+ All Categories
Home > Documents > Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel...

Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel...

Date post: 26-Dec-2015
Category:
Upload: benjamin-campbell
View: 219 times
Download: 0 times
Share this document with a friend
Popular Tags:
34
Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1 , Gilman Veith 2 , Daniel Call 3 , Dianne Geiger 1 , and Christine Russom 4 1 University of Wisconsin-Superior, 2 QSAR foundation, 3 University of Dubuque, and 4 U.S. EPA Mid-Continent Ecology Laboratory
Transcript
Page 1: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Development of the Fathead Minnow Narcosis Toxicity Data Base

Larry Brooke1, Gilman Veith2, Daniel Call3, Dianne Geiger1, and Christine Russom4

1University of Wisconsin-Superior, 2QSAR foundation, 3University of Dubuque, and 4U.S. EPA Mid-Continent Ecology Laboratory

Page 2: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log10 P

-2 0 2 4 6 8

Lo

g1

0 9

6-h

r L

C5

0 (

mo

l/L

)

-8

-6

-4

-2

0

Lo

g W

ater

So

lub

ility

(m

ol/L

)

Bilinear Relationship Modelfor Narcosis I MOA

(from Veith et al. 1983)

Log LC50 = -1.09 log P + 1.09 log (0.000068P + 1) - 0.79

R2 = 0.9986; n = 10

Page 3: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log10 P

-4 -2 0 2 4 6 8

Lo

g 10

LC

50

(mo

les

/L)

-8

-6

-4

-2

0

Y = -1.6417 - 0.7724Xr2 = 0.8944; n = 291

Where: Y = Log10 LC50 and X = Log10 P

Narcosis I Chemicals(Acute Toxicity with Fathead Minnow)

Page 4: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Acute Toxicity to Fathead Minnowwith Narcosis I & II Chemicals

Log10 P

-4 -2 0 2 4 6 8

Lo

g10

LC

50 (

mo

les

/L)

-8

-6

-4

-2

0

Narcosis I (non-polar)Y = -1.6417 - 0.7724Xr2 = 0.8944; n = 291

Narcosis II (Polar)Y = -2.3244 - 0.6140X

r2 = 0.5599; n = 36

Where: Y = Log10 LC50 (moles/L) and X = Log10 P

Page 5: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Toxicity to Fathead Minnowof Narcosis I, II, and III Chemicals

(From the U.S. EPA Data Base)

Log10 P

-4 -2 0 2 4 6 8

Lo

g10

LC

50 (

mo

les

/L)

-8

-6

-4

-2

0

Y = -1.7741 - 0.7513X

r2 = 0.8559; n = 351

Where: Y = Log10 LC50 (moles/L) and X = Log10 P

Page 6: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log P

-2 -1 0 1 2 3 4 5 6

Lo

g10

LC

50 (

mo

les/

L)

-6

-5

-4

-3

-2

-1

0

1

Pimephales promelasY = -1.2140 - 0.8741X; r2 = 0.9569

n = 51

Tetrahymena pyriformisY = -1.1728 - 0.7336X; r2 = 0.9442

n = 148

Nonpolar Narcotic Chemicals(from Schultz et al. 1998)

Page 7: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log10 P

-4 -2 0 2 4 6 8

Lo

g10

LC

50 (

mo

les

/L)

-7

-6

-5

-4

-3

-2

-1

0

Fathead minnowTetrahymena pyriformis

Nonpolar Narcotic Chemicals(from Schultz et al. 1998 and U.S. EPA)

Page 8: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log10 P

-2 0 2 4 6 8

Lo

g10

LC

50 o

r M

AT

C (

mo

les

/L)

-8

-6

-4

-2

0

Fathead Minnow Acute and Chronic Toxicitywith Narcosis Chemicals

Acute ToxicityY = -1.6417 - 0.7724X

r2 = 0.8944; n = 291

Chronic MATCY = -3.1562 - 6375X

r2 = 0.7576; n = 30

Where: Y= Log10 LC50 (moles/L) and X = Log10 P

Page 9: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.
Page 10: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Applying Predictive Data Mining to Predictive Toxicology

From Narcosis to McKim Conference

Chihae Yang

28th June, 2006

Page 11: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Acknowledgment

• Gilman Veith, International QSAR Foundation• J.F. Rathman, The Ohio State University• Leadscope team• Ohio Technology Action Fund

Page 12: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

From Meyer-Overtone to McKim Conference

• Narcosis– …”toxicity of neutral organics is related to their ability to

partition between water and a lipophilic biphase where molecules exert their activity…”

• Model system for partition: olive oil/water.

• EvolutionNarcosis

Non-polar and polar narcosis

Reactivity

……

Page 13: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Paradigm shift

• How do we strategically leverage?

• How do we read across the species, endpoints, structural classes, different knowledge domains?

In silico In vitro In vivo Omics

Page 14: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Predictive data mining strategies

structural descriptions

chemicalstressor

analogs

profile

Yang, C.; Richard, A.M., Cross, K.P. Current Computer-Aided Drug Design, 2006, 2, 1-19.

biological/environmental fate

Page 15: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Steps in predictive data mining

Platform

Searching

Visualization

AnalysisSAR & QSAR

ProfilingGrouping

Chemistry Biology integration Knowledge addition

Relational database

Hypothesis driven queriesAnalog searching

Read across

Structure, data, graphs, models

Page 16: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Data mining analysis methods

Focused Data Sets

Large diverse Data Sets

Pattern RecognitionProfiling

Classification

Prediction

ClusteringExpert Grouping

ClassificationRule Extraction

QSAR

Com

poun

d gr

oupi

ng

A

naly

sis

Page 17: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Applying to predictive tox

• Profiling “chem-bio” domain– Cut across different knowledge domains– Find hidden signals and relationships from data

• Qualify/quantify read-across

• Complementary to (Q)SAR– Build hypothesis driven models– Go beyond Yes/No question and answer

Page 18: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Predictive data mining examples

• Biological profile– Relationships between fish narcosis and toxicological

findings in rat inhalation studies?• Fathead minnow EPA dataset• Rat acute toxicity dataset from RTECS

• Thermodynamics consideration

Page 19: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Theoretical bases:Vapor-liquid equilibrium

• Non-ideal Raoult’s law:

- The equilibrium distribution between liquid and vapor phases for a chemical species i

partial pressurevi i i i ix p y P P

i : activity coefficient

xi : mole fraction of i in the liquid phase

piv : vapor pressure of pure liquid i at the same temperature T

yi : mole fraction in the vapor phase.

Page 20: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Study sources for rat and FHM correlations

RTECS 20062341

EPA FHM617

179

921

• dose unit (mg/mL)• defined LD50

• single dose• inhalation

chamber

76

- rat exposure time 2-8 hours- narcosis

LC50 at 96 hr

Page 21: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Profiling examples

Structures Liver Lung UBL GI pLC50

Rat FHM

present present absent absent 0.489 -1.37

absent present present absent 0.799 -0.729

absent present absent absent 1.98 0.44

absent absent absent present 2.54 1.49

O

OH

N

OH

Page 22: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Representing structures with Leadscope molecular descriptors

O

N

Ak

HBAPCCPCC

ONH2

N

O

Any NH

O

N

NN

Benzenes

Functional groups

Heterocycles

Pharmacophores

Spacers

User defined features

Page 23: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Read-across using structural descriptorsS

truc

tura

l des

crip

tors

profiles of rat organ lesions LC50 FHM

Page 24: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Structural descriptors

% structures

liver ubl lung GI

pLC50

FHM Rat

Benzenes 43.4 0 0 0.24 0.06 1.38 2.02

1,2-subst 13.2 0 0 0.3 0 1.3 1.63

1,3-subst 10.5 0 0 0.25 0 1.88 1.54

1,4-subst 18.4 0 0 0.36 0.07 1.46 1.79

alcohol 30.3 0.09 0.04 0.3 0.04 -0.2 1.4

alcohol, p-alkyl- 13.2 0.2 0.1 0.4 0 -1.02 1.21

alcohol, aryl- 13.2 0 0 0.3 0.1 1.01 1.61

aldehyde 6.6 0 0 0.2 0.2 1.31 0.67

amines 18.4 0 0 0.29 0 0.66 2.24

carbonyl 26.3 0.05 0 0.1 0.05 1.3 1.91

ether 13.2 0.2 0 0.1 0 0.56 0.94

ether, alkyl- 13.2 0.2 0 0.1 0 0.56 0.94

halide 18.4 0 0 0.29 0.07 1.91 2.02

halide, aryl- 13.2 0 0 0.4 0 1.54 2.3

ketone 5.3 0.25 0 0.25 0 -0.87 0.63

23 structural descriptors were selected.

Page 25: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Liver

Lung

kidney ubl

GI

pLC50Rat

pLC50 FHM

Pearson correlations

Liver – GI - 0.52

Lung – Kidney 0.45

Liver – Lung -0.31

pLC50Rat – pLC50FHM 0.55

pLC50FHM – Liver - 0.72

pLC50FHM – Kidney - 0.75

Quantitative read-across

Page 26: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

From a surface scientist point of view

• Passive diffusion through lipid bilayer– Headgroup interaction– Hydrophobic tail interaction– Hydrophilic to lipophilic balance (HLB)

• Partition model of molecules in lipid layer :

species species

activity activity at equilibrium

partition coefficient:

: activity coefficient

bulk lipid

bulk lipid

bulk bulk lipid lipidi i i i

lipid bulki i

x bulk lipidi i

i i

i i

x x

xK

x

Page 27: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

UNIFAC activity coefficient model

molecular volume and surface area effects(size, shape, packing)

intermolecular energy effects (interaction)

“combinatorial” term “residual” term

ln ln lnC Ri i i

The properties of Gases & Liquids, 4th ed., R. Reid, J. Prausnitz, B. Poling, McGraw Hill, 1987

Page 28: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Advantages of UNIFAC model

• Group contribution method– Molecular descriptors-based activity coefficients

• Flexibility to vary liquid phases compositions– octanol/water– octanol-water solution/water– hexadecane/water– lipid/water– etc.

Page 29: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Example: Lipid as a solvent phase

P

OO

O

O

O

OO

NO

O

O

O

O

O

O

O

O

OO

Page 30: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Example of activity coefficients in various environment

O

O H

Solvent Log10

Water 5.23

Octanol 0.05

Lipid tail -0.40

Lipid head 0.12

Hexadecane 0.73

Activity coefficients at infinite dilution can be used to model solubility in various phases.

Page 31: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

measuredLogP

LogP(ow/w)

LogP(o/w)

LogP(h/w)

LogP(dppc/w)

Pearson correlations

against measured LogP

LogP(o/w) 0.93

LogP(ow/w) 0.92

LogP(h/w) 0.92

LogP(dppc/w) 0.90

Page 32: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Reflection

…We’re committed to nothing less than a point-for-point transcript of everything there is. Only one problem: the index is harder to use than the book. We’ll live to see the day when retrieving from the catalog becomes more difficult than extracting from the world that catalog condenses….

“The gold bug variations, Richard Powers”, 2004

Page 33: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Distribution of LC50s for FHM and rats

pLC50 of FHM pLD50 of rats

Mean: 0.669 Mean: 1.52

Page 34: Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 1.

Log10 P

-2 -1 0 1 2 3 4 5 6

Lo

g10

LC

50 (

mo

les/

L)

-6

-5

-4

-3

-2

-1

0

1

2

LC50 vs Log PSolubility vs Log P

Wat

er S

olu

bili

ty (

mo

les/

L)

Narcosis I ChemicalsAcute Toxicity with Fathead Minnow

and Water Solubility of Chemical


Recommended