaceous species

content only this last peak was employed.

It can be seen that the surface C/Ce atomic ratios and the surface %C increase

after aqueous phase reforming reaction for all samples. Carbonaceous species have

been deposited on the catalysts surface upon reaction, partially covering the ceria

support [11]. These carbonate-like species deposits are more notorious in the Pt-

containing catalysts due to the better activity of this metal both in C-C and C-H

scissions and water-gas shift reaction.

On the other hand, Table 2 also shows the binding energies of the Pt 4f7/2 and Ni

2p3/2 core levels for the spent catalysts. After glycerol aqueous phase reforming, Pt-

containing samples, both reduced and calcined, contents Pt0. This confirms that

oxidized platinum species in the fresh catalysts are reduced under reaction conditions,

and explains the good performance of the calcined samples. Also, platinum is

electronically richer, as the B.E. of the XPS Pt 4f7/2 core level is shifted towards lower

values as compared with the fresh counterparts.

XPS results indicate that Ni is partially re oxidized in the Ni-containing spent

catalysts, both calcined and reduced. Nevertheless, the presence of reduced Ni species

cannot be discarded since they could be formed during the reaction. Indeed, a certain

amount of metallic nickel remains in the Ni/CeO2 reduced spent sample [49].

Page 102: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

95

3.2.2 TEM post-reaction characterization

Figure 8 shows the TEM micrographs of the reduced catalysts after glycerol

aqueous phase reforming reaction. It can be seen that sintering has taken place in all

samples, but more significantly in the Ni/CeO2catalyst. This is due to the higher Ni

mobility under hydrothermal conditions. Furthermore, the formation of superficial

carbonaceous species is evidenced in the micrograph of PtNi/CeO2, in good agreement

with the XPS data.

Figure 8. TEM micrographs of spent reduced catalysts (APR 10% glycerol, 225 ºC, 29 bar.

A) Pt/CeO2 (scale bar: 10 nm), B) PtNi/CeO2 (scale bar: 10 nm), and C) Ni/CeO2 (scale bar: 20

nm).

3.2.3 “In situ“ ATR-IR spectroscopy

Finally the ATR-IR spectra of the surface species formed during the glycerol

reforming on the three calcined catalyst at 225 °C and a pressure of 29 bars are shown

in Figure 10. Only spectra of calcined catalysts were studied, due to the good

performance of these samples without any previous reduction treatment. For a better

assignment of the characteristic bands to the reactant, intermediate products and

surface species formed, the water background was subtracted.

The multiple peaks between 1350-900 cm-1 observed for the three samples can be

assigned to the deformation vibration of COH and to twisting and rocking vibrations

of CH2 groups, which are present in glycerol as well as in the intermediates formed

during the reaction. [50,51]. Two of these bands can be clearly assigned in the three

Page 103: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

96

samples: 1180 cm-1 ( (COH)) and 966 cm-1 ( (CH2)) [52]. Glycerol was identified by

the C-O stretching vibration bands in α (1065 cm-1) and β positions (1104 cm-1).

A)

B)

Page 104: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

97

Figure 9. Operando ATR-IR spectra of A) Pt/CeO2, B)PtNi/CeO2 and C) Ni/CeO2 calcined

catalysts during glycerol aqueous phase reforming (10 % wt. glycerol, 225 ºC, 29 bar).

For the Pt containing catalyst, three carbonyl bands ( (C=O)), centred at 1745,

1720 and 1717 cm-1 appear, and they can be assigned to glyceraldehyde, pyrualdehyde

and lactic acid respectively, indicating the formation and increase of these

intermediates during the reaction in agreement with the results obtained for the

liquid products [53] (Figure 8). This indicates that part of the hydrogen obtained can

be produced via dehydrogenation (C-H cleavage) to form glyceraldehydes and it is

further converted to lactic acid via cannizzaro type reactions, catalyzed by support

basic sites [54,55]. Moreover C2 and C1 are also obtained for these calcined samples,

therefore a subsequent C-C cleavage step takes place to form small intermediate

oxygenated compounds, ethanol and methanol, as well as the water gas shift reaction.

The presence of this C2 and C1 oxygenated intermediates is confirmed by the

appearance of some overlapped bands with high complexity and difficult assignment

in 1400-1610 cm-1 region. They can be assigned to asymmetric and symmetric

vibrations of carboxylate species (H)COx formed after adsorption of ethanol, methanol

and other small HCOs on ceria [56]. It has been reported that bands at 1390-1450 cm-

1 and 1590-1610 cm-1 are usually attributed to hydrogen carbonates together with

bands at 3610 cm-1 (attributed to the presence of OH species on Ce3+/Ce4+, at 3600-

3700 cm-1 [57]). Besides it is well reported that strong bands appeared ca. 1580 cm-1,

C)

Page 105: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

98

and they are considered to have two components, one of them due to formates and the

other one due to “bidentate” carbonates. Also, bands in the region 1434-1510 cm-1 are

assigned by different groups to “monodentate”, “polydentate”, or polymeric carbonate

or carboxylate species coordinated via the carbon atom to a surface Ce cation [58]. As

this (H)COx intermediate species also must precede the formation of H2, CO and CO2,

the higher concentration of the mentioned species during the reaction over the

Pt/CeO2 and PtNi/CeO2 catalyst denotes the slightly better activity of Pt-based

samples in comparison with the Ni/CeO2 sample. Indeed, the better Pt activity for

water dissociation and C-C/C-H bond cleavage than Ni, increased the presence of

these carbonate species in the platinum-containing samples, correlated with the XPS

analysis discussed above [59].

Additionally, a notorious negative broad band around 1400 cm-1 is formed. One

possible contribution to this band is a δOH mode that is attributed to the removal of

hydroxyl groups from the Pt surface [60].

In contrast, the contribution of carbonate species (1400-1650 cm-1) for the Ni/CeO2

catalysts decreased significantly as the reaction progressed corroborating the less

liquid phase obtained with this sample [61]. Moreover the bands of carbonyl groups

(C=O stretching) of glyceraldehydes, pyruvaldehyde and lactic acid at 1745, 1728,

1717 cm-1 respectively can also be distinguish. Furthermore, the band ca 1456 cm-1

can be attributed to carboxylic (COO) stretching vibrations of lactic acid.

As mentioned above very high H2 selectivity was obtained with the calcined

Ni/CeO2 sample. Most of the glycerol was transformed into gaseous products and the

low amount of liquid phase was composed by C2 and C3 products (mainly ethanol and

lactic acid). This H2 can be produced to glycerol dehydrogenation to form

glyceraldehyde and the consecutive lactic acid formation (in agreement to the bands

assignment). Also the decarboxylation of lactic acid to ethanol can occur, however this

reaction does not consume hydrogen.

The great contribution of broad bands appearing in the next region is related to

CO-Metal bonds. On one hand, peaks at ca. 2050 and 1990 cm-1 are evident in Pt-

containing samples, due to the stretching mode of linear bonded CO on Pt. This band

is expected in this region of the spectra when the Pt-CO bond is present in an aqueous

Page 106: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

99

environment [62]. Moreover, bridged bonded CO on Pt can also be evidenced at 1940

cm-1 [53].

On the other hand, a strong contribution of bands related to CO on Ni is present

between 1900-2200 cm-1 in the Ni-containing catalysts. The complexity of these peaks

makes it difficult their attribution, although they are generally associated to terminal

and bridged CO on Ni particles. Molecular structures like Nix(CO)y (with x>1) also

produce these bands, due to coupled liner CO oscillators in these kind of complexes

[63]. In addition, the presence of oxidized nickel species is identified by bands at 2174

cm−1, associated with the presence of Ni2+-CO bonds, and at 2128 and 2090 cm−1,

which could be due to the doublet assigned to Ni+(CO)2 species corroboration the

oxidation of Ni during the reaction. The sharp features at 2057, 2039 and 2032 cm−1

could be due to species like physisorbed Ni(CO)4 and Ni(CO)3, which are more stable

at low temperatures (210 ºC) [11,64]. The strong adsorption of CO on Ni particles may

decrease the activity and enhance deactivation by Ni sintering through the formation

of carbonyl clusters and by the formation of stable polycarbonates, which block the

active sites. This fact can explain the small amount of CO2 in the gas phase products

obtained with the calcined catalyst due to the limitation to the water gas shift

reaction for the strong adsorption of CO [65].

Continuing with larger wavelengths, a band at 2280 cm-1 in the Pt/CeO2 spectra

and a broad band at ca. 2450 cm-1 in the Ni-containing catalysts are observed, which

can be assigned to CO2 adsorbed on basic sites. Besides, small negative peaks at 2960,

2930 and 2857 cm-1, assigned to C-H stretching vibrations of methylene groups, are

resolved. This indicates the evolution of these carbonaceous species acting as reaction

intermediates and disappearing from the catalysts surface at a certain point of the

process [50]. Finally, we can observe some peaks related to the presence of OH on

Ce3+/Ce4+ at 3600-3700 cm-1 [57]. The evolution of the OH linked to ceria indirectly

points the participation of the support on the WGS process promoting the hydrogen

production, as discussed before [66].

Overall, the in-situ ATR data underlines the different reaction intermediates

formed depending on the considered metal. It seems that carbonates like surface

species, together with glyceraldehyde and lactic acid, are the main reaction

intermediates. The formation of these species and their further decomposition to the

Page 107: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

100

desired products is favoured in the Pt containing samples compared to the Ni/CeO2

catalyst, this indicating the suitability of Pt for this reaction.

4. CONCLUSIONS

An interesting catalytic screening using mono and bimetallic Ni-Pt catalysts for

hydrogen production via glycerol APR has been carried out in this paper.

Our data reveal that monometallic platinum is the most active catalysts within the

studied series. In addition it seems that the samples activated “in situ” are more

active than those pre-reduced before the reaction. Apparently, the catalyst activation

in the reaction mixture leads to a higher stability towards metallic sintering.

Within the calcined samples the comparison Pt vs Ni is also valuable. Although Pt

is more efficient in terms of total glycerol conversion, the monometallic Ni/CeO2

provides a good balance between catalytic activity and economic viability. Indeed,

Ni/CeO2 is highly selective towards gas phase conversion yielding to hydrogen rich

streams (without CH4 and CO).

The bimetallic PtNi/CeO2 presented advanced physicochemical properties as for

example, improved redox and electronic properties arising from the intimate Pt-Ni

contact. However under the studied conditions the bimetallic catalysts are not the

best choice.

Finally, our study provides deeper insights in the complicated APR reaction

pathway using operando ATR as a tool to identify the main reaction intermediates.

This analysis reveals notable differences between Pt and Ni based catalysts. The

higher Pt activity is associated to the capacity of Pt to stabilised the intermediates

which further decompose to the desired towards products. The poorer activity of Ni

could be due the strong adsorption of CO on Ni particles may result in Ni sintering

through the formation of carbonyl clusters and stable polycarbonates, which block the

active sites.

Page 108: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

101

5. REFERNCES

[1]. M.A. Peña, J.P. Gómez, J.L.G. Fierro, Appl. Catal. A 144 (1996) 7-57.

[2]. www.hydrogen.energy.gov (2013)

[3]. A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energ. Fuel 19 (2005) 2098-

2106.

[4]. S. Dunn, Int. J. Hydrogen Energ, 27 (3) (2002) 235-264.

[5]. R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature 418 (2002) 964-967.

[6]. G.W. Huber, R.D. Cortright, J.A. Dumesic, Angew. Chem. Int. Ed. 43 (12) (2004)

1549-1551.

[7]. J.W. Shabaker, G.W. Huber, J.A. Dumesic, J. Catal 222 (2004) 180-191.

[8]. G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science 300 (2003) 2075-2077.

[9]. G.W. Huber, J.A. Dumesic, Catal. Today 111 (2006), p. 119-132.

[10]. G.W. Huber, J.W. Shabaker, S.T. Evans, J.A. Dumesic, Appl. Catal. B 62 (2006)

226-235.

[11]. J.W. Shabaker, D.A. Simonetti, R.D. Cortright, J.A. Dumesic, J. Catal 231

(2005) 67-76.

[12]. J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem .Int. 46 (2007) 7164-

7183.

[13]. A. Iriondo, J.F. Cambra, V.L. Barrio, M.B. Güemez, P.L. Arias, M.C. Sanchez-

Sanchez, R.M. Navarro, J.L.G. Fierro, Appl. Catal. B 106 (2011) 83-93.

[14]. R.R Davda, J.W. Shabaker, G.W. Huber, R.D Cortright, J.A. Dumesic, Appl.

Catal. B 43 (2003)13-26.

[15]. C. Crisafulli, S. Scirè, S. Minicò and L. Solarino, Appl. Catal. A 225 (2002) 1-9.

[16]. I.N. Buffoni, F. Pompeo, G.F. Santori, N.N. Nichio, Catal. Commun. 10 (2009)

1656-1660.

[17]. D.L. Trimm, Catal. Today 37 (1997), 233-238.

[18]. A. Behr, J. Eilting, K. Irawadi, J. Leschinski, F. Lindner, Green Chem. 10 (2008)

13-30.

[19]. R. Buitrago, J. Ruiz-Martínez, J. Silvestre-Albero, A. Sepúlveda-Escribano, F.

Rodríguez-Reinoso, Catal. Today 180 (2012) 19-24.

[20]. J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, D. Duprez, J.

Mol. Catal. A Chem. 268 (2007) 227-234.

[21]. A. Sepúlveda-Escribano, F. Coloma, F. Rodríguez-Reinoso, J. Catal. 178 (1998)

649-657.

[22]. C. Leitenburg, A. Trovarelli, J. Kaspar, J. Catal. 166 (1997) 98-107.

[23]. J.C. Serrano-Ruiz, J. Luettich, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J.

Catal. 241 (2006) 45-55.

[24]. R.L. Manfro, A.F. da Costa, N.F.P. Ribeiro, M. Souza, Fuel Process. Technol. 92

(2011) 330-335.

[25]. M.L. Ang, U. Oemar, Y. Kathiraser, E.T. Saw, C.H.K. Lew, Y. Du, A. Borgna, S.

Kawi, J. Catal 329 (2015) 130-143.

[26]. M.L. Ang, U. Oemar, E.T. Saw, L. Mo, Y. Kathiraser, B.H. Chia, S. Kawi, ACS

Catal. 4 (2014) 3237-3248.

[27]. K.V.R. Chary, P.V.R. Rao, V. Vishwanathan, Catal. Commun. 7 (2006) 974-978.

Page 109: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Aqueous phase reforming of glycerol for hydrogen production over Pt, Ni and Pt-Ni catalysts supported on CeO2

102

[28]. W. Shan, M. Luo, P. Ying, W. Shen, C. Li, Appl. Catal. A 46 (2003) 1-9.

[29]. M.M. Zyryanova, P.V. Snytnikov, R.V. Gulyaev, Y.I. Amosov, A.I. Boronin, V.A.

Sobyanin, ChemEng J 238 (2014) 189-197.

[30]. L. Pastor-Pérez, R. Buitrago-Sierra, A. Sepúlveda-Escribano, Int. J. Hydrogen

Energ 39 (2014) 17589 -17599.

[31]. M. El Doukkali, A. Iriondo, P.L. Arias, J. Requies, I. Gandarías, L. Jalowiecki-

Duhamel, F. Dumeignil, Appl. Catal. B 125 (2012) 516-529.

[32]. M.M. Rahman, T.L. Church, M.F. Variava, A.T. Harrisa, A.I. Minett, RSC Adv.

4 (2014) 18951-18960.

[33]. D. Zhao, B.Q. Xu, Angew. Chem. Int. Ed. 45 (2006) 4955-4959.

[34]. Z. Abdelouahab-Reddam, R. El Mail, F. Coloma, A. Sepúlveda-Escribano, Appl.

Catal. A 494 (2015) 87-94.

[35]. Z. Liu, D.C. Grinter, P.G. Lustemberg, T. Nguyen-Phan, Y. Zhou, S. Luo, I.

Waluyo, E.J. Crumlin, D.J. Stacchiola, J. Zhou, J. Carrasco, H.F. Busnengo,

M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Angew. Chem. Int.

Ed. (2016) DOI: 10.1002/anie.201602489, In press.

[36]. JH. Lin, V. Guliants, ChemCatChem 4 (2012) 1611-1621.

[37]. V.M. Shinde, G. Madras, Appl. Catal B 132-133 (2013) 28-38.

[38]. S.D. Senanayake, J.A. Rodriguez, D. Stacchiola, J. Phys. Chem. C 116 (2012)

9544-9549.

[39]. M.B. Valenzuela, C.W. Jones, P.K. Agrawal, Energ. Fuels 20 (2006) 1744-1752.

[40]. K. Lehnert, P. Claus, Catal. Comm. 9 (2008) 2543–2546.

[41]. T. Wang, M.D. Porosoff, J.G. Chen, Catal. Today 15 (2014) 61-69.

[42]. Ş. Özkara-Aydınoğlu, A. ErhanAksoylu, Int. J. Hydrogen Energ 36 (2011) 2950–

2959.

[43]. B. Pawelec, S. Damyanova, K. Arishtirova, J.L.G. Fierro, L. Petrov, Appl. Catal.

A 323 (2007) 188-201.

[44]. P.D. Vaidya, A.E. Rodrigues, Chem. Eng. Technol 32 (2009) 1463-1469.

[45]. S. Adhikari, S.D. Fernando, A. Haryanto, Energ. Convers. Manage. 50 (2009)

2600-2604.

[46]. E.P. Maris, R.J. Davis, J. Catal. 249 (2007) 328-337.

[47]. C. Montassier, J.C. Menezo, L.C. Hoang, C. Renaud, J. Barbier, J. Mol. Catal. 70

(1991) 99-110.

[48]. Y. Zhang-Steenwinkel, J. Beckers, A. Bliek, Appl. Catal. A 235 (2002) 79-92.

[49]. G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian, Int. J. Hydrogen Energ. 33 (2008) 6657-

6666.

[50]. R.N. Jones, A.F. McKay, R.G. Sinclar, J. Am. Chem. Soc. 74 (1952), 2570-2575.

[51]. M.B. Jensen, S. Morandi, F. Prinetto, A. Olafsen Sjåstad, U. Olsbye, G. Ghiotti,

Catal. Today 197 (2012) 38-49.

[52]. E.P. Maris, W.C. Ketchie, M. Murayama, R. J. Davis, J. Catal. 251 (2007) 281-

294.

[53]. A. Wawrzetz, B. Peng, A. Hrabar, A. Jentys, A.A. Lemonidou, J.A. Lercher, J.

Catal 269 (2010) 411-420.

[54]. C. Keresszegi, D. Ferreti, T. Mallat, A. Baiker, J. Phys. Chem. B 109 (2005) 958-

967.

[55]. W. Turek, J. Haber, A. Krowiak, Appl. Sur. Sci 252 (2005) 823-827.

Page 110: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter IV

103

[56]. J. Cunningham, B.K. Hodnett, M. Ilyas, J. Tobin, E. L. Leahy, J.L. G. Fierro,

Faraday Discuss. Chem Soc. 72 (1981) 283-302.

[57]. M. Daturi, E. Finocchio, C. Binet, J. Claude Lavalley, F. Fally, V. Perrichon, J.

Phys. Chem. B 103, (1999) 4884-4891.

[58]. G.N. Vayssilov, M. Mihaylov, P. Petkov, K.I. Hadjiivanov, K.M. Neyman, J.

Phys. Chem. C 115 (2011) 23435-23454.

[59]. S.D. Senanayake, D. Stacchiola, J. Evans, M. Estrella, L. Barrio, M. Pérez, J.

Hrbek, J.A. Rodriguez, J. Catal. 271 (2010) 392-400.

[60]. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman

Spectroscopy, Academic Press, 1990.

[61]. P.A. Aldana, F. Ocampo, K. Kobl, B. Louis, F. Thibault-Starzyk, M. Daturi, P.

Bazin, S. Thomas, A.C. Roger, Catal. Today 215 (2013) 201-207.

[62]. S.D. Ebbesen, B.L. Mojet, L. Lefferts. J. Catal. 246, (2007) 66-73.

[63]. M.B. Jensen, S. Morandi, F. Prinetto, A. OlafsenSjåstad, U. Olsbye, G. Ghiotti,

Catal. Today 197 (2012) 38-49.

[64]. M. García-Diéguez, E. Finocchio, M.A Larrubia, L.J. Alemany, G. Busca, J.

Catal. 274 (2010) 11-20.

[65]. M. Agnelli, H.M. Swaan, C. Marquez-Alvarez, G.A. Martin, C. Mirodatos,

J.Catal. 175 (1998) 117-128.

[66]. C. M. Kalamaras, S. Americanou, A.M. Efstathiou, J. Catal. 279 (2011) 287-300.

Page 111: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 112: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CHAPTER V

CeO2-promoted Ni/activated carbon

catalysts for the water-gas shift (WGS)

reaction

GGrraapphhiiccaall aabbssttrraacctt

Page 113: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 114: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

107

Abstract

The low temperature water-gas shift (WGS) reaction has been studied over carbon-

supported nickel catalysts promoted by ceria. To this end, cerium oxide has been

dispersed (at different loadings: 10, 20, 30 and 40 wt.%) on the activated carbon

surface with the aim of obtaining small ceria particles and a highly available surface

area. Furthermore, carbon- and ceria-supported nickel catalysts have also been

studied as references. A combination of N2 adsorption analysis, powder X-ray

diffraction, temperature-programmed reduction with H2, X-ray photoelectron

spectroscopy and TEM analysis were used to characterize the Ni-CeO2 interactions

and the CeO2 dispersion over the activated carbon support. Catalysts were tested in

the low temperature WGS reaction with two different feed gas mixtures: the idealized

one (with only CO and H2O) and a slightly harder one (with CO, CO2, H2, and H2O).

The obtained results show that there is a clear effect of the ceria loading on the

catalytic activity. In both cases, catalysts with 20 and 10 wt.% CeO2 were the most

active materials at low temperature. On the other hand, Ni/C shows a lower activity,

this assessing the determinant role of ceria in this reaction. Methane, a product of

side reactions, was observed in very low amounts, when CO2 and H2 were included in

the WGS feed. Nevertheless, our data indicate that the methanation process is mainly

due to CO2, and no CO consumption via methanation takes place at the relevant WGS

temperatures. Finally, a stability test was carried out, obtaining CO conversions

greater than 40 % after 150 h of reaction.

Keywords: Ni; CeO2; Activated carbon; WGS; Low temperature.

Page 115: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

108

1. INTRODUCTION

Hydrogen is considered as the most promising energy carrier in order to take

advantage of sustainable and renewable energy sources. It allows additional

flexibility in the selection of energy resources and could play a major role in

mitigating the effects of climate change by avoiding or limiting the emission of

greenhouse gases to the atmosphere. The depletion of fossil fuels and the

environmental problems associated to their use as energy sources, have encouraged

the research towards this renewable and sustainable energetic vector [1,2]. For clean

energy production, pure hydrogen is required as a feed gas for electricity generation in

low temperature fuel cells. Hydrogen is generally produced by steam reforming of

hydrocarbons, and reformate includes some other gases, in most cases as co-products,

such as CO, CO2, H2O, CH4 and other hydrocarbons. Among these impurities, CO is

especially damaging as it poisons the Pt catalyst in the polymer electrolyte membrane

(PEM) fuel cell anode, that is deactivated by low levels of CO, and its concentration

must be reduced before entering the fuel cell system [3,4]. Latest technologies are

tolerant up to 100 ppm CO in the feed gas, but the typical reformate exiting a fuel

processor contains higher quantities of carbon monoxide [5]. In this sense, some

processes have been considered in order to minimize the reformate CO concentration

for PEM fuel cell applications as, for example water-gas shift (WGS), CO-methanation

and selective oxidation in the presence of oxygen and/or water. Among them, WGS is

conventionally the first clean-up unit, and it is the reaction that removes the most

important amount of CO in the H2 stream.

In this way, the water-gas shift reaction has been used for long time coupled to the

steam reforming of hydrocarbons to modulate the CO/H2 ratio of the produced gas

stream, as in the case of Fischer-Tropsch synthesis, or even for nearly completely

remove the poisonous CO, as in the case of ammonia synthesis [6]. The WGS reaction

is described as follows:

This reaction is moderately exothermic, being thermodynamically favoured at low

temperatures but kinetically favoured at high temperatures; in this way, the

equilibrium CO conversion decreases with increasing the reaction temperature.

Page 116: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

109

Because of this, the reaction is normally carried out in two stages: the high-

temperature shift (350-370 ºC) with iron based catalysts, and the low-temperature

shift (200-220 ºC) with copper-based catalysts [7]. The two stage converter systems

easily and consistently reduce the CO level to 3000-4000 ppm compared to the single

stage converters, which cannot reduce the CO amount to much less than 1 %. In this

sense, a catalyst is needed to keep a good conversion rate at low temperature, as the

copper-based catalysts do not fulfil the security and transient behaviour requirements

which are needed for the new applications.

Due to its high oxygen storage capacity and reducibility (via the Ce4+ ↔ Ce3+ redox

process), cerium oxide is widely used as catalyst support and promoter. One of the

proposed mechanisms for WGS involves the chemisorption of CO on the metal

particles and its subsequent oxidation by the support, through the interaction with

active OH groups on the ceria surface, yielding surface formates. Then, water

decomposes the surface formates to give H2 and CO2, re-oxidizing the ceria surface [8].

In this sense, it seems clear that the role of the ceria surface is determinant for this

reaction, both in terms of extension (large surface areas are needed) but also in terms

of reducibility.

On the other hand, many studies have shown that ceria-supported noble metals are

very efficient systems for the WGS reaction [9-11]. Ceria reducibility is also strongly

enhanced in the presence of these metals, and its reducibility can be correlated with

the WGS performance [12]. Despite the high activity of ceria-supported noble metals

such Pt, Rh, Au, Pd, etc., in the WGS reaction, their high prizes motivate the search

for cheaper and more abundant metals which can be useful in the shift reaction [13].

Several studies have reported good activities of transition metals such a Ni, Cu, Co,

Fe, Mn on many supports for WGS reaction [14-16]. Among these metals, Ni has

received quite attention and has been employed as a promoter of many reactions. Ni-

based catalysts are widely employed in many industrial processes such as reforming

of alcohols, hydrogenation reactions, hydrocracking or oxidation processes [17].

Previous studies have addressed the behaviour of NiO/CeO2 or Ni/CeO2 systems as

catalysts for the title reaction [17-20]. Thus, the Ni-CeO2 system has proven to be

quiet active especially when compared to catalysts containing other metals, both noble

and basic ones. One disadvantage of these Ni-based systems is the possibility of

catalyst deactivation due to the carbon deposits generated by the proved activity of Ni

Page 117: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

110

in the methanation reaction and in methane decomposition. Several studies have

shown the importance of the amount of deposited Ni in decreasing the extent of the

methanation reaction. In this way, it has been shown that catalysts containing

limited amounts of highly dispersed nickel on ceria apparently do not produce

methane [17,21,22].

In this work, ceria-promoted nickel catalysts supported on activated carbon have

been prepared, characterized and studied in the low-temperature WGS reaction. The

limited supply and extensive applications of CeO2 make it necessary to optimize its

use. With this background, the aim of this work has been to prepare optimized Ni-

CeO2 catalysts in which the interaction between the metal and the oxide is enhanced,

and a large ceria surface is available while reducing the ceria amount in the catalyst.

To this end, CeO2 has been dispersed on a high surface area activated carbon. It has

been previously shown in other works from our group that large ceria dispersions (low

ceria crystallite sizes) can be achieved by this approach, and that this method can be

used to enhance the catalytic behaviour in different reactions [23-25].

2. EXPERIMENTAL SECTION

2.1 Catalysts preparation

The support was an industrial activated carbon (RGC30, from Westvaco). This

carbon was grinded and meshed (300-500 mm). The corresponding amount of

Ce(NO3)3·6H2O (99.99 %, Sigma-Aldrich) was dissolved in acetone. Acetone was used

as solvent to improve the accessibility of the metal precursor to the carbon surface,

taking into account its hydrophobicity and the lower polarity of acetone as compared

with water. Dried carbon was added to the solution, in a proportion of 10 mL/g of

support, with stirring. After 12 h, the excess of solvent was slowly removed under

vacuum at 40 ºC and the solid was then dried in the oven overnight at 80 ºC. Finally,

the dried solid was heat treated during 4 h at 350 ºC under flowing He (50 mL/min),

with a heating rate of 1 ºC/min, in order to slowly decompose the cerium nitrate to

form CeO2, trying to avoid the modification of the carbon surface by the evolved

nitrogen oxides [25]. Four CeO2/C samples were prepared with different nominal CeO2

loadings: 10, 20, 30 and 40 wt.%.

Page 118: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

111

Nickel addition to the CeO2/C samples was carried out using the proper amount of

Ni(NO3)2·6H2O (99.9 %, Sigma-Aldrich) in acetone to obtain 15 wt.% Ni, using 10 mL

of solution per gram of solid. After stirring for 12 h, the solvent was removed under

vacuum at 40 ºC. Finally the catalysts were treated at 350 ºC for 4 h under flowing He

(50 mL/min). In this way, four ceria-containing catalysts were prepared, which were

labeled as Ni10CeO2/C, Ni20CeO2/C, Ni30CeO2/C and Ni40CeO2/C. For the sake of

comparison, Ni/C and Ni/CeO2 catalysts were also synthesized. The Ni/C was

prepared similarly to the ceria containing samples, as described above.

For the Ni/CeO2 catalysts, the ceria support was prepared by homogeneous

precipitation from an aqueous solution of Ce(NO3)3·6H2O (99.99 %, Sigma-Aldrich)

containing an excess of urea. The solution was heated at 80 ºC and kept at this

temperature, with slow stirring, during 12 h. The solid formed was filtered and

calcined at 350 ºC for 4 h. The CeO2 support prepared in this way was impregnated

with the Ni precursor as described for the carbon supported catalysts.

2.2 Catalysts characterization

The textural properties of the supports were characterized by nitrogen adsorption

measurements at -196 ºC. Gas adsorption experiments were performed in home-made

fully automated manometric equipment. Prior to the adsorption experiments, samples

were out-gassed under vacuum (10-4 Pa) at 250 ºC for 4 h. The specific surface area

was estimated after application of the BET equation.

The actual metal loading of the different catalysts was determined by ICP-OES in

a Perkine Elmer device (Optimal 3000). To this end, the metal was extracted from the

catalysts by digestion in HNO3/H2O2 (4:1) for 30 min, in a microwave oven at 200 ºC.

X-Ray powder diffraction patterns were recorded on a Bruker D8-Advance with a

Göebel mirror and a Kristalloflex K 760-80 F X-Ray generation system, fitted with a

Cu cathode and a Ni filter. Spectra were registered between 20 and 80° (2θ) with a

step of 0.05° and a time per step of 3 s.

TEM images were taken with a JEOL electron microscope (model JEM-2010)

working at 200 kV. It was equipped with an INCA Energy TEM 100 analytical system

Page 119: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

112

and a SIS MegaView II camera. Samples for analysis were suspended in ethanol and

placed on copper grids with a holey-carbon film support.

Temperature-programmed reduction (TPR) with H2 experiments were carried out

on the calcined catalysts in a U-shaped quartz cell using a 5% H2/He gas flow of 50

mL/min, with a heating rate of 10 ºC/min. Samples were treated with flowing He at

150 ºC for 1 h before the TPR run. Hydrogen consumption was followed by on-line

mass spectrometry (Pfeiffer, OmniStar GSD 301).

X-Ray photoelectron spectroscopy (XPS) analyses were performed with a VG-

Microtech Multilab 3000 spectrometer equipped with a hemispherical electron

analyzer and a Mg-Kα (h = 1253.6 eV; 1 eV = 1.6302·10-19 J) 300-W X-ray source. The

powder samples were pressed into small Inox cylinders. Before recording the spectra,

the samples were maintained in the analysis chamber until a residual pressure of ca.

5·10-7 N/m2 was reached. The spectra were collected at pass energy of 50 eV. The

intensities were estimated by calculating the integral of each peak, after subtracting

the S-shaped background, and by fitting the experimental curve to a combination of

Lorentzian (30 %) and Gaussian (70 %) lines. The binding energy (BE) of the C l s

peak of the support at 284.9 eV was taken as an internal standard. The accuracy of

the BE values is ±0.2 eV.

2.3 Catalytic tests

The catalytic behaviour of the prepared samples in the low temperature water-gas

shift reaction was evaluated in a fixed bed flow reactor under atmospheric pressure in

the range of temperatures from 140 ºC to 360 ºC. Two different feed gas mixtures were

used, both of them with a total flow of 100 mL/min. The idealized feed gas mixture

contained 1.75 mol% CO and 35.92 mol% H2O in helium; on the other hand, trying to

simulate a closer to actual outgas mixture from a reformer, experiments with a feed

gas composition of 1.75 mol% CO, 35.92 mol% H2O, 34.45 mol% H2, and 1.12 mol%

CO2 in helium were carried out. Activity tests were performed using 0.150 g of

catalyst diluted with SiC, to avoid thermal effects. The corresponding contact time

was 0.09 g s/mL. Prior to reaction, the catalysts were reduced under flowing H2 (50

mL/min) for 2 h at 350 ºC. The composition of the gas stream exiting the reactor was

determined by mass spectrometry (Pfeiffer, OmniStar GSD 301), and the catalytic

Page 120: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

113

activity will be expressed by degree of CO conversion as a function of the reaction

temperature. The stabilization time for each temperature was 1 h and the CO

conversion percentage was calculated by this equation:

% CO conversion = (xCO/xCOinitial) · 100

where xCO is the concentration of CO in the outlet of the reactor and xCOinitial is

the CO concentration in the initial gas mixture. The carbon balance was checked

taking into account all the carbon containing products.

3. RESULTS AND DISCUSSION

3.1 Catalysts characterization

3.1.1 Textural and chemical characterization

Table 1 shows the specific surface area (N2, -196 ºC, BET), the micropore volume

(Vmicro, N2, -196 ºC, D-R) and the volume of mesopores (Vmeso) for the parent carbon,

the four ceria-loaded carbons, the four nickel catalysts prepared with the ceria-loaded

carbons as support, the bulk CeO2 and the Ni/CeO2 catalyst. Table 1 also reports the

chemical composition (ICP analysis) of the different catalysts.

The N2 adsorption isotherms at -196 ºC for all the carbon-based materials (not

shown) correspond to a combination of Type I and Type IV isotherms, which are

characteristic of materials containing both micro and mesopores. In fact, the

mesoporous volume is always slightly larger than the microporous volume. Data in

Table 1 show a continuous decrease of the BET surface area for the ceria-loaded

carbons as the amount of ceria increases, and the same trend is observed for both the

microporous and the mesoporous volumes. This effect has been previously reported

[25] and it is attributed to the blockage of porosity by ceria crystallites to a certain

extent. It has also to be taken into consideration that ceria addition decreases the

textural parameters of these materials as compared with those of the parent carbon,

as an effect of the increase of mass and the much lower porosity of ceria as compared

with carbon. The percentage of decrease of these textural parameters was calculated

Page 121: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

114

and it was found that it is directly proportional to the mass increase due to the CeO2

loaded. In any case, the fact that both the micro- and mesoporous volumes decrease in

the same way is indicative of a good dispersion of ceria on the carbon surface.

Table 1. Textural properties of supports and catalysts, and chemical composition of

catalysts.

SBET (m2/g) Vmicro (cm3/g) Vmeso (cm3/g) Ni (wt.%)* CeO2 (wt.%)*

C 1487 0.52 0.62 -- --

10CeO2/C 1299 0.47 0.59 -- 11.3

20CeO2/C 1083 0.37 0.47 -- 22.2

30CeO2/C 922 0.33 0.40 -- 31.5

40CeO2/C 758 0.26 0.32 -- 40.3

CeO2 101 0.04 0.07 -- --

Ni/C 1238 0.45 0.52 16.3 --

Ni10CeO2/C 1037 0.39 0.42 13.8 --

Ni20CeO2/C 807 0.28 0.34 12.7 --

Ni30CeO2/C 677 0.23 0.28 14.3 --

Ni40CeO2/C 512 0.19 0.21 12.5 --

Ni/CeO2 70 0.03 0.04 14.1 --

* Determined by ICP analysis.

The impregnation stage with the nickel precursor, followed by the thermal

treatment under helium, also produces a decrease in the BET surface area of the

catalysts, which is also attributed to presence of Ni in a high load (15 wt.%).

It has to be noted the much lower surface area of the ceria support and the ceria-

supported nickel catalyst as compared to that their carbon-supported counterparts.

Finally, the actual Ni and CeO2 content of the catalysts were determined by ICP

measurements, and they are reported in Table 1. The obtained values are very close to

the nominal ones.

Page 122: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

115

3.1.2 X-ray diffraction

Figure 1 shows the XRD patterns of all the prepared supports after calcination at

350 ºC, where the characteristic CeO2 peaks (JCPDS 34-0394) at 28.6, 33.4, 47.8 and

56.7°, corresponding to the reflections in the (111), (200), (220) and (331) crystalline

planes of the cubic fluorite type phase respectively, can be clearly observed. By

application of the Scherrer equation to the (111) diffraction peak, the mean crystal

sizes of CeO2 in the different catalysts have been determined, and they are presented

in the Table inserted in Figure 1. Whereas the CeO2 XRD profile shows very narrow

diffraction peaks, this indicating a high crystallinity and large crystal size, the

diffraction peaks obtained with the carbon-supported catalysts are much wider, this

indicating a small crystal size and a high ceria dispersion. Thus, a large exposed

surface is expected in these materials, in spite of the fact that they contain a lower

amount of CeO2 than the bulk support [23].

Figure 1. X-ray diffraction patterns and CeO2 crystal sizes both in the bulk and dispersed

on the carbon support.

On the other hand, Figure 2 shows the XRD patterns of the different catalysts after

the heat treatment in He at 350 ºC. Diffraction peaks at 37.2, 43.3, and 62.9°

correspond to the (111), (200) and (220) planes of the NiO fcc phase, respectively, and

are in agreement with JCPDS no. 04-0835 and with others DRX profiles found in the

literature [24-26]. The mean crystal sizes of NiO in the different catalysts are

presented in the Table inserted in Figure 2. The Ni/CeO2 catalyst shows very narrow

20 30 40 50 60 70 80

10CeO2C

20CeO2/C

30CeO2/C

40CeO2/C

Inte

nsity

(a.

u.)

2 (degree)

CeO2

Supports DCeO2 (nm)

10CeO2/C 3.9

20CeO2/C 5.4

30CeO2/C 5.2

40CeO2/C 6.0

CeO2 15.5

Page 123: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

116

20 30 40 50 60 70 80

Ni/C

Ni10CeO2/C

Ni20CeO2/C

Ni30CeO2/C

Ni40CeO2/C

Inte

nsity

(a.u

.)

2 (degree)

Ni/CeO2

Catalysts DNiO (nm)

Ni/C 2.2

Ni10CeO2/C 2.9

Ni20CeO2/C 4.2

Ni30CeO2/C 5.0

Ni40CeO2/C 4.9

Ni/CeO2 19.6

diffraction peaks, thus indicating a high crystallinity and large NiO crystal size; on

the other hand, results are different for Ni/C, with a very small size of NiO

crystallites and thus, a high dispersion.

Figure 2. X-ray diffraction patterns of catalysts.

3.1.3. H2-temperature-programmed reduction

H2-TPR measurements were employed in order to assess the type of reducible

species formed after the heat treatment of the catalysts under He flow. The TPR

profiles are presented in Figure 3. The TPR profiles of the CeO2/C supports (Figure

3a) showed two close reduction peaks at around 500 and 600 ºC. This profile is

different to those obtained from massive CeO2. Thus, the typical TPR profile for

unsupported CeO2 includes two distinct reductions peaks, one at low temperature,

around 500 ºC, and a second one at higher temperatures, around 850 ºC, which are

associated to the reduction of surface and bulk ceria, respectively [23,25,27-31]. In the

case of CeO2/C, the high temperature peak shifts to lower temperatures and it now

appears overlapped with the low temperature one. This indicates a high dispersion of

cerium oxide on the carbon support, as pointed out in our previous results. It can be

assumed that ceria is present on the carbon surface as small size particles, as

evidenced by XRD; this leads to a larger proportion of surface ceria that is reduced at

low temperature, and to an easier reduction of the remaining bulk ceria as compared

to the bulk oxide. Furthermore, the TPR profile of the activated carbon is also shown.

Page 124: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

117

One peak appears around 630 ºC due to the reduction of the low amount of oxygen

surface functional groups it contains.

Figure 3. H2-TPR profiles for supports (a) and catalysts (b).

On the other hand, three reduction peaks can be observed in the H2-TPR profiles

for NixCeO2/C (Figure 3b). The first low temperature peak is attributed to the

reduction of highly dispersed NiO on the support, and the intermediate ones

correspond to the surface reduction of ceria which interacts with the nickel particles

to different extents. Several types of Ni species coexist depending of the Ni/Ce ratios.

In the high nickel content samples, crystallized nickel oxide particles, Ni-Ce solid

solution and highly dispersed NiO phase can coexist [32,33]. For the Ni/C catalyst two

peaks can be observed. The first one at low temperature corresponds to the reduction

of highly dispersed NiO on the support, and the second one at intermediates

temperatures is ascribed to the reduction of medium sized particles. Previous results

in the literature show that the presence of Ni decreases the reduction temperature of

ceria, what can be associated to the spillover of hydrogen atoms from the nickel

particles to the ceria support [34]. This can be seen in the Ni/CeO2 reduction profile,

where there is an intermediate temperature peak slightly shifted to lower

temperatures due to the Ni-Ce interaction that decreases the ceria reduction

temperature. Also, two small peaks can be observed at lower temperatures that

correspond to the reduction of highly dispersed NiO on the ceria. On the other hand, a

small peak at high temperatures (around 830 ºC) can also be observed, which is

assigned to the reduction of bulk CeO2 in the Ni/CeO2 catalyst [35,36].

0 100 200 300 400 500 600 700 800 900 1000

Temperature (ºC)

Carbon

Inte

nsity

(a.

u.)

10CeO2/C

20CeO2/C

30CeO2/C

40CeO2/C

CeO2

0 100 200 300 400 500 600 700 800 900 1000

Inte

nsi

ty (

a.u

.)

Ni/CeO2

Ni40CeO2/C

Ni30CeO2/C

Ni20CeO2/C

Ni/C

Temperature (ºC)

Ni10CeO2/C

a) b)

(a)

Page 125: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

118

3.1.4 XPS characterization of reduced catalysts

Chemical changes in the catalysts after reduction in H2 at 350 ºC were investigated

by XPS. The samples were reduced ex situ and conserved in octane until the analysis.

The binding energies (B.E.) of the main peaks of the Ni 2p3/2 and Ce 3d5/2 energy levels

are summarized in Table 2. Figure 4 shows the XPS spectra obtained for the Ni 2p3/2

region.

Table 2. Binding energies of the Ni 2p3/2 and Ce 3d5/2 levels in the catalysts reduced at

350 ºC.

Catalysts Ni 2p3/2 (eV) Ce 3d5/2 (eV)

Ni2+ Ni0

Ni/C 854.0-855.8 852.6 --

Ni10CeO2/C 854.1-856.4 852.7 881.6

Ni20CeO2/C 854.8-856.9 852.8 882.7

Ni30CeO2/C 854.2-856.5 852.6 882.4

Ni40CeO2/C 854.7-856.8 852.7 882.4

Ni/CeO2 855.4-857.6 853.5 883.3

The reduced catalysts showed complex Ni 2p3/2 spectra, this indicating the presence

of different nickel species. In this way, the band at 852.6 eV is assigned to Ni0; the

following two bands, at around 854.7 and 856 eV are assigned to NiO and Ni(OH)2

species, respectively [21,27,37]. The binding energies of these two Ni2+ species in the

ceria-containing catalysts are slightly larger than the values reported for the pure

compounds and also than these species on the carbon supported Ni/C catalyst, which

is indicative of their interaction with ceria. The existence of a strong metal-support

interaction between Ni and CeO2 can modify the structure and electronic properties of

Ni which could improve the catalytic behavior of this system [38]. It was clear that

none of the samples were completely reduced after the reduction treatment.

Furthermore, the band corresponding to metallic Ni in Ni/CeO2 is strongly shifted to a

higher binding energy, 853.5 eV, as compared to the carbon-supported catalyst. These

results confirm the existence of Ni-CeO2 interactions, as also observed in H2-TPR.

Page 126: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

119

Figure 4. Core level XPS of the Ni 2p3/2 region for catalysts reduced at 350 ºC.

The main line of Ce 3d5/2 appears at 882.4 eV (not shown), which is typically

ascribed to CeO2 species. The bulk catalyst presents B.E. values slightly higher than

for carbon supported catalysts due to the interactions of bulk CeO2 with nickel [26,36-

38].

3.1.5 Transmission electron microscopy

Figure 5 shows TEM images of the fresh calcined Ni/CeO2, Ni10CeO2/C,

Ni20CeO2/C, Ni30CeO2/C, Ni40CeO2/C and Ni/C materials. It can be seen that the

active phases are homogeneously dispersed on the carbon support, with no large

agglomerations being observed. It is important to point out that it was not possible to

distinguish between CeO2 and Ni in the carbon-supported catalysts, as both species

appear in the images as black dots due to their similar electron density. However,

EDX experiments (not shown) revealed the presence of both oxides in direct contact.

The Ni/CeO2 catalyst shows large crystal sizes of both CeO2 and NiO, thus confirming

the XRD results.

850 852 854 856 858 860 862 864 866 868

Inte

nsi

ty (

a.u

.)

B.E. (eV)

Ni/CeO2

Ni40CeO2/C

Ni30CeO2/C

Ni20CeO2/C

Ni10CeO2/C

Ni/C

Page 127: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

120

f))

a)

)

c)

)

b)

)

d)

)

e)

)

Figure 5. TEM micrographs of a) Ni/C, b) Ni10CeO2/C, c) Ni20CeO2/C, d) Ni30CeO2/C, e)

Ni40CeO2/C, f) Ni/CeO2 (scale bar: 10 nm).

TEM micrographs also show that even with the large ceria and nickel loadings

used, the surface of the carbon support is not completely covered. This indicates that

the nickel particles may be located both on ceria and on the bare carbon surface, with

different degrees of Ni-Ce interactions which are clearly evidenced by the complex

TPR profiles obtained.

3.2 Catalytic behaviour

The catalytic performance of the reduced catalysts (flowing H2, 350 ºC), in terms of

CO conversion as a function of temperature during the low-temperature WGS

reaction with an ideal mixture (1.75 % CO, 35.92 % H2O, and He balance), is reported

in Figure 6. The catalytic activity of the CeO2/C supports was also checked, and

conversions lower than 2 % were obtained underlining the role of Ni as an active

phase in the WGS.

It can be seen that the Ni/C catalyst is less active than the ceria-containing

samples. This result reflects the essential role of ceria in this reaction due not only to

its well-known redox properties, but also to its ability to improve the stability and the

catalytic performance of these catalysts by the synergistic effect between the Ni and

Page 128: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

121

CeO2 [38-42]. For the NixCeO2/C catalysts there is a clear effect of the ceria loading on

the catalytic activity.

Figure 6. CO conversion vs. reaction temperature in idealized feed (1.75% CO, 35.92% H2O,

and He balance), for catalysts reduced at 350 ºC.

Figure 7 shows the CO conversion at 200 ºC for all the catalysts checked as a bars

graph. It can be seen that Ni20CeO2/C is the most active sample at this low

temperature. Only at temperatures above 230 ºC all the catalysts show the same

activity, close to 97 % of CO conversion (equilibrium conversion).

Figure 7. CO conversion at 200 ºC for the NixCeO2/C catalysts reduced at 350 ºC (ideal gas

stream feed).

140 160 180 200 220 240 260 2800

10

20

30

40

50

60

70

80

90

100

CO

co

nve

rsio

n (

%)

Temperature (ºC)

Ni/C

Ni10CeO2/C

Ni20CeO2/C

Ni30CeO2/C

Ni40CeO2/C

Ni/CeO2

equilibrium curve

Page 129: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

122

The synergism between the metal and the oxide support is clearly established

[20,43]. There are two general proposed mechanisms for this reaction, the redox

mechanism and the associative mechanism. In both cases the interaction between the

metal and the oxide support is of great importance [8]. As it has been shown by H2-

TPR (Figure 3b), the relative intensity of the medium temperature peak attributed to

the surface reduction CeO2 interacting with Ni particles is higher for the samples

containing 10-20 wt.% ceria. In principle, the strongest Ni-CeO2 interaction is

expected for these solids. As proposed by Rodriguez and co-workers, most of the WGS

reaction steps take place in the metal-support interface [42]. Therefore, the best WGS

performance is expected when the population of Ni-Ce interface sites is maximum.

For this reason, it is important to obtain a high surface area of the ceria promoter

that can interact with the nickel particles providing high concentration of active

reaction sites [44].

Undesirable products from side reactions, such as CH4 and other hydrocarbons,

were not detected in these experiments carried out with an idealized feed composition.

Even at 97 % CO conversion, the only products were CO2 and H2, this indicating the

high selectivity of these catalysts toward H2 production. These findings are also

consistent with the literature, as either suppression or no detection of methanation

activity is reported over Ni-modified ceria catalysts [17,20].

The effect of H2 and CO2 addition into the feed gas stream on the CO conversion

over all catalysts was also studied; these gases are present in many practical gas

streams exiting a reformer, and it is reported that these compounds usually inhibit

the WGS reaction rate [21]. Thus, it has been reported that CO2 can produce

deactivation due to the formation of carbonates on the ceria support [45,46], and an

excess of hydrogen may produce irreversible over-reduction of ceria [47].

Figure 8 shows the catalytic activity results in terms of CO conversion as a

function of temperature of the prepared catalysis, reduced in situ at 350 ºC, during

the low-temperature WGS reaction with a feed mixture containing the main

components of a post-reforming stream (1.75 % CO, 35.92 % H2O, 34.45 % H2, 1.12 %

CO2 and He balance).

Page 130: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

123

Figure 8. CO conversion vs. reaction temperature in harder feed (1.75 % CO, 35.92 % H2O,

34.45 % H2, 1.12 % CO2 and He balance) for catalysts reduced at 350 ºC.

It can be seen that the H2 and CO2 addition into the feed decreases the activity of

all the catalysts, although to different extents. Thus, the most affected one is Ni/C,

which was able to achieve a nearly complete CO conversion at 240 ºC with the ideal

gas mixture, but it now needs to work at around 330 ºC to reach a somewhat lower CO

conversion. The effect of the feed stream composition is less dramatic for the ceria

containing catalysts. Thus, Ni/CeO2 reached a 50 % CO conversion at 220 ºC with the

ideal gas mixture and at 230 ºC with the harder gas mixture, and similar differences

are obtained for the NixCe/C catalysts. Interestingly, all the ceria-promoted carbon-

supported catalysts show a better behaviour than Ni/CeO2 also under this feed, this

indicating the importance of a good ceria dispersion (small particle size) and a good

interaction with the active metal [48]. Thus, an optimum load of 10 wt.% CeO2 was

enough to obtain an efficient performance under reaction with the feed containing all

the reformate products. Actually, this sample is the one that presents the smallest

ceria particle size (Figure 1) and, therefore, the highest population of Ni-CeO2

reaction sites are expected.

It is broadly reported that bulk Ni species promote the formation of CH4 under

these WGS reaction conditions since metallic nickel is a well-known catalyst for

methanation [16]. On the other hand, Ni-based catalysts are among the most effective

and affordable metal catalysts for WGS [49]. Another important issue that has been

extensively studied is the nature of catalytically active species in the methanation

0

10

20

30

40

50

60

70

80

90

100

140 160 180 200 220 240 260 280 300 320 340

Ni/C

Ni10CeO2/C

Ni20CeO2/C

Ni30CeO2/C

Ni40CeO2/C

Ni/CeO2

CO

con

vers

ion

(%)

Temperature (ºC)

equilibrium curve

Page 131: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

124

process. It is well known that the hydrogenation process occurs only at metallic Ni0

sites and that other Ni species, as oxides, hydroxides or carbides are not active in the

methanation reaction. In this context, the methanation issue must be addressed to

validate the excellent performance of our Ni-based catalysts in the WGS reaction.

Figure 9 shows the evolution of CO, CO2 and CH4 concentrations at the reactor exit

for the Ni/C catalyst, as a function of temperature, using a CO2-free feed stream (1.75

% CO, 35.92 % H2O, 34.45 % H2, and He balance). The plot clearly demonstrates that

methane formation was exclusively due to CO2 hydrogenation, since no methane

appears at high CO concentrations (temperatures below 270 ºC). Indeed methane

concentration increases inversely to that of CO2, this indicating that CO2 is being

consumed to produce methane. Furthermore and very importantly, methanation

starts when all CO has been converted to CO2 via WGS. At this point, the CO2

concentration is maximum, favouring its transformation to methane. The CO

conversion observed in the WGS test is only attributable to the shift process. This

result reinforces the successful application of our Ni-based catalysts in the WGS

reaction.

Figure 9. CO, CO2 and CH4 concentrations at the exit of the reactor for Ni/C, reduced at 350

ºC, as a function of reaction temperature.

Finally, a stability test has been carried out on the most active catalyst,

Ni10CeO2/C, in harder feed at 220 ºC. Figure 10 shows the CO conversion as a

function of time. In a first stage, the gas stream composition was stabilized before

being put in contact with the catalyst. It can be seen that a high CO conversion of

about 55 % is achieved during the first 5 h on stream; then, a marked deactivation

140 160 180 200 220 240 260 280 300 320 340

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gas

con

cent

ratio

n (%

)

Temperature (ºC)

CO

CO2

CH4

Page 132: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

125

takes place during next hours, but after 150 h of reaction the CO conversion is still

larger than 40 %.

Figure 10. Stability test for Ni10CeO2/C at 220 ºC.

The observed deactivation trend can be attributed to a decrease of the WGS

catalytic activity when Ni particles become larger by sintering [42]. In this sense,

TEM micrographs of Ni10CeO2/C catalyst were taken before and after the stability

test (Figure 11a) and b)), and it can be seen that some agglomerations were observed

in the used catalyst. It has been reported that sintering of nickel particles cannot be

avoided under conditions of high temperature and high water content [44,49] as water

favours the growing of Ni particles. This reduces the catalytic surface area and results

in a decreased activity [48]. It has been recently demonstrated that adsorbate-metal

complexes can be formed with low formation energies and/or low diffusion barriers

which may induce coarsening phenomena. This led to the assumption that Ni2-OH

complexes are the major transport species at the surface of nickel particles in H2O/H2

atmospheres [50-55].

Figure 11. TEM micrographs of the Ni10CeO2/C catalyst before (a) and after (b) the

stability reaction test at 220 ºC (scale 10 nm).

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

CO

con

vers

ion

(%)

Time (h)

Page 133: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

126

The slight modification of the size of nickel particles due to sintering results in a

slow decrease of activity. Suppression of the metal particle growing over the ceria-

based supports has been reported, and it was found that the strong metal-support

interaction plays an important role in controlling the sintering and it is also known

that ceria-based supports improve the thermal stability of the metal particles [49].

4. CONCLUSIONS

We have developed highly active activated carbon-supported Ni-ceria catalysts

(NixCeO2/C) for the low temperature water-gas shift reaction. Cerium oxide has been

dispersed over an activated carbon support at different loadings, obtaining small ceria

particles and a highly available surface area, in spite of the fact that they contain a

lower amount of CeO2 than the bulk support. XRD and TEM studies have confirmed

the small crystal size (4-6 nm) and high dispersion of CeO2 in comparison with

massive CeO2 catalysts (15 nm). This leads to an easier reduction of ceria, which

interacts with the nickel particles to different extents (H2-TPR). After a reduction

treatment at 350 ºC, XPS analysis showed the presence of metallic nickel and

different oxidized nickel species, and a shift of the binding energy to larger values,

which is attributed to the Ni-CeO2 interaction. Catalytic activity using an ideal

mixture feed shows the essential role of ceria in this reaction. In addition, a clear

effect of the ceria loading and dispersion on the catalytic behaviour was observed. We

found that the optimum load was 20 wt.% CeO2. Side reactions such as methanation

were not detected in these conditions.

The effect of the addition of H2 and CO2 to the feed gas mixture on the CO

conversion was also studied. The catalytic activity was slightly diminished for the

ceria-carbon based catalysts, but a strong deactivation was observed in Ni/C. Under

these more realistic conditions, the catalyst with 10 wt.% CeO2 exhibited the best

performance. A point to be highlighted is the absence of CO methanation. All the CO

conversion observed was achieved via WGS. Nevertheless, methanation reaction was

detected at high temperatures, but it resulted to be completely selective towards CO2

hydrogenation.

Page 134: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

127

Finally, a CO conversion greater than 40 % was obtained in a stability test after

150 h of reaction at 220 ºC with Ni10CeO2/C catalyst. The results obtained in this

study permit to conclude that this kind of catalysts are promising for the low-

temperature water-gas shift reaction, allowing to decrease the amount of ceria needed

to obtain high CO conversions by increasing its available surface area.

5. REFERENCES

[1]. www.hydrogen.energy.gov.

[2]. M.A. Peña, J.P. Gómez, J.L.G. Fierro, Appl. Catal. A 144 (1996) 7-57.

[3]. C.G.Farrell, C.L. Gardner, M. Ternan, J. Power Sources 171 (2007) 282-293.

[4]. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song D, et al. J. Power

Sources 165 (2007) 739-756.

[5]. J.R. Ladebeck, J.P. Wagner, Catalyst development for water-gas shift. In: W.

Wolf Vielstich, L. Arnold, H.A. Gasteiger, editors. Handbook of fuel cells e

fundamentals, technology and applications, Chapter 16, vol. 3, Part 2, (2003)

190-201.

[6]. J.N. Armor, Appl. Catal. A 176 (1999) 159-176.

[7]. C.A. Franchini, A.M. Duarte de Farias, E.M. Albuquerque, R. dos Santos, M.A.

Fraga, Appl. Catal. B 117 (2010) 302-309.

[8]. T. Shido, Y. Iwasawa, J. Catal. 141 (1993) 71-81.

[9]. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935-938.

[10]. W. Ruettinger, X. Liu, R.J. Farrauto, Appl. Catal. B 65 (2006) 135-141.

[11]. C. Ratnasamy, J.P. Wagner, Catal. Rev. 51 (2009) 325-440.

[12]. D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, et al.

Catal. Today 72 (2002) 51-57.

[13]. U.S. geological survey, (2013) www.usgs.gov.

[14]. A. Casanovas, C. de Leitenburg, A. Trovarelli, J. Llorca, Chem. Eng. J 154

(2009) 267-273.

[15]. N. Schumacher, A. Boisen, S. Dahl , A.A. Gokhale, S. Kandoi, A. Dumesic, et al.

J. Catal. 229 (2005) 265-275.

[16]. C. Wheeler, A. Jhalani, E.J. Klein, S. Tummala, L.D. Schmidt, J. Catal. 223

(2004) 191-199.

Page 135: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CeO2-promoted Ni/activated carbon for the water-gas shift reaction

128

[17]. L. Barrio, A. Kubacka, G. Zhou, M. Estrella, A. Martínez-Arias, J.C. Hanson, et

al. J. Phys. Chem. C 114 (2010) 12689-12697.

[18]. S. Hilaire, X. Wang, T. Luo, R.J. Gorte, J.A. Wagner, Appl. Catal. A 215 (2001)

271-278.

[19]. G. Jacobs, E. Chenu, P.M. Patterson, L. Williams, D. Sparks, G. Thomas, et al.

Appl. Catal. A 258 (2004) 203-214.

[20]. Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B 27 (2000) 179-191.

[21]. J.H. Lin, V. Guliants, ChemCatChem 4 (2012) 1611-1621.

[22]. Y. Zhou, J. Zhou, J. Phys. Chem. C 116 (2012) 9544-9549.

[23]. R. Buitrago, J. Ruiz-Martínez, J. Silvestre-Albero, A. Sepúlveda-Escribano, F.

Rodríguez-Reinoso, Catal. Today 180 (2012) 19-24.

[24]. J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, D. Duprez, J.

Mol. Catal. A Chem. 268 (2007) 227-234.

[25]. J.C. Serrano-Ruiz, E.V. Ramos-Fernández, J. Silvestre-Albero, A. Sepúlveda-

Escribano, F. Rodríguez-Reinoso, Mater. Res. Bull. 43 (2008) 1850-1857.

[26]. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Guemez, M.C. Sanchez-

Sanchez, et al. Int. J. Hydrogen Energy 35 (2010) 11622-11633.

[27]. V.M. Shinde, G. Madras, Appl. Catal. B 132-133 (2013) 28-38.

[28]. W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song, J. Xu, Appl. Catal. A 383 (2010) 73-78.

[29]. P. Djinovic, J. Batista, A. Pintar, Catal. Today 147 (2009) S191-197.

[30]. J. Kugai, J.T. Miller, N. Guo, C. Song, Appl. Catal. B 105 (2011) 306-316.

[31]. X. Liu, P. Guo, B. Wang, Z. Jiang, Y. Pei, K. Fan, et al. J. Catal 300 (2013) 152-

162.

[32]. W. Shan, M. Luo, P. Ying, W. Shen, C. Li, Appl. Catal. A 46 (2003) 1-9.

[33]. M.M. Zyryanova, P.V. Snytnikov, R.V. Gulyaev, Y.I. Amosov, A.I. Boronin, V.A.

Sobyanin, Chem. Eng. J 238 (2014) 189-197.

[34]. K. Chayakul, T. Srithanratana, S. Hengrasmee, Catal. Today 175 (2011) 420-

429.

[35]. B. Li, X. Xu, S. Zhang, Int. J. Hydrogen Energy 38 (2013) 890-900.

[36]. E. Van Ryneveld, A.S. Mahomed, P.S. Van Heerden, M.J. Green, H.B. Friedrich,

Green Chem. 13 (2011) 1819-1827.

[37]. I. Czekaj, F. Loviat, F. Raimondi, J. Wambach, S. Biollaz, A. Wokaun, Appl.

Catal. A 329 (2007) 68-78.

[38]. S.D. Senanayake, J.A. Rodriguez, D. Stacchiola, J. Phys. Chem. C 116 (2012)

9544-9549.

Page 136: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter V

129

[39]. A.P. Grosvenor, M.C. Biesinger, R.S.tC. Smart, N. Stewart McIntyre, Surf. Sci.

600 (2006) 1771-1779.

[40]. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Güemez, R.M. Navarro, et

al. Top. Catal. 49 (2008) 46-58.

[41]. S. Park, Y. Jang, J. Colloid Interface Sci. 263 (2003) 170-176.

[42]. S.D. Senanayake, J. Evans, S. Agnoli, L. Barrio, T.L. Chen, J. Hrbek, et al. Top.

Catal. 54 (2011) 34-41.

[43]. G. Jacobs, B.H. Davis, Appl. Catal. A 333 (2007) 192-201.

[44]. T. Bunluesin, R.J. Gorte, G.W. Graham, Appl. Catal. B 15 (1998) 107-114.

[45]. C.H. Kim, L.T. Thompson, J. Catal. 230 (2005) 66-74.

[46]. X. Liu, W. Ruettinger, X. Xu, R. Ferrauto, Appl. Catal. B 56 (2005) 69-75.

[47]. J.M. Zalc, V. Sokolovskii, D.G. Löffer, J. Catal. 206 (2002) 169-171.

[48]. V.M. Gonzalez-De la Cruz, J.P Holgado, R. Pereñíguez, A. Caballero, J. Catal.

257 (2008) 307-314.

[49]. C. Rhodes, G.J. Hutchings, A.M. Ward, Catal. Today 23 (1995) 43-58.

[50]. H. Devianto, L.Z. Lan, S. Pil Yoon, J. Han, S. Woo Nam, T.H. Lim, et al. Int. J.

Hydrogen Energy 35 (2010) 2591-2597.

[51]. D. Hari Prasad, S.Y. Park, H. Ji, H.R. Kim, J.W. Son, B.K. Kim, et al. Appl.

Catal. A 411-412 (2012) 160-169.

Page 137: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 138: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

CHAPTER VI

Ni-CeO2/C catalysts with enhanced OSC

for the WGS reaction reaction

GGrraapphhiiccaall aabbssttrraacctt

Page 139: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 140: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

133

Abstract

In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is

compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported

sample resulted to be much more active than the bulk one. The higher activity of the

Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that

strongly influences the WGS behavior. The stability of the carbon-supported catalyst

under realistic operation conditions is also a subject of this paper. In summary, our

study represents an approach towards a new generation of Ni-ceria based catalyst for

the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an

activated carbon support drives to improved catalytic skills with a considerable

reduction of the amount of ceria in the catalyst formulation.

Keywords: WGS; cerium oxide; carbon support; OSC; Ni based catalysts

Page 141: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

134

1. INTRODUCTION

Nowadays, synthesis gas (a mixture of hydrogen and carbon monoxide) is generally

produced by steam reforming of hydrocarbons, especially if the principal objective is

the generation of gas streams with high H2/CO ratios. For clean energy production,

pure hydrogen is required as a feed gas for electricity generation in low temperature

fuel cells [1]. In this sense, some processes have been considered in order to minimize

the reformate CO concentration for PEM fuel cell applications as for example water-

gas shift (WGS). Conventionally, in an integrated fuel processor, the WGS reactor is

the first clean-up unit, and it is the reaction that removes the most important amount

of CO in the H2 stream [2].

Due to its high oxygen storage capacity and reducibility (via the Ce4+↔Ce3+ redox

process), cerium oxide is widely used as catalyst support and promoter in the water-

gas shift reaction [3]. The role of the ceria surface is determinant for this reaction,

both in terms of reducibility but also in terms of extension (large exposed surface

areas are needed). Furthermore ceria reducibility is favored by the presence of metals

[4,5].

One of the key points that convert ceria in a highly suitable support for the shift

reaction relies on its ability to provide oxygen to the process. Indeed the WGS is a

redox reaction, thus the oxygen mobility of the catalyst is regarded as a main issue in

the catalytic design [6]. The later makes obligatory an accurate study of the redox

features exhibited by the WGS systems, namely, the oxygen storage complete capacity

(OSCC) and oxygen storage capacity (OSC). Recently, a great increase in both the

OSC and the OSCC has been proposed as one of the main reasons to explain the

activity promotion when ceria is dispersed on a high surface alumina [7]. In this way,

promoting redox properties of the catalysts, namely surface and bulk oxygen mobility

should benefit the WGS performance. Therefore, oxygen supply from the support is a

highly desired feature for an effective WGS catalyst. Dispersing ceria over a high

surface support such as carbon provides higher surface/bulk ratios improving oxygen

mobility. In addition, the limited supply and extensive applications of CeO2 makes

desirable to optimize its use [8].

Page 142: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

135

On the other hand, ceria-supported noble metals are mostly used due to the high

activity in the WGS reaction. However, their elevated prices motivate the search for

cheaper and more abundant metals which can be useful in the shift reaction. Ni-based

catalysts are widely employed in many industrial processes such as reforming of

alcohols, hydrogenation reactions and hydrocracking or oxidation processes [9].

Previous studies have addressed the behaviour of NiO/CeO2 or Ni/CeO2 systems as

catalysts for the title reaction. Despite good activities were reported, Ni containing

catalysts suffer for deactivation mainly due to the well-known metallic particles

sintering process together with the accumulation of carbon deposits on the catalysts

surface [10,11].

Another point to consider is the adaptation of the new catalysts formulation to the

budding market demands. The emerging fuel cell technology for portable electronic

devices is changing the requisites for the WGS catalysts. Apart from developing a

solid with the properties mentioned above, an industrial catalyst for WGS reaction

requires in addition high long term stability and good resistance toward start/stop

situations [12].

In a previous work [13] NixCeO2/C catalysts with different CeO2 contents (x = 10,

20, 30, 40 %wt.) were tested in the WGS reaction. Detailed characterization was

performed, deepening in both physical and chemical characteristics of these materials.

The results showed that there was a clear effect of the ceria loading on the catalytic

activity. It could be seen that the Ni-CeO2-carbon system yielded catalysts which

showed better performance than bulk Ni/CeO2.

In this scenario, and taking into account our previous results [13] the objective of

this work is to correlate the OSC of these catalysts with their high activity. A study of

the enhancement of the oxygen storage capacity when ceria is dispersed on carbon is

carried out. For this study, a sample with a 20 wt.% CeO2 loading was chosen due to

the interesting results obtained before. Additionally, and differently to our previous

study, water-gas shift reactions employing more demanding WGS conditions were

carried out. Further, stability tests and start/stop cycles were developed in order to

evaluate the viability of this catalyst in real applications.

Page 143: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

136

2. EXPERIMENTAL SECTION

2.1 Catalysts preparation

The procedure used for the catalyst synthesis was the same than in our previous

work [13]. The support was an industrial activated carbon (RGC-30, from Westvaco,

New York, NY, USA). This carbon was grinded and meshed (300–500 μm). The

corresponding amount of Ce(NO3)3·6H2O (99.99 %, Sigma–Aldrich, St. Louis, MO,

USA) to obtain 20 wt.% of CeO2 was dissolved in acetone. Dried carbon was added to

the solution, in a proportion of 10 mL/g of support, with stirring. After 12 h, the excess

of solvent was slowly removed under vacuum at 40 °C and the solid was then dried in

the oven overnight. Finally, the dried solid was heat treated during 4 h at 350 °C

under flowing He (50 mL/min), with a heating rate of 1 °C/min, in order to slowly

decompose the cerium nitrate to form CeO2, trying to avoid the modification of the

carbon surface by the evolved nitrogen oxides [25].

Nickel addition to the CeO2/C solid was carried out using the proper amount of

Ni(NO3)2·6H2O (99.9 %, Sigma-Aldrich, St. Louis, MO, USA) in acetone to obtain 15

wt.% Ni, using 10 mL of solution per gram of solid. After stirring for 12 h, the solvent

was removed under vacuum at 40 °C. Finally, the solid was treated at 350 °C for 4 h

under flowing He (50 mL/min). The catalyst prepared was labeled Ni-CeO2/C. For the

sake of comparison, a Ni/CeO2 catalyst was also synthesized. The ceria support was

prepared by homogeneous precipitation from an aqueous solution of Ce(NO3)3·6H2O

(99.99 %, Sigma-Aldrich, St. Louis, MO, USA) containing an excess of urea. The

solution was heated at 80 °C and kept at this temperature, with slow stirring, during

12 h. The solid formed was filtered and calcined at 350 °C for 4 h. The CeO2 support

prepared in this way was impregnated with the Ni precursor as described for the

carbon supported catalysts.

2.2 Catalysts characterization

The textural properties of the supports were characterized by nitrogen adsorption

measurements at −196 °C. Gas adsorption experiments were performed in home-made

fully automated manometric equipment. Prior to the adsorption experiments, samples

Page 144: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

137

were out-gassed under vacuum (10−4 Pa) at 250 °C for 4 h. The specific surface area

was estimated after application of the BET equation.

The actual metal loading of the different catalysts was determined by ICP-OES in

a Perkin Elmer device (Optimal 3000). To this end, the metal was extracted from the

catalysts by digestion in HNO3/H2O2 (4:1) for 30 min, in a microwave oven at 200 °C.

For the Oxygen Storage Complete Capacity (OSCC) 100 mg of catalyst was loaded

into a U-shaped quartz reactor and the temperature was raised in a He flow (50

mL/min) until 350 °C. Then, the system was cooled and set to the desired temperature

(150, 250 and 350 °C). For each temperature 10 O2 pulses of 1 mL were injected every

2 min. After that, the sample was submitted to 10 CO pulses of 1 mL each (every 2

min). The OSCC was calculated from the sum of the CO2 formed after each CO pulse.

The sample was then degassed during 10 min in a He flow to perform the OSC

measurements. Four alternating series of pulses (CO-O2-CO-O2-CO-O2-CO-O2) were

applied for each temperature. The OSC was determined by the average amount of

CO2 per pulse formed after the first CO pulse of the alternated ones. This method is

based on the one proposed by Duprez et al. [26]. The gas composition at the exit of the

reactor was analyzed by a mass spectrometer PFEIFFER Vacuum PrismaPlus

controlled by Quadera® software (version 4.0, INFICON, LI-9496 Balzers,

Furstentum Liechtenstein).

Several assumptions were contemplated for the OSC calculations. Concretely, it

was considered that (i) only oxygen atoms bonded to the cerium participate in the

oxygen storage process; (ii) the surface is assumed homogeneous and (iii) only one of

the four oxygen atoms is involved in the storage (2CeO2→Ce2O3 + “O”)

TEM images were taken with a JEOL electron microscope (model JEM-2010)

working at 200 kV. It was equipped with an INCA Energy TEM 100 analytical system

and a SIS MegaView II camera. Copper grids with a holey-carbon film support were

used for the microscopy measurements. The samples were suspended in ethanol and

placed on the grids for the analysis.

Page 145: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

138

2.3 WGS Catalytic tests

The catalytic behaviour of the prepared samples in the low temperature water-gas

shift reaction was evaluated in a fixed bed flow reactor under atmospheric pressure in

the range of temperatures from 160 °C to 380 °C. For the stability tests the

temperature employed was 250 °C. Trying to simulate a more close to real outgas

mixture from a reformer, experiments with a feed gas composition of 7 mol% CO, 30

mol% H2O, 50 mol% H2, and 9 mol% CO2 balanced to 100 mL/min with helium was

tested. Activity tests were performed using 0.150 g of catalyst diluted with SiC, to

avoid thermal effects. The corresponding contact time was 0.09 g·s/mL Prior to

reaction, the catalysts were reduced under flowing H2 (50 mL/min) during 2 h at 350

°C. The composition of the gas stream exiting the reactor was determined by mass

spectrometry (Pfeiffer, OmniStar GSD 301). The stabilization time for each

temperature was 1 h and the CO conversion percentage was calculated by this

equation:

% CO conversion = 100 − (xCO/xCOinitial)·100

where xCO is the molar concentration of CO in the outlet of the reactor and

xCOinitial is the CO concentration in the initial gas mixture. The carbon balance was

checked taking into account all the carbon containing products.

3. RESULTS AND DISCUSSION

3.1 Catalysts characterization

3.1.1 Textural and chemical characterization

The chemical composition and the main textural properties of the prepared

catalysts are presented in Table 1. The enhanced textural properties of the carbon

materials are evidenced, all of them exhibiting larger surface area compared to the

bulk solids. As previously reported, carbon is playing a role of textural promoter in

these type of catalysts [13]. Data in Table 1 show a decrease of the BET surface area

for ceria-carbon based samples, attributed to the blockage of porosity by ceria

Page 146: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

139

crystallites and/or an effect of mass increment and the much lower porosity of ceria as

compared with carbon. The addition of nickel also produces a decrease in the BET

surface area of the catalysts, which is also attributed to presence of high amounts of

Ni (15 wt.%).

Regarding the elemental analysis, the actual Ni and CeO2 content of the catalysts

were determined by ICP (Inductively Coupled Plasma) measurements, and they are

reported in Table 1. The obtained values are very close to the targeted ones, this

validating the preparation method used.

Table 1. Catalysts composition and textural properties of the prepared samples.

SBET (m2/g) Vmicro (cm3/g) Vmeso (cm3/g) Ni (wt.%)* CeO2(wt.%)*

C 1487 0.52 0.62 -- --

20CeO2/C 1083 0.37 0.47 -- 22.2

CeO2 101 0.04 0.07 -- --

Ni20CeO2/C 807 0.28 0.34 12.7 21.6

Ni/CeO2 70 0.03 0.04 14.1 --

* Determined by ICP analysis.

3.1.2 OSCC and OSC

As mentioned above, redox properties constitute one of the main issues to be

optimized for the successful design of an efficient WGS catalyst. An accurate

understanding of such skills is obtained by the oxygen storage capacity

measurements. In particular, OSCC measurements provide information about the

maximum reducibility of the samples, while OSC informs about the most reactive and

most available oxygen atoms that are involved in the redox process [14]. This study

was carried out at two different temperatures (150 °C and 250 °C) both of them low

enough to avoid any possible carbon combustion due to the oxygen pulses. Actually

our TGA data (not shown for sake of briefness) point that carbon combustion in our

catalysts under air atmosphere starts at 320 °C. The selected temperatures are

relevant points in the catalytic study. Therefore, the analysis of the redox behavior of

both catalysts at these temperatures provides valuable information to understand

their WGS performance. Figure 1 shows the OSCC results of the prepared solids. As

expected, the OSCC increases with the temperature for both supports and catalysts,

indicating higher degree of ceria reduction at 250 °C. In the case of the supports

Page 147: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

140

(Figure 1A) it must be underlined the superior OSCC exhibited for the CeO2/C system

at the studied temperatures. These data indicate that the dispersion of ceria

nanoparticles on a high surface carrier as activated carbon results in a notorious

improvement of its reducibility. In other words, enhanced redox properties are

achieved for the CeO2/C solid in comparison to the bulk CeO2. Even though carbon is

not playing a chemical role in the oxygen storage process, it acts as an ideal media to

support ceria nanoparticles providing high surface area (as shown in Table 1). Similar

results were obtained when CeO2 is dispersed over gamma alumina [15]. In this

sense, dispersing ceria over a high-surface carrier opens up the possibility of having

higher surface/bulk ratios thus improving the oxygen mobility no matter the used

support. However it is worth noting that our ceria/carbon based samples present

higher OSCC values than those observed for ceria/alumina systems measured under

the same conditions [15]. The latter indicates the suitability of carbon as a textural

promoter allowing better dispersion of ceria nanoparticles.

Nickel addition (Figure 1B) enhances the OSCC for both, bulk CeO2 and CeO2/C

support. This result agrees with H2-TPR data recently published for these solids

evidencing a remarkable increase of the support reducibility due to the strong Ni-

CeO2 interaction [13]. Again, as observed for the bare supports, much higher OSCC

values are obtained when ceria and nickel phases are dispersed on the activated

carbon.

Figure 1.OSCC of the prepared solids. A) supports B) Ni based catalysts.

The OSC study is summarized in Table 2. At 150 °C the supports presented low

oxygen mobility; however, the OSC improves when the temperature is raised. In a

similar way to the OSCC, the OSC of the CeO2/C sample is always higher than that of

100 150 200 250 3000

500

1000

1500

2000

2500

3000

3500

m

ol

CO

2/

g s

am

ple

Temperature (oC)

CeO2

CeO2/C

A OSCC

100 150 200 250 3000

500

1000

1500

2000

2500

3000

3500

B

m

ol

CO

2/

g s

am

ple

Temperature (oC)

Ni/CeO2

Ni-CeO2/C

OSCC

Page 148: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

141

the bulk CeO2 support. As stated above, Ni influences CeO2 reducibility due to the

intimate Ni-CeO2 contact [16]. This effect is highlighted at low temperature (150 °C),

where the metallic particles broadly boost the OSC of the parent supports. In any

case, for all the studied temperatures, the Ni-CeO2/C catalyst shows the best oxygen

mobility. The promoted redox features of this catalyst are related with two inherent

aspects of its composition: (i) the dispersion of ceria nanoparticles on the activated

carbon, which increases the surface/bulk ratio, thus potentiating the oxygen mobility

in the ceria lattice and, (ii) the facilitated CeO2 reduction due to the presence of Ni,

arising from a strong metal-support interaction.

Table 2. OSC in μmol CO2/g sample for the studied samples at different temperatures.

3.2 WGS Behaviour

The catalysts were evaluated under a surrogate post reforming stream (7 mol%

CO, 30 mol% H2O, 50 mol% H2, and 9 mol% CO2 balanced with He) with the aim to

test their viability for a real application, for instance the use of a WGS reactor in an

integrated fuel processor for pure hydrogen production. The catalytic activity of the

prepared Ni-ceria based catalysts in the shift reaction is presented in Figure 2. It

should be mentioned that the supports were also tested under the same conditions,

showing an almost nil activity in the studied temperature range. This underlines the

importance of the metallic phase to achieve good performance in the WGS when ceria-

based solids are considered. As intended from the plot, the samples are not very

effective in the low temperature range (<200 °C). At these conditions the solids

present limited oxygen mobility (low OSC values) that may contribute to the observed

low CO conversion. Nevertheless, the catalytic activity rapidly increases with the

temperature. The Ni-CeO2/C sample evidences superior WGS activity compared to the

Ni/CeO2 one in the whole temperature range. Taking into account that the amount of

metallic phase (Ni) is comparable in both materials, as obtained by ICP, the higher

Sample OSC150ºC OSC250ºC

CeO2 10 180

CeO2/C 25 255

Ni/CeO2 410 726

Ni-CeO2/C 620 850

Page 149: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

142

activity in WGS correlates with the boosted OSC and OSCC demonstrated for this

solid. In addition to the excellent redox skills, the Ni-Ce/C sample presents greater

metallic dispersion and superior specific surface area contributing to activity

enhancement. This catalyst quadruplicates the activity of the Ni/CeO2 solid at 240 °C,

and reaches equilibrium conversion at 260 °C. Compared to others Ni-ceria catalysts

previously reported, our carbon-supported sample performs better even under harder

WGS conditions [17,18]. This is a very promising result since this material seems to

be as efficient as some well-known noble metal based catalysts for this reaction [19].

However, contrary to the noble metal based solids, Ni-ceria solids also catalyze the

methanation reaction. As can be seen in Figure 2, both catalysts exceed the

equilibrium conversion at high temperatures. The additional CO consumption is due

to the methanation process. The high concentrations of CO used in this stream favor

the methanation reaction [20]. The good point is that the methanation reaction for

both catalysts starts at temperatures higher than 260 °C and thus, this does not affect

our WGS operating window.

Figure 2. CO conversion vs. reaction temperature for catalysts reduced at 350 °C. Gas

mixture: 7 mol% CO, 30 mol% H2O, 50 mol% H2, and 9 mol% CO2 balanced in He.

This result is very interesting from the point of view of catalyst design since,

according to our data, a much better catalytic activity is obtained when CeO2 is

dispersed on activated carbon. This approach permits to develop very active WGS

catalysts reducing significantly the amount of ceria on the catalyst formulation. This

160 180 200 220 240 260 280 300 320 340 360 380

0

20

40

60

80

100

equilibrium

CO

con

vers

ion

(%)

Temperature (oC)

Ni-CeO2/C

Ni/CeO2

Page 150: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

143

outstanding behavior is linked to a strong enhancement of the redox properties when

ceria nanoparticles are dispersed on a high surface carrier.

From the industrial perspective, the catalytic stability is as relevant as the

activity. In this sense, a complete stability study of the selected sample was carried

out. The stability test was developed at 250 °C, a reaction temperature at which the

methanation reaction was not observed and good WGS activity was achieved. Figure 3

shows the long term stability test of the Ni-CeO2/C catalyst. For the aim of

comparison the same test was carried out with the Ni/CeO2 solid; however, this

catalyst exhibited fast deactivation and very poor CO conversion. Therefore it will not

be longer considered. Regarding our Ni-CeO2/C material, at the first stages of the

reaction the system exhibits a good catalytic behavior. However, the CO conversion

notably drops after 8 h of continuous reaction and remains stable after more than 120

h. Afterwards, several start/stop cycles were introduced simulating likely situations in

real application. It was observed that the catalyst recovers the conversion after the

start/stop operation. Apparently, once the initial deactivation occurs (at the early

reaction stages) the start-up/shutdown actions do not influence the activity.

Figure 3. Long term stability test of the prepared catalysts at 250 °C. 1 and 2 start/stop

cycles. Gas mixture: 7 mol% CO, 30 mol% H2O, 50 mol% H2, and 9 mol% CO2 balanced in He.

For a deeper understanding of this result, a second stability test was carried out.

At this time, the catalyst was directly submitted to a series of start/stop cycles to

check its actual tolerance under these conditions. Indeed, this type of stability

0 20 40 60 80 100 120 1400

20

40

60

80

100

Ni-CeO2/C

21

CO

co

nvers

ion

(%

)

Time (h)

2

Ni/CeO2

Page 151: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

144

experiment is considered as the most exigent test for a WGS catalyst, since during the

stop stages the system is cooled down at room temperature with the reaction flow

passing through the catalytic bed [21].The later involves liquid water may condense

on the pores of the catalyst damaging the system. Figure 4 reveals that the Ni-CeO2/C

catalyst withstands 4 start/stop cycles within 6 h of reaction while preserving the

initial activity. However, the activity drops after the fourth cycle, and it reaches

practically the same value attributed to the steady state in the long term stability

test. This result is very interesting from the catalyst deactivation point of view. Our

data reveal that in a long term stability test high conversions are preserved during at

least 10 hours of reaction, but start-up/shutdowns cycles strongly affect the catalysts

stability, in such a way that the activity drop takes place earlier (after 6 h of

reaction).

Figure 4. Stability test: start/stop cycles of the Ni-CeO2/C catalyst at 250 °C. Gas mixture: 7

mol% CO, 30 mol% H2O, 50 mol% H2, and 9 mol% CO2 balanced in He.

In both cases, long term and start-up/shut-down, the deactivation is related to the

well-known phenomenon of Ni particles sintering. Actually, as previously proposed,

the presence of water potentiates Ni particles agglomeration especially at high

temperatures [22,23]. TEM images presented in Figure 5, corresponding to the Ni-

CeO2/C catalyst, evidences the Ni sintering process.

0 1 2 3 4 5 6 7 8

0

20

40

60

80

100

20 21 22 23 24 25 26 27 28

CO

con

vers

ion

(%)

Time (h)

Page 152: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

145

Figure 5. TEM micrographs of the Ni-CeO2/C catalyst before (scale 10 nm) (a) and after

(scale 200 nm) (b) the stability reaction test at 250 °C.

Our stability study indicates that water favours Ni agglomeration. This reduces

the catalytic surface area and results in a decreased activity [24]. According to our

data, the sintering process occurs earlier when liquid water (during the start/stop

cycles) enters in contact with the catalyst.

4. CONCLUSIONS

The impact of the oxygen storage capacity on the WGS behaviour of a Ni/CeO2

based catalysts is underlined in this paper. The dispersion of ceria nanoparticles on a

high surface activated carbon drives to a strong enhancement of the catalyst’s oxygen

mobility. The excellent redox skills together with the better metallic dispersion of the

Ni-CeO2/C catalyst due to the carbon textural promotion, result in a remarkable

improvement of the WGS activity.

The stability of the Ni-CeO2/C catalysts under continuous operation, as well as

interrupting cycles, was tested. Although high activity was found under these

conditions at early stages of the reaction, a notable activity loss was observed and

attributed to the sintering of Ni particles. Despite the issue of the stability should be

improved, the Ni-CeO2/C catalyst could be considered as an interesting alternative for

the low temperature WGS reaction and merits further investigations.

As final remark, it should not be disregarded that the high WGS activity observed

for the developed sample was achieved with a relatively low amount of cerium oxide

Page 153: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Ni-CeO2 catalysts whit enhance OSC for the WGS reaction

146

on its composition. This fact indicates that our preparation procedure could constitute

an alternative approach towards a new generation of Ni/CeO2 based catalysts.

5. REFERENCES

[1]. J.R. Ladebeck, J.P. Wagner, Catalyst development for water-gas shift. In

Handbook of Fuel Cells-Fundamentals, Technology and Applications; Vielstich,

W., Lamm, A., Gasteiger, H.A., Eds.; Wiley, New York, NY, USA, Volume 3

(2003) Chapter 16, Part 2, pp. 190–201.

[2]. C. Ratnasamy, J.P. Wagner, Catal. Rev. Sci. Eng. 51 (2009) 325-440.

[3]. W. Deng, J. De Jesus, H. Saltsburg, M. Flytzani Stephanopoulos, Appl. Catal. A

291 (2005) 126-135.

[4]. J.C. Summers, S.A. Ausen, J. Catal. 58 (1979) 131-143.

[5]. D. Andreeva, V. Idakiev, T. Tabakova, L. Ilieva, P. Falaras, A. Bourlinos, A.

Travlos, Catal. Today 72 (2002) 51-57.

[6]. S. Colussi, L. Katta, F. Amoroso, R.J. Farrauto, A. Trovarelli, Catal. Commun.

47 (2014) 63-66.

[7]. T.R. Reina, S. Ivanova, M.A. Centeno, J.A. Odriozola, Front. Chem. 12 (2013) 1-

9.

[8]. J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, D. Duprez, J.

Mol. Catal. A 268 (2007) 227-234.

[9]. L. Barrio, A. Kubacka, G. Zhou, M. Estrella, A. Martínez-Arias, J.C. Hanson. J.

Phys. Chem. C 114 (2010) 12689-12697.

[10]. G. Jacobs, E. Chenu, P.M. Patterson, L. Williams, D. Sparks, G. Thomas, B.H.

Davis, Appl. Catal. A 258 (2004) 203–214.

[11]. Y. Li, Q. Fu, M. Flytzani-Stephanopoulos, Appl. Catal. B 27 (2000) 179-191.

[12]. O. Ilinich, W. Ruettinger, X. Liu, R. Farrauto, J. Catal. 247 (2007) 112-118.

[13]. L. Pastor-Pérez, R. Buitrago-Sierra, A. Sepúlveda-Escribano, Int. J. Hydrogen

Energy 39 (2014) 17589-17599.

[14]. S. Kacimi, J. Barbier, R. Taha, D. Duprez, Catal. Lett. 22 (1993) 343-350.

[15]. T.R. Reina, S. Ivanova, J.J Delgado, I. Ivanov, T. Tabakova, V. Idakiev, M.A.

Centeno, J.A. Odriozola, ChemCatChem 6 (2014) 1401–1409.

[16]. S.D. Senanayake, J.A. Rodriguez, D. Stacchiola, J. Phys. Chem. C 116 (2012)

9544-9549.

Page 154: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

Chapter VI

147

[17]. J.H. Lin, V.V. Guliants, ChemCatChem 4 (2012) 1611-1121.

[18]. J.H. Lin, P. Biswas, V.V. Guliants, S. Misture, Appl. Catal. A 387 (2010) 87-94.

[19]. R. Burch, Phys. Chem. 47 (2006) 5483-5500.

[20]. T. Wang, M.D. Porosoff, J.G. Chen, Catal. Today 15 (2014) 61-69.

[21]. X. Liu, W. Ruettinger, X. Xu, R. Farrauto Appl. Catal. B 56 (2005) 69-75.

[22]. S.D. Senanayake, J. Evans, S. Agnoli, L. Barrio, T.L. Chen, J. Hrbek, J.A.

Rodriguez, Top. Catal. 54 (2011) 34-41.

[23]. T. Bunluesin, R.J. Gorte, G.W. Graham, Appl. Catal. B 15 (1998) 107-114.

[24]. V.M. Gonzalez-De la Cruz, J.P. Holgado, R. Pereñíguez, A. Caballero, J. Catal.

257 (2008) 307-314.

[25]. J.C. Serrano-Ruiz, E.V. Ramos-Fernandez, J. Silvestre-Albero, A. Sepúlveda-

Escribano, F. Rodríguez-Reinoso, Mater. Res. Bull. 43 (2008) 1850-1857.

[26]. S. Royer, D. Duprez, ChemCatChem 3 (2011) 24-65.

Page 155: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 156: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

General conclusions

Conclusiones Generales

Page 157: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 158: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

151

GENERAL CONCLUSIONS

The findings presented in this Thesis represent a step forward towards the

development of highly efficient catalytic systems for production/purification of

hydrogen from renewable resources.

An overview of the current energy status and a brief description of the role that

biomass could play as an alternative to fossil fuels is presented in Chapter I. In

addition, the main routes for biomass conversion into biofuels and value-added

chemicals are summarized in this chapter.

After this introduction, extensive studies in the different fuel processing steps to

obtain clean hydrogen are presented in this memory. The main goal in this respect

has been to find out the optimum catalytic design for every studied reaction. Overall,

a number of conclusions can be extracted from the different chapters:

Chapter II: Low temperature glycerol steam reforming on bimetallic PtSn/C

catalysts: on the effect of the Sn content.

Carbon supported Pt-Sn catalysts are rather efficient catalysts for the low

temperature glycerol steam reforming. Furthermore, our results state that Pt/Sn ratio

is an important parameter which influences the catalytic behaviour. More specifically,

low Sn/Pt ratios seemed to be the best option under mild reaction conditions (10 wt%

glycerol and 350 ºC) and also under more severe conditions (30 wt% glycerol and 400

ºC)

Chemical characterization techniques such as XPS and TPR-H2, revealed the

close proximity and strong interaction between Pt and Sn which alters the electronic

properties of the designed catalysts and thus affecting the catalytic trends.

In addition, TEM images showed that the bimetallic combinations are less

prone to sintering than the monometallic Pt/C catalyst after glycerol steam reforming

reaction. Again, Pt:Sn ratio plays a major role with enhanced sintering suppression

upon increasing tin loading.

Page 159: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

152

As for the catalytic test, it could be concluded that Sn promotes the CO

oxidation reaction producing H2-rich gas streams. Hydrogen production is favoured at

low Sn/Pt ratios. Sn is also able to inhibit coke formation reactions and hinder Pt

sintering, thereby improving the overall stability of the catalyst.

Chapter III: Multicomponent NiSnCeO2/C catalysts for the low-temperature

glycerol steam reforming.

Following the interesting results from Chapter II regarding the beneficial effect of

Sn for the low temperature reforming process, Chapter III aimed to develop

economically viable catalysts by replacing Pt with Ni and including CeO2 to promote

the catalytic activity and the H2 selectivity. The following conclusions can be drawn:

The results presented in this study demonstrated that a successful glycerol

reforming in mild conditions can be achieved without a noble metal based catalyst.

Herein, it was demonstrated that both tin and ceria boost the catalytic performance,

gaining stability and selectivity towards a rich hydrogen stream. In this sense,

NiXCeO2/C and NiSnXCeO2/C catalysts (X=20, 30, 40 %) were prepared, characterised

and tested in this reaction.

XRD data indicated the formation of Ni-Sn alloy in the samples. This played a

crucial role in the catalytic stability. Furthermore, the Ni-Sn alloy was better

dispersed in the CeO2/C support than in the pure C one, this helping to avoid the

sintering process.

The most active sample, NiSn30CeO2/C reached full glycerol conversion at

early reaction stages with reasonably good hydrogen yields.

Hydrogen production was boosted via WGS due to the ability of ceria to carry

out the shift process in the studied temperature window. Additionally, its dispersion

on carbon led to smaller ceria particles that are more active in the shift process which

has a strong influence in the reaction as reflected in the CO/CO2 and H2/CO2 ratios.

Overall, the bimetallic Ni-Sn catalysts were more active and more stable than

the monometallic ones based exclusively on Ni.

Page 160: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

153

Chapter IV: Aqueous phase reforming of glycerol for hydrogen production over

Pt, Ni and Pt-Ni catalysts supported on CeO2.

As discussed in this chapter several advantages could be obtained when glycerol

reforming is carried out in liquid phase.

In order to evaluate the possible benefits of this reaction, a comparative study

of the catalytic properties of three samples, Pt/CeO2, Ni/CeO2 and Pt-Ni/CeO2 was

carried out.

It was obtained that the samples activated “in situ” are more active than those

pre-reduced before the reaction, being monometallic platinum the most active

catalysts within the studied series.

Although Pt was more efficient in terms of total glycerol conversion, the

monometallic Ni/CeO2 provided a good balance between catalytic activity and

economic viability. Indeed, Ni/CeO2 was highly selective towards gas phase conversion

yielding to hydrogen rich streams.

The bimetallic PtNi/CeO2 presented advanced physicochemical properties.

However under the studied conditions the bimetallic catalyst was not the best choice.

Finally, operando ATR analysis revealed notable differences between Pt and Ni

based catalysts in the APR reaction pathway. The higher Pt activity was associated to

the capacity of Pt to stabilise the intermediates which further decompose to the

desired products. The poorer activity of Ni could be due the strong adsorption of CO

on Ni particles which block the active sites.

Chapter V: CeO2-promoted Ni/activated carbon catalysts for the water-gas

shift reaction.

For clean energy production, pure hydrogen is required as a feed gas for electricity

generation in low temperature fuel cells. Hydrogen purification after the reforming

unit involves several fuel processing steps, including CO elimination via water-gas

shift reaction.

Page 161: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

154

In this sense, the same series of Ni catalysts promoted by CeO2 supported in

carbon employed in Chapter III were tested in the low temperature water gas shift.

Some relevant outputs could be extracted from this study:

The designed carbon-supported Ni-ceria catalysts with different ceria loadings

(NixCeO2/C with x=10, 20, 30, 40 wt.% CeO2) are highly efficient systems the low

temperature water-gas shift reaction.

Activated carbon is an ideal carrier for ceria nanoparticles dispersion. Indeed,

XRD and TEM studies confirmed the small crystal size (4-6 nm) and high dispersion

of CeO2 in comparison with a massive CeO2 catalyst (15 nm).

A direct correlation between the cerium oxide loading in the catalyst and the

catalytic activity could be established. It was found that the optimum load was 20

wt.% CeO2 in an ideal mixture feed reaction. Side reactions such as methanation were

not detected in an idealised WGS mixture (including only CO and H2O).

Under more realistic conditions (post reforming gas mixtures, containing CO2

and H2 ), the catalyst with 10 wt.% CeO2 exhibited the best performance. Very

interestingly this material if completely selective towards the WGS reaction and no

CO conversion via methanation was detected. The latter is an excellent result given

the well-known activity of Ni for the methanation reaction. Indeed, some means of

methanation were detected at high temperatures, but it resulted to be completely

selective towards CO2 hydrogenation.

Not at least place, the developed Ni-CeO2/C catalysts were able to maintain

stable conversion (greater than 40 %) during 150 h of reaction at 220 ºC a rather

promising result for realistic applications in an integrated fuel processor.

Chapter VI: Ni-CeO2/C catalysts with enhanced OSC for the WGS reaction.

The catalyst which presented better catalytic behaviour in the previous chapter

was studied in greater depth. Bearing in mind that, redox properties constitute one of

Page 162: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

155

the key parameters tuning the WGS performance.. In this chapter, the impact of the

oxygen storage capacity on the WGS behaviour of the developed Ni based catalysts

was analysed. The following conclusions could be extracted:

It was clearly stated that the dispersion of ceria nanoparticles on a high

surface activated carbon drives to a strong enhancement of the catalyst’s oxygen

mobility.

A remarkable improvement of the WGS activity resulted from both an

excellent redox skills and a better metallic dispersion of the Ni-CeO2/C catalyst due to

the carbon textural promotion. A high WGS conversion was obtained with a relatively

low amount of cerium oxide on its composition.

The stability of the Ni-CeO2/C catalysts under continuous operation, as well as

interrupting cycles, was tested. Although high activity was found under these

conditions at early stages of the reaction, a notable activity loss was observed and

attributed to the sintering of Ni particles.

Despite the issue of the stability should be improved, the Ni-CeO2/C catalyst

could be considered as an interesting alternative for the low temperature WGS

reaction.

Page 163: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 164: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

157

CONCLUSIONES GENERALES

Los resultados mostrados en esta tesis doctoral representan un paso hacia adelante

en el desarrollo de sistemas catalíticos altamente eficientes para la

producción/purificación de hidrógeno a partir de recursos renovables.

En el Capítulo I se presentó una visión general de la actual situación energética

global junto con una breve descripción del papel que podría desempeñar la biomasa

como alternativa a los combustibles fósiles. Además en este capítulo se resumieron las

principales rutas existentes para la conversión de biomasa en biocombustibles y

productos químicos de alto valor añadido.

Tras la introducción, en esta memoria se desarrollaron extensos estudios sobre las

diferentes etapas de procesado de combustible para obtener hidrógeno limpio. Por

tanto, el objetivo principal de esta tesis ha sido diseñar y desarrollar sistemas

catalíticos óptimos para cada reacción objeto estudio. De manera general, las

conclusiones que podemos extraer de cada uno de los capítulos son las siguientes:

Capítulo II: Reformado de glicerol con vapor de agua a baja temperatura sobre

catalizadores bimetálicos PtSn/C: estudio del contenido en Sn.

Se desarrolló una serie de catalizadores de Pt-Sn soportados en carbón con

diferentes relaciones atómicas Pt/Sn. Dichos sistemas fueron caracterizados y

probados en la reacción de reformado de glicerol a baja temperatura.

La caracterización físico-química de los sólidos mediante XPS y RTP-H2,

revelaron la proximidad y fuerte interacción entre el Pt y el Sn, lo que modifica las

propiedades electrónicas de los sistemas bimetálicos

Los catalizadores mostraron un buen comportamiento catalítico, en términos

de actividad y estabilidad. Además se observó un marcado efecto de la relación Pt/Sn

en los resultados catalíticos siendo los sistemas bimetálicos PtSn/C con bajas

relaciones Sn/Pt los más eficientes, tanto en condiciones suaves (10 %peso glicerol y

350 ºC) como severas (30 %eso glicerol y 400 ºC).

Page 165: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

158

Además, en las micrografías TEM se vio como los catalizadores bimetálicos son

menos propensos a la sinterización en comparación con la muestra monometálica

Pt/C, después de haberlos sometido al reformado de glicerol. Es más, la supresión de

la sinterización se ve mejorada con la cantidad de estaño en el catalizador.

Referente a los resultados de actividad catalítica, se pudo concluir que el Sn

promovió la reacción de oxidación de CO produciendo corrientes con alta relación

H2/CO. Las bajas relaciones Sn/Pt favorecieron la producción de hidrógeno. La

presencia de Sn también inhibió las reacciones de formación de coque e impidió las

sinterización del Pt, mejorando así la estabilidad el catalizador.

Capítulo III: Catalizador multicomponente NiSnCeO2/C para la reacción de

reformado de glicerol con vapor de agua a baja temperatura.

Después de los interesantes resultados obtenidos en el Capítulo II referentes al

efecto favorable del Sn en el proceso de reformado a baja temperatura, el Capítulo III

tuvo como objetivo desarrollar catalizadores económicamente más viables

sustituyendo el Pt por el Ni. Además se incluyó CeO2 en la composición de las

muestras para promover la actividad catalítica y selectividad hacia H2. Pudieron

extraerse las siguientes conclusiones:

Se prepararon y caracterizaron catalizadores de NixCeO2/C y NiSnxCeO2/C (x=

20, 30, 40 % peso). Dichos sistemas se probaron en la reacción de reformado de glicerol

con vapor de agua. Los resultados obtenidos demostraron que se pueden alcanzar

buena conversión de glicerol sin un catalizador basado en un metal noble.

Los datos de DRX evidenciaron la formación de la aleación Ni-Sn en las

muestras, hecho que jugó un papel crucial en la estabilidad catalítica. Además las

muestras con óxido de cerio, mejoraron la dispersión de la aleación formada, evitando

la sinterización de las partículas de Ni.

NiSn30CeO2/C fue la muestra más activa, alcanzando una conversión completa

de glicerol en las primeras horas de reacción, y con un buen rendimiento a hidrógeno.

Page 166: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

159

La capacidad del CeO2 para llevar a cabo la reacción de desplazamiento del gas

de agua en la temperatura estudiada, incrementó la producción de hidrógeno en estas

muestras. Además la dispersión del CeO2 sobre carbón, condujo a la formación de

pequeñas partículas que son más activas en esta reacción. También, la presencia de

esta reacción fue reflejada en las relaciones de CO/CO2 y H2/CO2 obtenidas.

Los catalizadores bimetálicos Ni-Sn fueron más activos y estables que los

catalizadores monometálicos.

Capítulo IV: Reformado de glicerol en fase acuosa para producción de

hidrógeno sobre catalizadores de Pt, Ni y Pt-Ni soportados en CeO2.

Como se discutió en el Capítulo IV, se pueden obtener una serie de ventajas cuando

el reformado de glicerol se lleva a cabo en fase acuosa.

Se realizó un estudio comparativo de las propiedades catalíticas de tres

muestras, Pt/CeO2, Ni/CeO2 y Pt-Ni/CeO2 en esta reacción.

Las muestras activadas “in situ” fueron más activas que las reducidas antes de

reacción, siendo la muestra Pt/CeO2 la que presentó mejor comportamiento catalítico.

Aunque las muestras con Pt fueron más eficientes en términos de conversión

total de glicerol, el catalizador de Ni/CeO2 presentó un buen compromiso entre

resultados de actividad catalítica y viabilidad económica. De hecho, Ni/CeO2 fue

altamente selectivo hacia la conversión a fase gas, produciendo una corriente rica en

H2.

El catalizador bimetálico PtNi/CeO2 destacó por sus avanzadas propiedades

fisicoquímicas. Sin embargo, bajo las condiciones estudiadas de reacción, esta muestra

no fue la mejor opción.

Por último, el análisis “in situ” mediante espectroscopia de Reflectancia Total

Atenuada de las muestras sin reducir, reveló notables diferencias en las diferentes

vías de reacción entre los catalizadores de Pt y Ni. La mayor actividad obtenida en las

muestras que contienen Pt fue asociada a la capacidad del Pt a estabilizar los

Page 167: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

160

intermedios de reacción que descompusieron en los productos gaseosos deseados. La

menor actividad del Ni puede ser debida a la fuerte adsorción del CO en las partículas

de Ni, bloqueando los sitios activos.

Capítulo V: Catalizadores de Ni/carbón activado promovidos por CeO2 para la

reacción de desplazamiento del gas de agua.

Para alimentar una pila de combustible tipo PEM con hidrógeno, éste debe ser de

alta pureza. Para la obtención de H2 limpio, la corriente de reformado generada debe

ser procesada en varias etapas, incluyendo la eliminación de CO a través de la

reacción de desplazamiento del gas de agua.

Con esta finalidad, la misma serie de catalizadores de Ni promovidos por CeO2

soportados en carbón empleados en el Capítulo III, fueron probados en la reacción de

desplazamiento del gas de agua. Esto nos permitió concluir que:

Los catalizadores Ni-CeO2 soportados en carbón activado (NixCeO2/C con x=10,

20, 30, 40 % en peso de CeO2) fueron altamente eficientes de, en la reacción de

desplazamiento del gas de agua.

Al dispersar distintas cantidades de óxido de cerio sobre carbón activado, se

obtuvieron pequeñas partículas de óxido con alta área superficial disponible. Estudios

de DRX y TEM confirmaron el pequeño tamaño de partícula (4-6 nm) y alta dispersión

para los sitemas CeO2/C en comparación con el catalizador de CeO2 másico.

Se observó una correlación directa entre la cantidad de CeO2 presente en los

catalizadores y la actividad catalítica obtenida para cada uno de ellos. La cantidad

óptima encontrada en condiciones de reacción ideales (CO y H2O) fue de un 20% en

peso de CeO2. En estas condiciones no se obtuvieron reacciones secundarias como la

metanación.

Bajo condiciones más reales de reacción (mezcla de gases similar a la de salida

en un reformador), el catalizador con un 10 % en peso de CeO2 obtuvo el mejor

comportamiento catalítico. Destacó que este material fue completamente selectivo a la

reacción deseada y no a la conversión de CO vía metanación. Esto resultó ser un

Page 168: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

161

excelente resultado dada la conocida actividad del níquel en la reacción de

metanación. De hecho, cierta cantidad de CH4 fue detectada a altas temperaturas,

pero resultó proceder exclusivamente de la hidrogenación de CO2.

Una última prueba catalítica corroboró la estabilidad del catalizador de Ni-

CeO2/C. Este mantuvo una conversión de CO estable durante 150 h de reacción a 220

ºC, siendo un resultado prometedor para una posible aplicación real.

Capítulo VI: Catalizador de Ni-CeO2/C con elevada capacidad de

almacenamiento de oxígeno para la reacción de desplazamiento del gas de agua.

En este capítulo, el catalizador que presentó mejor comportamiento catalítico en el

estudio anterior, fue analizado en mayor profundidad. En concreto se estudiaron

detalladamente las propiedades redox del mismo ya que éstas constituyen uno de los

parámetros clave que favorecen la excelente actividad de los catalizadores Ni/CeO2/C.

Por tanto, se investigó el efecto que tiene la capacidad de almacenamiento de oxígeno

de la muestra en la actividad catalítica obtenida para la reacción de desplazamiento

del gas de agua. Esto nos condujo a las siguientes conclusiones:

La dispersión de las partículas de óxido de cerio en un carbón activado de alta

área superficial generó una elevada movilidad de oxígeno en la muestra.

El efecto de las excelentes propiedades redox del catalizador, junto con su alta

dispersión debido a las propiedades texturales del carbón se vio reflejado en una

notable mejora en su actividad catalítica. Se obtuvo una alta conversión con

relativamente poca cantidad de CeO2 en su composición.

Fue probada la estabilidad del catalizador tanto en condiciones continuas de

reacción como en ciclos de encendido y apagado. Se obtuvo un buen comportamiento

catalítico durante las primeras horas del test de estabilidad, seguido de una notable

perdida de actividad debido a la sinterización de las partículas de níquel.

A pesar de que la estabilidad del catalizador puede ser mejorada, esta muestra

Ni-CeO2/C, puede ser considerada una interesante alternativa para su uso en la

reacción de desplazamiento de gas de agua a baja temperatura.

Page 169: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 170: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

List of Publications

Page 171: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean
Page 172: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

165

LIST OF PUBLICATIONS

1. Alonso, F.; Moglie, Y.; Pastor-Pérez, L.; Sepúlveda-Escribano, A. Solvent- and

ligand-free diboration of alkynes and alkenes catalyzed by platinum nanoparticles on

titania. ChemCatChem. 6 (2014) 857- 865.

2. Pastor-Pérez, L.; Buitrago-Sierra, R.; Sepúlveda-Escribano, A.CeO2-promoted

Ni/activated carbon catalysts for the water-gas shift (WGS) reaction. International

Journal of Hydrogen Energy. 39 (2014) 17589-17599.

3. Dongil, A.B.; Rivera-Cárcamo, C.; Pastor-Pérez, L.; Sepúlveda-Escribano, A.;

Reyes, P.Ir supported over carbon materials for the selective hydrogenation of

chloronitrobenzenes. Catalysis Today. 249 (2015) 72-79.

4. Pastor-Pérez, L., Reina, T. R., Ivanova, S., Centeno, M.A., Odriozola, J.A.,

Sepúlveda-Escribano, A. Ni-CeO2/C catalysts with enhanced OSC for the WGS

reaction. Catalysts 5(1) (2015) 298-309.

5. Pastor-Pérez, L., Merlo, A., Buitrago Sierra, R., Casella, M. Sepúlveda-

Escribano, A. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam

reforming, Journal of Colloid and Interface Science 459 (2015) 160-166.

6. Dongil, A. B., Pastor-Pérez, L., Sepúlveda-Escribano, A., Reyes, P. Promoter

effect of sodium in graphene-supported Ni and Ni-CeO2 catalyst for the low

temperature WGS reaction, Applied Catalysis A 505 (2015) 98-104.

7. Dongil, A. B., Pastor-Pérez, L., Sepúlveda-Escribano A., García, R.

Escalona, N., Hydrodeoxygenation of guaiacol: Tuning the selectivity to

cyclohexene by introducing Ni nanoparticles inside carbon nanotubes, Fuel 172

(2016) 65–69.

8. Dongil, A. B., Pastor-Pérez, L., Escalona, N. Sepúlveda-Escribano A., Carbon

nanotube-supported Ni-CeO2 catalysts. Effect of the support on the catalytic

performance in the lowtemperature WGS reaction, Carbon 101 (2016) 296-304.

Page 173: Development of heterogeneous catalysts for clean hydrogen ...rua.ua.es/dspace/bitstream/10045/60755/1/tesis_pastor_perez.pdf · “Development of heterogeneous catalysts for clean

166

9. Dongil, A. B., Pastor-Pérez, L., Fierro, J.L.G., Escalona, N., Sepúlveda-

Escribano A., Synthesis of palladium nanoparticles over graphite oxide and carbon

nanotubes by reduction in ethylene glycol and their catalytic performance on the

chemoselective hydrogenation of para-chloronitrobenzene, Applied Catalysis A

General 513 (2016) 89–97.

10. Dongil, A. B., Pastor-Pérez, L., Fierro, J.L.G., Escalona, N., Sepúlveda-

Escribano A., Synthesis of palladium nanoparticles on carbon nanotubes and

graphene for the chemoselective hydrogenation of para-chloronitrobenzene, Catalysis

Communications 75 (2016) 55–59.

11. Dongil, A. B., Pastor-Pérez, L., Fierro, J.L.G., Escalona, N., Sepúlveda-

Escribano A., Effect of the surface oxidation of carbon nanotubes on the selective

cyclization of citronellal, Applied Catalysis A General 524 (2016) 25-31.


Recommended