+ All Categories
Home > Documents > DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe...

DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe...

Date post: 18-Jun-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
146
NPS ARCHIVE 1958 WITTER, R. DEVELOPMENT OF A DESIGN PARAMETER FOR THE UTILIZATION OF EXHAUST GAS ENERGY OF A TWO-STROKE DIESEL ENGINE ROBERT W. WITTER AND JOHN F. LOBKQVLCH
Transcript
Page 1: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

NPS ARCHIVE1958WITTER, R.

DEVELOPMENT OF A DESIGN PARAMETER

FOR THE UTILIZATION OF EXHAUST GAS

ENERGY OF A TWO-STROKE DIESEL ENGINE

ROBERT W. WITTERAND

JOHN F. LOBKQVLCH

Page 2: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DUDLEY KNOX LIBRARYNAVAL POSTGRADUATE SCHOOL

NTEREY CA 93943-5101

Page 3: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 4: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 5: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 6: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 7: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

*L

DEVELOPMENT OF A DESIGN PARAMETERFOR THE

UTILIZATION OF EXHAUST GAS ENERGYOF A

TWO-STROKE DIESEL ENGINE

by

ROBERT W. WITTER, LIEUTENANT , UNITED STATES COAST GUARDB.S., United States Coast Guard Academy

(1951)

and

JOHN F. LOBKOVICH, LIEUTENANT, UNITED STATES COAST GUARDB.Soj United States Coast Guard Academy

(1952)

SUBMITTED TO THEDEPARTMENT OF NAVAL ARCHITECTURE AND MARINE ENGINEERING

on26 May 1958

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THEDEGREE OF NAVAL ENGINEER

andDEGREE OF MASTER OF SCIENCE

IN NAVAL ARCHITECTURE AND MARINE ENGINEERINGat the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Page 8: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 9: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

ABSTRACT

DEVELOPMENT OF A DESIGN PARAMETER FOR THEUTILIZATION OF EXHAUST GAS ENERGY OF A

TWO-STROKE DIESEL ENGINE

by

Robert W„ Witter, Lieutenant, U.S., Coast Guard

John F. Lobkovich, Lieutenant, U.S. Coast Guard

Submitted to the Department of Naval Architecture and MarineEngineering on 26 May 1958 in partial fulfillment of the requirementsfor the degree of Naval Engineer and degree of Master of Science inNaval Architecture and Marine Engineering

,

Examination and evaluation of available exhaust-gas energy andoperating performance of a two-stroke General Motors 71 series , dieselengine led to the development of dimensionless parameters, related asa single line function, to be used in design and performance estimatesof two-stroke engines.

Thrust measurements were made of the exhaust gases impinging ona flat target plate for a GM3-71 laboratory engine with a single activecylindero Two nozzles, having ratios of nozzle area to piston areaequal to 0.025 and 0.05, were investigated. Indicated engine powerwas determined from pressure indicator cards. Flow coefficients ofthe GM-71 engine were determined for the two-valve and four-valveheads and the figure-8 cylinder liner.

A comparison of effective exhaust-gas velocity was made to checkthe correlation of two-stroke diesel engine exhaust energy utilizationto that of four-stroke spark-ignition engines « It was found that two-stroke experimental results were not independent of nozzle area.

Thesis Supervisors C. F. Taylor, Professor, Mechanical Engineering

Page 10: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 11: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Cambridge,, MassachusettsMay 26, 1958

Secretary of the FacultyMassachusetts Institute of TechnologyCambridge 39, Massachusetts

Dear Sirs

The attached thesis entitled "Development of a Design Parameterfor the Utilization of Exhaust Gas Engery of a Two-Stroke DieselEngine" is herewith submitted in partial fulfillment of the require-ments for the degree of Naval Engineer and degree of Master of Sciencein Naval Architecture and Marine Engineering.

Respectfully,

Page 12: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 13: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

ACKNOWLEDGEMENTS

The authors would like to express their appreciation for the aid

and advice given them by the faculty and staff of the Sloan Automotive

Laboratory of the Institute.

Particular credit and thanks are given to Professor C F„ Taylor

for his help 5 suggestions and criticism without which this work would

not have been possible.

Page 14: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 15: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

TABLE CF CONTENTS

LIST OF SYMBOLS ii

LIST CF FIGURES !

I. INTRODUCTION 1

II. PROCEDURE 3

III. RESULTS 7

IV. DISCUSSION OF RESULTS 13

V„ CONCLUSIONS AND RECOMMENDATIONS 15

VI, APPENDICES 17

A. DEVELOPMENT OF DIMENSIONLESS PARAMETERS I8

Bo ESTABLISHMENT OF ENGINE TEST OPERATING CONDITIONS 19

C. SUMMARY CF DATA AND COMPUTATIONS 28

D. SAMPLE CALCULATIONS &E. ENGINE FRICTION 57

F. BIBLIOGRAPHY 59

Page 16: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 17: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

LIST OF SYMBOLS

BMEPC

BMEPM

F

FMEP

FMEPc

IMEP

K

Km

M chart

Mcor

Mp

Mr

N

Pa

?E

PT

Pi

P,

Ap

R

Rs

Piston Area (in )

Nozzle Area (in )

Corrected value of brake mean effective pressure (psi)

Measured brake mean effective from dynamometer (psi)

Fuel air ratio based on air trapped in cylinder (dimensionless)

Overall fuel air ratio (dimensionless)

Measured friction mean effective pressure for 3 cylinders (psi)

Corrected friction mean effective pressure for 1 cylinder (psi)

Engine indicated mean effective pressure as determined fromindicator card (psi)

Flow coefficient (dimensionless)

Mean value of flow coefficient (dimensionless)

Uncorrected air flow rate through ASME square edge orifice(lb/sec)

Corrected air flow rate (lb/sec)

Mass flow rate of fuel (lb/sec)

Total mass flow rate (Mcor+- Mp) (lb/sec)

Engine revolutions per minute

Barometric pressure (wHg)

Static pressure in exhaust pipe ("Hg gage)

Static pressure in exhaust tank ("Hg gage)

Static pressure in inlet air receiver ("Hg gage)

Static pressure before flow measuring orifice ("Hg gage)

Pressure drop across the flow measuring orifice (nH20 gage)

Universal gas constant

Scavenging ratio (dimensionless)

-ii

Page 18: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 19: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Tjj; Exhaust gas temperature in pipe (°F)

Tj Engine water jacket temperature (°F)

T, Inlet air temperature before flow measuring orifice (°F)

T Mean time average thrust force (lb)

TMEP Turbine mean effective pressure (psi)

Vc Clearance Volume of cylinder (ft )

a Velocity of sound in air (ft/sec)

ag Velocity of sound in exhaust gas (ft/sec)

u Mean velocity of exhaust gas through the nozzle (ft/sec)

S Piston speed (ft/min)

Z Mach index factor (dimensionless)

P Engine brake horsepower

F Trapping efficiency (>?S/RS )

ys\ Indicated thermal efficiency of engine

2?kk Kinetic blow down efficiency of turbo charger

2? s Scavenging efficiency

y s Scavenging density (#/ft^)

- iii -

Page 20: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 21: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

LIST OF FIGURES

Page Number

Figure I. Typical Curves , Cylinder and Exhaust PipePressure versus Crank Angle 6

Figure II. Comparison of Effective Exhaust-gas Velocityfrom a Single Cylinder Engine 8

Figure III. Relation of Exhaust-gas Thrust and IMEP fora Single Cylinder Two-stroke Diesel 9

Figure IV. MEP Relations for Utilization of Exhaust-gasEnergy 10

Figure V. Thrust and Brake Power Relation, GM-71 Diesel(0.05 Nozzle) 11

Figure VI. Thrust and Brake Power Relation, GM-71 Diesel(0.025 Nozzle) 12

Figure VII. Inlet and Exhaust Flow Coefficients (GM-71) ?U

Figure VIII. Air FloWj, ASME Square-edged Orifice 49

Figure IX. Expansion Factor (l) 50

Figure X. Scavenging Efficiency versus Scavenging Ratio 51

Figure XI. Fuel Rotameter Calibration Curve, GM-71 Engine 52

Figure XII. Friction MEP versus IMEP for GM-71 Diesel 58

- IV -

Page 22: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 23: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

INTRODUCTION

Certain experiments aimed at raising the power of two-stroke

diesel engines by means of exhaust gas turbochargers were carried out

a long time ago^ but it is only in recent years that successful systems

have been developed o The reason for this slow development is that in

two-stroke diesel engines the conditions for pressure-charging are not as

favorable as in four-stroke engines Before pressure-charging „ the cyl-

inder must be scavenged to evacuate the exhaust gases 5 howeversscaveng-

ing and pressure-charging must be carried out without any help from the

piston

Pressure-charging introduces more air into the cylinder than is

possible under atmospheric pressure . In this way a greater quantity of

fuel can be burned and thus raise the power of the engine » Instead of

dissipating the energy contained in the exhaust gas by throttling in

valves or portSj, an obvious step was to utilize it in an exhaust-gas

turbine in order to recuperate some or all of the power required to

drive the scavenging air pumps. The power produced in the turbine by

the exhaust gases is not always sufficient to cover the compression of

the scavenging and pressure-charging air ? in which case some systems

employ a mechanically driven scavenging pump in series or parallel with

the turbocharger c

Previous experimentation indicates generally feasability studies

of turbocharging applications to certain selected commercial engines.

Since the design of an exhaust-gas turbocharger is largely determined

by the thermodynamic requirements of the enginesthis thesis is an

attempt to examine and evaluate exhaust-gas thrust measurements and

_ i _

Page 24: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 25: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

engine operating characteristics of a two-stroke diesel engine (General

Motors GM-71) . From this experimentation, the development of related

design parameters for the practical utilization of exhaust-gas energy

is proposed

Page 26: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 27: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

PROCEDURE

1. Experimental Arrangement,

The experimental aspect of this study was conducted on a standard

General Motors 3-71 series engine. One cylinder of the engine was fitted

with an exhaust pipe to which nozzles of various areas could be attached.

The exhaust gases were directed to impinge on a flat plate mechanical-

hydraulic force measuring apparatus. The two cylinders of the engine

which were not fitted with the nozzle arrangement were modified in the

following manners

a. The inlet ports and exhaust manifold were blanked off so

that there was no air flow through these cylinders

.

b. The fuel rack was disconnected so that there was no fuel

flow to these cylinders

This arrangement worked satisfactorily. However, it imposed the

additional problem of accurately determining the friction mean effective

pressure and the brake mean effective pressure for the single active

cylinder. For a discussion of this phase of the study, see Appendix E.

The experimental range of fuel-air ratios and scavenging ratios

that were covered are shown in Table I c .

- Table I -

Range of Experiments

Nozzle Area Ratio Fuel-Air Ratio Scavenge Ratio

0,05 0.0175 - 0.0420 1.10-2.20

0.025 0.020 - 0.0560 0.60 - 1.50

Although the engine was operated in excess of its rated value of

indicated mean effective pressure, operation was satisfactory and under

- 3 -

Page 28: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 29: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

no operating load did the engine appear to be laboring

Instrumentation was accomplished so that at each operating point

it was possible to measure the following experimental data:

a* Air and fuel flow

b Inlet air and exhaust gas temperatures

c. Inlet receiver j exhaust pipe and exhaust tank pressures

d c Engine dynamometer and thrust force

e„ Engine cylinder pressure as a function of crank angle

fo Engine operating conditions

In addition to the above data^ typical measurements of simultaneous

cylinder pressure and exhaust pipe pressure were recorded as a function

of crank angle for each nozzle „ These diagrams clearly indicate the

dynamic conditions that exist in the exhaust pipe while the engine is

operating*, See Figure I for the relation of cylinder pressure and ex-

haust pipe pressure*

Experimentation was also conducted to determine what effect the dis-

tance between the force plate and the nozzle face would have on the

thrust readings. It was found that the thrust force peaked at a dis-

tance of about 2W and was then relatively independent of distance to

a distance of lfen when it commenced to fall off . Experimentation was

run with distance from nozzle face to force plate set at 2^".

2. Computation Procedure

The engine mean effective pressure was determined from the crank

angle-pressure indicator diagrams. Engine brake horsepower was computed

from the dynamometer brake load and corrected as outlined in Appendix E„

Turbine mean effective pressure was determined from an equation derived

on the basis that the turbine system was utilizing blow down energy of

- U -

Page 30: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 31: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

the exhaust gases e In order to determine turbine mean effective pressure s

it was necessary to make the following assumptions?

3?kb~ ^.75 where ty^b ^s the kinetic blow down efficiency of the

turbine

Tj1'• = 0»4.6 where 2?i * s -t ^le i^i^ated thermal efficiency of the

engine

.

These values of efficiency were taken from the best available source

All dimensionless parameters were then computed and placed on separate

computation sheets so that the results may be easily verified if the

reader so desires e See Appendix A for development of dimensionless

parameters

3. Presentation of Results

The experimental data was taken under two different sets of condi-

tions for operationo On the 0„025 nozzle$the inlet pressure was main-

tained constant for all runso When conducting the experimental phase

of the o05 nozzle j, the runs were conducted at essentially constant

scavenging ratios „ It was possible to correlate the data taken under

both conditions but it was found that considerably less effort was re-

quired if the engine was operated at constant scavenge ratios

.

Page 32: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 33: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure I

(tt//?sc/g\ nvos vni&c/s

Page 34: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 35: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

RESULTS

The results of this experimentation are presented in Figures II

through VI j, which follow

Figure II presents a comparison of effective exhaust-gas velocity

from a single cylinder engine „ The ratio of effective gas velocity

and sonic velocity at exhaust temperature is plotted against a dimen-

sionless parameter involving nozzle downstream pressure,, nozzle area^

gravitational constant9total gas flow rate 9 and sonic velocity at

exhaust temperature

.

Figure III shows the dimensionless relation of exhaust-gas

thrust and single cylinder engine IMEP 6

Figure IV presents the dimensionless MEP relations for the utili-

zation of exhaust-gas energy,. The ratio of engine IMEP plus turbine

MEP to engine IMEP is plotted against the same dimensionless IMEP

parameter used in Figure IIIo

Figures V and VI present a dimensionless relation of thrust and

brake power for the GM-71 dieselo For the 0„05 nozzle scavenging

ratio was held constant and for the o 025 nozzle inlet air pressure

was held constant

Page 36: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 37: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

1

Figur<

1

. II

1

k

1N& ^

1in

i

k ^

* 1

^^

1

\

1^ 1*N

/

\

1to

/

C\N.

lr fX\

7f

\\j

r

c

MA/ /6

x:

i

J, 4- < / —- -

Qfc

o

,5 9

1 /x*

-T5

1

h /<

c

c SS7

j>>

Jk -*+*<

^

V**/^ sy.^r

~ps

Page 38: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 39: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure III

-05

1\

Hto

^JJ^

u.

^

^1

JO.

^ *<* §$ £

1

0- *

I

r^

s

I

s^

o» CO t"* <o <n > cr>

<c> Q Ci <3 CJ <3 Q

QD

V0.

NO UJ

1

«*«

M

- 9

Page 40: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 41: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

A/8

/,/?

A/6

1/4

/J3

A/Z

/.//

/./O

Figure IV

\MLp yf €LAT,'0A/S

\Ura fZATAW Of

fO/

£XHAU

?

ST '&/ s £A/s/eov

\

\

\

o AA

+ Am

t -0.0

- a.&

zs Ao

v k

\\

'

\\° A

IME P-hTME P \IMEP i k 4

\/,07

/.06

/OS

Q

o\\

O v

J

\A A

NA

vi

\

f-Wr-

/03

/.OZ

/.Ol

\\ 3

lh\EP*-t\?*%° y-.? f-sa

1,00 PIT« Q.£

/00 ZOO 300 400 500 &0O 70O BOD 900 /000 //OO /200

- 10 -

Page 42: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 43: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure ¥

A 00

O.QS

0.90

0.Q5

0.80

0,7S

O.10

O.bS

'A/7

F//^--0 030

0,60

%--o.ozo

~HRUST AND 3/?4K£ P0W£R Rel/\t/om

A/ozzl£ : ao5~

2 ,tf 7

u

Page 44: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 45: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

»0 ^> Vn

o> <X 00

<S ^' Q

hCJ

SS•^

ss

12

Page 46: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 47: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DISCUSSION OF RESULTS

The comparison of effective exhaust-gas velocity presented in

Figure II was made at the suggestion of the thesis supervisor. The

original test results of reference (5) were from a single cylinder spark-

ignition aircraft engine operated over a wide range of engine speedss

inlet manifold pressures., exhaust pressures,, and nozzle areas and were

plotted close to a common line 6 However , experimental data of this

thesis separated s though within a fairly uniform bandsto distinct regions

for the respective nozzles and were below the common line indicated

Variance of fuel-air ratio and scavenging ratio had no evidenced effect

These results occurred in the region where high gas velocity (high ex-

haust thrust) utilization would be most significant

This finding may be attributed to the larger overall air-fuel flow

rate of the diesel engine which overbalances the lower exhaust tempera-

ture effects resulting from the method of cylinder charging and scaveng-

ing o

In general^ it may be concluded that exhaust-gas thrust increases

(2 5)with a reduction in nozzle area until a critical area is reached ,p

The optimum size is the one resulting in the largest sum of engine

MEP plus turbine MEP minus compressor MEP C The relations presented

in Figures V and VI also showgupon comparisons the availability of

greater thrust by utilizing the smaller o 025 nozzle under conditions

of the same brake power j, inlet air flow s scavenge ratio p and fuel-air

ratio in the laboratory engine „ This finding further emphasizes the

generally known fact that to effeetively supercharge a two-stroke

engine^ it is necessary to raise the exhaust pressure by some means«

- 13 -

Page 48: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 49: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figures V and VI, involving brake power relationships , are some-

what limited in their usefulness except when comparing the laboratory

engine under varied operating conditions,,

The results presented in Figures III and IV are considered most

useful for design purposes <> Indicated MEP relations provide a better

basis for comparison and correlation of engines of differing character-

istic geometry and operating conditions** The use of Figure IV in con-

junction with basic (i eo?preliminary) design analysis should broaden

the scope of performance estimates of two-stroke engines «,

Analysis of data, such asIM~^pME at th™st parameters as a

function of ^E/p. should give additional information as to nozzle area

and exhaust pressure level for supercharging of two-stroke engines

The practicability of pressure-charging by means of an exhaust-

gas turbocharger alone was not investigated for this engine Such

analysis would be of interest

In a blow-down method of exhaust-gas energy utilization;, the

length and diameter of exhaust pipe to the turbine nozzle would appear

to be of some importance. These effects were considered but not investi-

gated o

14

Page 50: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 51: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

CONCLUS IONS AND REG OMMENDAT IONS

CONCLUSIONS

1, It was not possible to correlate the utilization of exhaust gas

energy of a two-stroke diesel engine as a single line function with

the parameters that were developed for single cylinder tests using

aircraft engines. Although qualitative correlation to the data of

Pinkel^' was obtained^ the experimental results of this thesis indi-

cated that the effective gas velocity relations were not independent

of nozzle area,

T ffrt IMEP + TMEP2, Correlation of the dimensionless parameters »g— and TMEp

IMEP x A xto

,

P 6° as a single line function is possible for use inMj ag

design and performance estimates of two-stroke engines,

3, Exhaust-gas thrust increases with a reduction of nozzle area.

RECOMMENDATIONS

P /1, Analysis of MEP and thrust relations as a function of E/p

o should

be conducted to give additional information as to nozzle area effects

and exhaust pressure level for the supercharging of two-stroke engines,

2, The experimental data should be further extended to determine the

practicability of pressure-charging with an exhaust-gas turbocharger

alone. Plotting™EF * jJH = CMEP as a function of the parameter

IMEP

indicated in Figure IV would provide an additional useful design instru-

ment.

15

Page 52: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 53: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

For further experimentation:

a. investigate the effects of exhaust pipe length and diameter

in the utilization of blow-down energy and the influence of

length and diameter on the design functions developed in this

thesis

o

b. using other two-stroke engines, including opposed-piston, check

the developed design parameters.

c. operate the laboratory GM-71 engine at constant values of

scavenge ratio (Rs ) for ease of operation and interpretation

of results

- 16

Page 54: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 55: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDICES

- 17 -

Page 56: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 57: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDS A

Development of Dimensionless Parameters

The use of the methods of dimensional analysis has long been recog-

nized as a valid and extremely useful experimental technique. The number

of factors controlling a physical system, such as a diesel engine and

turbocharger system, are many and it is only by the use of dimensional

analysis that experimentation can be logically planned and the results

accurately interpreted.

By holding all dimensionless groups essentially constant, except

one, it was possible to examine the effect of that parameter in relation

to the physical system » The experimental phase of this thesis was con-

ducted with the exhaust thrust force (T) being the dependent variable

while the independent variables were F, Rs , ^E/p.j, s/a?A^/A .

Since these factors controlling the investigated system are extreme-

ly complex, it was felt that the dimensionless parameters developed for

the presentation of the experimental results are the ones most useful in

the consideration of basic design and performance estimates of two-stroke

engines

- 18

Page 58: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 59: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDIX B

1. Establishment of Engine Test Operating Conditions

It was determined from reference (2) that operation of the GM71

series engine at rated speed (1600 rpm) gave unsatisfactory flow charac-

teristics when examining the engine under supercharged conditions. In

order to approximate the flow characteristics under supercharged condi-

tions, it was attempted to duplicate the dynamic flow conditions of

the turbo-charged GM71T series engine with the laboratory GM71 series

engine o It was felt that operation of the engines at the same Mach

index factors would give essentially the same flow characteristics.

To establish the Mach index factors, it was necessary to determine

the steady state flow coefficients of

(a) GM71 series cylinder head (2 exhaust valves)

(b) GM71T series cylinder head (U exhaust valves)

(c) cylinder liners (intake ports)

Using the mean steady state flow coefficients which were found experi-

mentally, it was possible to calculate an overall mean steady state flow

coefficient for the engine as a complete unit.

The above procedures were followed o It was determined that in order

to duplicate the Mach index factor of the turbo-charged engine, it would

be necessary to operate the laboratory engine at 1285 rpm„ However,

realizing that the dynamic engine conditions cannot be exactly duplicated

and represented by steady state conditions, the decision was made to

operate the engine at 1200 rpm Operation of the engine at this speed

did give satisfactory results for the analysis of exhaust gas energy

utilization

o

- 19 -

Page 60: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 61: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

2. List of Symbols

A

C

D2

G

K

M

Mcor

Mcalc

P2

Rd

I

z

a

s

y

?

<p

Subscripts

i

e

o

a

orifice area (in2 )

mean steady state dimensionless flow coefficient

orifice diameter (in)

specific gravity of air (l»0)

dimensionless flow coefficient

air mass flow rate (lb/sec)

corrected air mass flow rate (lb/sec)

air mass flow rate calculated from compressible

flow theory (lb/sec)

static pressure before orifice ("Hg abs)

static pressure after orifice

pressure drop across orifice ("R^O)

pressure drop across exhaust valves ("H20)

pressure drop across inlet ports (nH20)

Reynolds number

expansion factor

Mach index factor (dimensionless)

velocity of sound in air (ft/sec)

piston speed (ft/min)

super compressibility factor

density of air (lb/ft3 )

compressible flow function (dimensionless)

viscosity of air (lb/ft sec)

inlet

exhaust

stagnation

atmospheric

- 20 -

Page 62: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 63: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

3o Determination of Air flow rate through ASME square edge orifices with

flanged taps.

From reference (U)

Orifice equations

M - 0.1U5 D 2

2KY /p- Gy A? (l)

The flow coefficient (K) has been found to be a function of two quantities,

i.e., the "discharge coefficient" and the "velocity of approach factor."

K = — where B = E> 2 / = ±^2 - 0.408

/Z^ /D'

3 '°

the expansion factor (Y) may be determined by the following equations

[••

D2 \4l AP 1/^0

- P,1 -

1 0.41 0.35 [^Q

where Kn — p

Expansion factors for air may be found in reference (4)0

Assuming G & y = 1.0 (this does not introduce any appreciable error)

equation (l) then reduces to

M - V^Ve, * /~ ° (la)

K2

= 0olU5(l-227)2

where 1^ = mean value of K (determined from table 6 reference (4))

x = 0.6150

then M = 0.106 KU Y /~- A.P ( lb )

Since K is a function of Reynolds number and B, a trial and error solu-

tion is necessary. This procedure may be simplified by assuming

- 21 -

Page 64: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 65: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

% = li,28_M (2)D 2

Solving equation (lb) for M5 the Reynolds number may be found. Using

this value of B^ 9determine K from table (l) s reference (4)»

The mass flow rate is then corrected in the following manner -

Mcor - M (VkJ (3)

4o Determination of steady state flow conditions

»

Since it is unknown if any pressure recovery will take place through

the exhaust valveSj, this analysis is based upon compressible flow theory,,

Mcalc= A a08 ?o, U)

*7d- ('^-' k+1/k)

r - P2

/?o|K - °P/cv

The flow coefficient C is defined as

Mr

_ measured air mas s flow cor (5)calculated air mass flow A ao j q Oo

(h

CA = . JJSSE. _ (6)ao t <?o 3 (p

T08

- 70.9 °F = 530,9 °R

a0j - & /To7 - 1131 fpS

j>o, = J^L = 2118 - 0.0749 lb/ft3

R T0D

53.35 x 530.9

CA'6.0749 x 1131 xp <P

- 22

(7)

Page 66: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 67: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

CAThe factor 7— was plotted versus crank angle through the range

AP

that exhaust valves and inlet ports are open. From this plot, the mean

value of PA_ was determined by integration of the area under theAP

curves and dividing by the respective abscissa of crank angle opening

duration,. Therefore , also s the mean C e and mean Ci for each type

cylinder head and liner was determined by applying the appropriate

value of A and Ap as follows

g

piston area, Ap - 14.15 in. 2

two-valve , Ae = 2.4 in. 2 (max.)

four-valves, Ae = 2.65 in. 2 (max.)

figure - 8, k± = 5.7 in. 2 (max.)

See figure VII%Inlet and Exhaust Flow Coefficients 5 relations of valve

lift and piston position to crank angle were established from measure-

ments taken on the laboratory GM-71 engine.

5. Calculation of the mean overall steady state flow coefficient for the

engine

.

Schematic engine diagram

1

1 P•a.j

!

Ai Ae

Q Ce

H Pe

23

Page 68: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 69: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

24

Page 70: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 71: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

M = CiAi^ai <^(P2/Pi ) = CeAeJ^e (

Pe/P2) (8)

Assuming adiabatic flow of a perfect gas

?2 P2

p" J-T t = T2 = Te

P1

a± = a

It follows therefore that

n /pJ " f: 7^ x^ /p2

Kp2/PJ

-% - ig ^e/pJ

(9)

Pe

P2

Vp^

Defining the overall condition as

M = CA^a (VPi)

Equating equations 8 and 10

CA C-sAiMP

2/Pi)

^(VpJ

Equations 9 and 10 must be satisfied simultaneously

«

The solution to these equations may be found on figure 7-14 reference (ll)

C AFigure 7-12^ "Flow Through Orifices in Series" , relates C/c vs -e—

§

1 ciAi

at constant values of ^e/p^

6 Engine Test Operating Conditions

The Mach index factor (Z) is defined as

7 m characteristic engine area x __S

characteristic flow area Ca

- 25 -

Page 72: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 73: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

For this analysis - C x characteristic flow area will be defined as

the mean overall steady state value found from paragraph 5» Since

the characteristic engine area is the same for both engines?

S \ / S \

yGM3-71 /GM3-71T

For the GM71 series engine

N = 1600 rpm

k± = 5o7 in2

G± - 0„45 (mean value of C± determined from flow analysis)

e7e = 0o4?4 (Determined from flow analysis)ciAi

from figure 7-1-4 using e^*e = o474 as an entering argument

C/Ci

= OoU

C = 0o44 Ci - 0ol98

CA± = 0„198 x 5c7 - lol28

For the GM71T series engine

N = 2300 rpm

Ajl * 7.9 in2

ifi = 0„476Ai

Due to the fact that the liner flow characteristics on this engine were

Qnot available

9 it was necessary to assume that the ratio of — wouldCi

be approximately the same as that found experimentally for the series

71 engine.

26

Page 74: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 75: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Based on this assumption then

Hi = 1.152 Zsta. = .a3Ce C^

C/ci

= °o42 C = 0„42(0 o6ll) - O e 256

CA± - 0.256 x 7.9 » 2 o 02

(JL_) . (JL\\<*1 hi \CAi / 7iT

N71 - ^OOjc^m = 1285 rpm2 e 02

In view of the assumption necessary to find CAi for the series 71T engine

and also due to the fact that static flow conditions will not duplicate

dynamic engine operating conditions,, the decision was made to operate

the engine at 1200 rpm.

2?

Page 76: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 77: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDIX C

SUMMARY CF DATA AND COMPUTATIONS

28

Page 78: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 79: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

-e»en H O O O CV CO C\J \D v£>

"AO^N«0 -4-iN N r-\ H

o o d d d d d d d d

a,

cva,

en »n v\ c- -<} ^n to o o oO nvD s>to«oooa) (M>ooooooooooooooooooooHCV^-C-OOtOCV m C*<-

cv mtoOmc-OOOOOPL, vOOOOOOOOQO

mcncnencnmcn»4--4'-*4'

en

PL,

OCO C^OHO (V tO lAH

enev 3

3

O st^HiAONNOOOtn-4'-4'm»ntnmmmOHrHHiHrHHHHH

ooooooooooov£» -<j- -4- m en en en en en enOOOOOOOOOO

rlodo'dodd d d d

£> sO CV rH CV C-- O O tf> C--£~ -4- 'O o en -4- vO >£> \0 voO en -t tn *n »n >-n y\ in in

* ? t *. * 9 t - -i *OOHHnrlHHHHH

»n CV f» H tG CV \D sO CV HsC cf\ «* c^ H (^ st

- sr w\ tf\Oen-3"--t<m !mLf\vn»nmO H H HH H H H H H

OOOOOOOOOOOCV £^ nQ O vO CV vQ <5 O OCV CO O tf \ E> O O O H HO cv -<jt -4- •<}- -f »n *n *n m

OOHHHHriHriHrl

vO vO CV HO (M>O^OtOCOJ>J>^-£-sOvGvOvOvOO OOOOOOOOOO

rH d d d d d d d d d d

OO

PL,

oPL,

<

PL,

en cv •** o cv -4-vOOvO-J-toOsOOHCVcv mm-4-r--ooooooooOOOOO HHHHH

ocicS(D(Dcio(D d d d

o o so en an -.£ cv ^n to o cv• O O 5 « 6 9 O J > ft

n c^- to mu-\v£>c>»t>S>toto--o r~- co oooooooommmcncNcncnmcncncn

ocv

»nO

crj

PL,

oj>-«4-2>ocnevsotoQcn«eooeoo90«OvOOmtOOOOOHHH en en en en -4- -3- ->t -<r --t

.«-»

ifiOnnOlAOiAOlAOOHHCVCVcncn-^^mOOOOOOOOOOO

- 29 -

Page 80: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 81: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

_ tr\ CNtO C^y CO vO nO «>sa tf\

"~-f^«. (^^NOiOiHrlHHHHooooooooooo

a}

CM

^ifvMOOvOOHN^sto .Hc^vo^c-tatocococooooooooooooooooooooooo

Oh

CO W\H\0U>H l^rvH'^*^O£>o * 3 a 'i c • • ft

-^OOtOofNsQC-COCOCOCOvO \D CO CO O O O O O O O

u i * * 4 <3 « .-> w a *

O in^vDrHt0 8:»vX)s0v0NO-4" C> CV rH H

oS

CVOcr\OrHH\OOCOCOH WnO iAO C^i-d'^iAiA

OiHHHHrHHHr-HrHooooooooooo

J

IoX

I?

OOOOOOOOOOrHOOOOOOOOOO

HC^\OH«)0«NO<0«0CM mHrJNOOHOINWvOOc^-sr-^hirvtPiinirvirv

OOHHHHHrHfHHH

vOCVCMCOOiC^OiTSOlCVH-*Of>»A«QOOr^HOHHHHHHHHH

OOOOOOOOOOOco

-4" E- CV cvCO O *A tf\ i-j

V\ O CV C^ ~<f« « o « •

O O H H rH H

O «*#o OC 1 3 -i

rH rH H H

tH

lAsftO^CVHOOOO_ OtO^-IP-C^C-C-ISC^^-o ooooooooooh d d o" d d d d d d d

o

C*-0 C^ U"\ CV UN £- CO CO CO

o d d d d d d d d d d

p-,

CM>tOM^(»HvOOrlH<$ tO GO \0 r-i C*\ lC\ir\ IT\*£> \QvO vDM» O O O O O O O

e? » C 4 * t « '-< *lfr *

Ovootoc-wot-cocoooHCV <T\ C> C<-\ C^ C^ C^ 0^

iaOiaO mO ur\Otf\\Q

o o" d d d d d d d d d

30

Page 82: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 83: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

-€kvM/>»r\mv£)c\iOt!Omco\0tOOOCOONvOOMAH^iAOOOHHrHrHCVPAC^C^o o o o d d d d o d d

asa,

C\i

a,

itmaiaw O h vj-iAir\o oOOOOOtX)C--U^CV r-IOO O O O On o O o^ o o o^

00000000000O\0t0C<SQCVQf^'v0H

4 u « £ 9 ft O C C S *

c\J r^c^\cACViHtX)-<M^vfNtOvr\Cl, OOOOOOOCOC-vOvO

a,

<C\iH-4-CVI>Ot)0Of>->*OrHrHHCVr^^OtOC^vOOHricvnr\

oo

\0\OvO ur\ m -<f -<} cv o vr> cvr-i H rH H H H H o oooooooooooo

6

W CE-t -H

CO I'-o

©

CO oXX)

^ -ri

CO

53C

.1

ir\

S

P?

>H

OOOOOOOOOOH

vOvOvOsD inin-4-cv qn m cv

HdHrlridHHOOO

ir\ m ^J-CV <M cv o c- ocv c- vrv ir\ »4-

. -«* vO sO 10.sDs£)vO\OW^^N-<fCNiC>ir\Oir-i r-\ r-t H <~i iH o ooooooooooooOOvOCVOOOttO CV \0 C-

ir\inir\irvvr\-Ntc^<v onvt\CV

iHHrHHr-ir-HiHrHOdd

vOv£)£>C>-tiOOc>OC--»nvO\OsOv£)vDJ>C^C^-oOOnO O O^ O^ O O O O^ O O Od o* d d ddddoH

oo i^o

tO\0 Q W H UNinHCO NtOHrHOO^r-^OOOiU^C^HHHOOONtO^sfriOHiHrHtHHOOOOOOd d d d d d o" d d d

tOH£*- imOCVU"\r-tHHHQ QtO «ACV iA\Ot» m

CU OOOOOOOtOJ>-vOvO

o

<§•HP•HCO

o

OSO vr\r-0 irsvOvO HvOCV» »

nCVtO -4-vO vO >T» iH^ -<f c<\ r^ CM H333

OQOOOmOmOOo d d d d d d d d

- 31 -

Page 84: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 85: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

SUMMARY SHEET - FLOW COEFFICIENTS

Series 71 Series 71T Figure 8 liner

Lift CA ^/ap CA °Va:p Position CA ca/ap

3.24 0.2290

0.05 0.315 0.0223 0.564 0.0399 0.20 3.24 0,2290

0.10 0.609 0.0431 1.03 0.0728 0.30 3.23 0.2281

0.15 0.922 0.0651 1.368 0.0966 0.40 2.58 0,1825

0.20 1.13 0.0799 1.70 0.1201 0.50 2,11 0.1490

0.25 1.31 0.0925 1.814 0.1281 0.60 1.576 0.1114

0.30 1.475 0.1041 2.03 0.1435 0.65 1.262 0.0893

0.35 1.526 0.1078 2.14 0.1512 0,70 0.821 0.0580

0.4.0 1.570 0.1110 2. 26 0.1598 0.75 0.521 0.0368

0.45 1.612 0.1140 2.27 0.1603 0.80 0.277 0.0196

0.46 1.661 0.1175 0.90 0.122 0.0086

- 32 -

Page 86: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 87: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

aCT* CT* G> CT^ Q> Q^ O^ Q^ O^ O^ vO vO vO vD nO vO ^O vO vO vO

• » » » » « » •> » •» e » « » » * > a aooooooooooono^oo^oo^ono^onon

mmOOOD-mOCM C-OQOC^QCMOCMOOmc\ltomHmc\10t>mC>--3- C\JOOC,-mmr-IOvnxn~4--4--<}-^}--st->tr^c^cf\c^cnr^r^cv oj cm cv H

*iPQ

o+3o

to inoEi O<a • •

W^ 3NEH

o 8H s

in m in CM CM CM mC^r^C^os-^tONC'-C-tXJr^-^vOHOrHvrNvOHCviO

3 i * '• • 3 » rt g <i 9 ? % « <] | 3 « 4 i'

inCMtOinH-^HtOinH-^i-IONvOCMcnrHONvOCMHrH rHH HH HH

in in m m in m inKfNnt<\^OiOrlH^OOVrlHttHHr|0(0CV HOOC^CVHOOC>-njOOO\C^Oip-jOOC^-HHH iHHH HrlH rHHH

mmmmmmmmmmmmmminmmmminHHHHHHHHr-lr-IHHrHHr-liHr-IHHrHOOOOOOOOOOOOOOOOOOOOopoocMOmototooocMCMCMC--mcMCMOinO moN -4'0-<hOCV£>Omc*-0 -4«M» O^HC^^in -«4-ca r^ cm in-^t-«tc^r<^vOinin-4Tr\j>-vOvOin-«4-

in in O in in in inCV Or--tH-4-HOC,--4-vD -«t CM ho o o to r- m•^•^(ntnc^C^tnWCVCVWWCVCMCVHWHHH

t»00HHC\injc\iCN2cvfncnc°immmmcvHH^tOtOtOtOtOtOCOtOtOtOtOtOtOtOtOtOtOtOtO

0-4

<

Oh

c^cncncnr^tototototo cncnr^o^cntototototoCVCVCVCVCVHHiHHHHHrHrHH

in in iniH\OOOino-<i'cnvOHC*-int»HOrNiini><VH

t » • • « »>•<# f * * 1 « * * Q » 4 -9

O OOvO^O sf-^f^W HOOtOC*-C^-^Q-<fc^c<-\CMiH(^OiWCVWNNfVCVWHHHHHHHHrlH

Oh

in to in int-H-^C^iHHvOvOtOCAin-^tC-OOC-Or^tOvOHOtOC-vOvO-^tcnCM pHOOtXlttOr^-^f-^-sJ-CVrH

H•HO

Ph

OOOOOOOOOOOOOOOOOOOOCOtOtOtOtOtOtOtOtOtOtOtOtOtOtOtOtOtOtOtO_J _,_,_1 _1 _l_, p, rl rl Hr)Hrl HHrlr-{ r-\r-\ H H iH H

j3 rH cn ini> c> H cn inc- o h m in i> o H on in {>• o3 in m in in in vO vO \0 vO v£» C- I> C^ C*- l>- to to to t» «0

- 33 -

Page 88: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 89: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

cvt©€>%0^~^^cA<^^fr\\0CV^»jna£\c^>-»4"f--l'>4'ocv t© ^too^cAC>cA^H^HNOOTO»--j*4rOc<\c^cACVCVHCAC^CVCV^^cn^CVCV-^-vfrencACV

(x< oooooooooooooooooooooooooooc«63ooeeooo60oooooooooooooooooooo

.#

»r\0 cv cv cv nr\*r\c«-imOff*=cv umo o cv 2>umaO\0 CV C>\OCV^HCQU"\iH'»4, HtO&riCV«\H!tO ,tf\'N1NCVHHHN"(MOJHHHO O

HHHOitVHHrlCMNHH aOOQOQOQO'OOQOOb'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO-<tCVv0v£>v£>c<AOC^iH^tt)%0«Qt»!ur\>AS,«-s0H«>

r cv oi cv cv cv t«- to c*- to to 5fr -4- 5r -4- *r\ =4- -si- vO «"% anL_ kJ-^ ^ ^ -4 ^ -4- -^ -4 ^4 ir\ tf\ sr\ *r\ ir\ \£> \£) vO vO vOe>OGdd0OO0OOOQe«06O«OOOOOOOOOOOOOOOOOOOOO

1A M\vO O C*- ->t O H H\D vO vO \D -^vO *A

t* l>- fr» C*"

ooooooooooooooooooooo o o O O <A oCV CV CV CV CV cH , H O O \D vJQ -ooooo^ooooo^to«o«cto«o c-

02C^tO\D^O^O«AOHC>C^tO0^«OtX) vf\ O «J iH c^ -4;Hr)rlHHO>>(>^«)tO>A<A>AKMAriHriHHoeooooooooeoooooeoooNNCVOItMHHHHHrlHHrlHriHrlriH

«JTNo

vOOOCV -4-OMH^CV iAHAiH^CV OOO O vO C\^CAC^CVrHHHOOC>a^C>tOtOtOtOtOt>-C^?N888888888&&££&&&££SS»»6eeoeoo*ooceec>e«ocOOOOOOOOOOOOOOOOOOOOOv -4 0^(>0^0N 0^(M3v '>t'«0^0 (H ^ sO HI sO HvO HWHf>-4'H-4HG,

'fv= |A |iAfr\WOaN^OC0vD lA• oooot»o«soo»««>>dcee3o^-tCACACAfACACVCVCVCVCVCVSV t-i r-i <H <H H r-i

3

•rf

vO^OtQOO^O^O^^tOHOCV r\CV^DifN!if\irN«Mrv(Acr\cAC<>H H H i—\ H H &S88&

OcnOCMo o otoo to to CO £* £*HHHHHHHHOOOOOOOOOOOOOOOOOOOOOOOOO

o

WWM<0««WWM««5tO,t0«QtlQ(AiA>A>AinCV cvH cv Cfi C> Cf- (> C?> -^ ^ -"^ -4 ^>0 \0 %0 vO vO

•dS&S&&&8 8 88 888888OOOOOOOOOOOOOOOOOOOO

b-So

£«- O vO CV (>OOOtOOT^\HCVCV^^<r\CA<ncACAc^r^r^cvcvcv6iooooeeoooooooorHrHrHiHrHpHfHiHrHljHrHrHiHiHrHrHrHiH

CV CV iH H HfACACACV H W\>->4->4h-4, «4\OxOsQ\OvOC^C^CT^Q^CT'-O^CJ^Cy'C^O^C^O^O^Q^O^O^CT^O^O^CS

>H O^C^O^C^O^O^CJ^O^O^O^CJ^O^O^CJ^CJ^O^O^O^O^O^ooooooooooooooooooooOOOOOOOOOOOOOOOOOOOO

cu

PL,

to to g^so, cv o""4 *"4

•vJ-CVO (T^CVsOCVtOOtO if\\£> CV 0-4HCA..NC0g\0NOc^4-4if\»Al30t0 0^O\O(^(^nr|,

iN(\iWW(nWWNWWHHHHWHHHHriooooooooooooooooooooe«Qoooeooooooocooooooooooooooooooooooooo

P-,

O O U\ nrv -4 -4 ~4s0 Ov^HtOsOCVtOCQtO WHvOCAHOtO\OvO «<4 CV H OO Os J> *f\ CA O OOtOsOt»t01>iM^t>C>-I^Es-\OEs"^0'vO\OsOvO»A ,<Otf\>r\

rt

Hn*Af>O^Hfr\>A^O\Hf\ I>Als, C>H(r\>AE^O^»f\>A>AiA W,0 nO nO %D xD !>• £> fr~ §- E^ tO tO CO to tO

34

Page 90: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 91: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

CCMPUTATION SHEET

NOZZLE : 0, 05

Run B , L -. BMEPM IMEP FMEPM FMEPC BMEP C

51 15.7 88,3 286 197.7 65.9 220.1

53 12,3 69*1 265.5 196,4 65,5 200,0

55 8,7 48,8 229 c 5 180,7 60.2 169.3

57 5»9 33.2 218.5 185,3 61,8 156.7

59 L<y<4 7.87 175.5 167.6 59.2 116.3

61 14.9 83.8 268 184.2 61 e 4 206 = 6

63 11.7 65.8 240 174.2 58.1 181,9

65 8.7 48.8 218 c 5 169,7 56.6 161,9

67 5.85 32.9 197 164.1 54.7 142.3

69 lo35 7.59 148 140.4 46.8 101.2

71 14.45 81.2 258 176.8 58.9 199.1

73 11.6 65.2 227 161 o 8 53.9 173.1

75 9.1 51.1 217.5 166.4 55.5 162.0

77 6.02 33.8 187.5 153.7 51.2 136.3

79 2.12 11.9 157.5 145*6 38.5 119.0

81 13.52 76.1 243 166,9 56.0 187.0

83 11.65 65.5 222 156.5 52.2 169.8

85 9.1 51.1 205 153.9 51.3 153.7

87 6 2 34.8 179 144.2 38.1 140.9

89 2.9 16.3 158.5 142.

2

37.4 121.1

- 35

Page 92: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 93: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

iHrHrHHIHIrHr-J s—8 Hi i—l rH HICVCVCVCVCVCVCVSVCVCVCVCV HJ H H H

CV CV CV CM

CVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCV

»f\ HT\ Q C*= &Tv CV iAiAOON >Ti«MfMf\cr\crN-<l'icr\-4-ir\'mif\\0 t> C^> !> cv cv cv cv

<-u It '5 >b «5 G * o O fc O I. t '* v.<^(n(ncf\OICMCMWHHHHHHHH

» «> V\ Hf\ O VN W> iTv if\ tf\ Ot-3 e^C^^frf-HOHOnnHO^tOCVOVNCV0fr*C»00«000004<*tifjQ OvU\nOO'IA^rlh>0(T\rHr»«Mr\rl

o-po«

C^OCVCV^tOHHmHHOHcrNHOoveeeoooeoeoaeooHO(^toHO(^tor^oa.tlOHO(^^H H H rH H H

cvo

P-8

E-?'

CVCVCVCVCVCVCVCVCVCVCVCVCVCVCVCV• ooeooeoo«ee»oeoooooooooooooooooOtOO>AiAO«\OiAO>f>tOOiA««tO•sf\0 O CV O^xO r> OCV O 4A CA O v£> CV 00

C-Q

Pm

HvOOHHCOCOOONiiAHICVC'-E^tOtOo 60«ocea6oeoceoo

tr»-<i--<tif\c<Nr<,\c^-4'CV itn cr\ c^ cv cv cv cv

HHHHHCVWNHHHOOOOO

Pm

1T\ tf\ HTV-»* -<}-\0 tOOQOS^-tOCVOtOsOC^fcAOD-ooooc»e«coecoeooOcir» -tvO 5s- to O &\ S -^ *r\ cv cv c^ <r\

Hi Hi Hi rH

P-< CVCVCVCVHHiHHrHHHHHHHH

w\ an *n nr\ an Mr\ »r\ ir»»f\ w\ v\vOttC^^-^iAiAsON CM !n»4HHHOI

CVCVCVCVHHHHHHHHHrHHH

•HO

°t-3 Oia>aOOkm(MAOOOOOOO«\H tOD-r>^-C^t-^t-flOtOt»T»tOtOtOF-

t-ir-ir-^r-ir^j-it-iiHt-{t-\t-iHr-\i-it-{t-\

« HHHHHCVCVCVCVCVO^C\

36

Page 94: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 95: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

(^

»OH«OO^^OiANvOsfoo u>>

oooooooooooooooooooooooooooooooo

^

Lh

»AOJOJ IA00ON 0> C^tOOQ-to \£> c> f> to vnc> cm» <£> <r\cv o«>OiCVHHHCVHHHCVHHHOi n'HH8QOQOQOOOOOOQOQQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOH =>triOc\ifr\^«Or«^<^OOitO->±-4-

cr- e> -4- oxnu^i^vrv\OvO\0s0tOE*--C^f>tOtOtOt0OEs-'*As!, ^m(^HHtO'^Noooooooooooooooo

01tO£-as0HOOO<T\c\it^Ocf\«r\HC\lH-4-sD^^T^tCO OCV tatJOr^^^-OtO tO t© tO £^ O £-» tO *r\ \£> \0 vO *f\ U"\ »jO vOo©eo«>ooooeooe ooeOOOOOOOOOOOOOOOO

03 vDt»U>C\iOvOCVOCVOt»-4"«>iHC^'Sj-ptj C^N-<i-»r\vD lHiHrvJCV?>-^tX>0^ !iAvDvO^

O <> € 1 8 '*. -. B G oeroHHHHHHHHOOOOOOOO

«MAiA«\OOiW(MOHOptO^O^OO< 88 8888888888% S'8 8

OOOOOOOOOOOOOOOOM in

1 oe CCS

co o &£3 oo

OS

<aj

io

.£oo

H H H H \© H H H rH H H *>£> H H \0 vDen 00 H^f\OOW Ht-O-^TOOOOOO 0O«CO«Ot«40 « ft O

-4^-4-4«Mn(nc^{VNWOJHIHWN

-4\0 «0 O -4- w\ O -4"sJD \OriW "AOt^«4rJO W^H^^tO^OsOOi^H^^OioH H o o o ooooooooooooooooo

S2&888$£8

P tOtO^tOCNJOnAtOCVfVtOS^O^Of^

A &8 8&888&^^»»88S^g oooooooooooooooo

o

•a 5cd

OHOjOIOOO»AHHN01 JAUIMAtt)-4'»<r=4

- -«tKv-E^E^CSC:>0 OO an m an mC^r\(nc^WCvi 6iWCMWCVNHHHHoeoeeeoooeoeoeoeHH r-it—ir-it-iT-ir-it-ir-ir^t-^r-it-irHr-t

v\ -4 -^ ->* v£> iAsO ^AtOtO^-E^OO^tOtOOO OOOOOOOOOOOOOO

a o «ee«o«oaoooooooooooooooooooooo

(U

P-,

V\CM tO ^s|h-4-E»» to Q O o/

O O o o o o

«n «% l!AtOO^>Arlf«H=4* H lA^^^ C^sO^D Q>f^ V\ >n \D tQ o ~4" -4" »n \DHHOOOOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOS tO HI «n OO^O O O \OsO O^O WMiASAnOH Oi CVJ CM -5fr «Mtf\ V\ £- £> £>» tO C\ C\ (*\ «n

CN*n£**OHC\MM>OH«,'\W\HHrlHHNNN' O H f^CM «n en

- 37

Page 96: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 97: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

COMPUTATION SHEET

NOZZLE : ,025

.un B.L. BMEP^M

IMEP FMEP„M

FMEPC BMEPC

3 9.7 54»5 227 172.5 57.5 169.5

5 5.7 32 o 192 160,0 53,3 138,7

7 3.4 19.1 196 176.9 59.0 137.0

9 0.75 4.22 161 156.8 52.3 108.7

11 9.1 51.1 221 169.9 56.6 164.4

13 5.9 33.2 190 156.8 52.3 137.7

15 4,15 23,3 181.5 158.2 52.7 128.8

17 1.95 10.95 143 132,0 41.3 101,7

19 7.5 42.2 187.5 145.3 48.4 139.1

21 6.15 34.5 184 149*5 39.8 144.2

23 3.95 22,0 152.5 130.5 43.5 109.0

25 1.85 10.4 143 132.6 43.2 99.8

27 5.25 29.5 168 138.5 46.2 121 8

29 5,05 28.4 160 131.6 43.9 116 ol

31 3.5 19.65 148 128.4 42.8 105.2

33 1.2 6.75 122o5 115.75 38.6 83.9

- 38 -

Page 98: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 99: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DATA SHEET

COMPARISON OF EFFECTIVE EXHAUST-GAS VELOCITY

NOZZLE s 0,20 An = 2.83 in2

Run* Pt Mp T u TEaE

u/aEptAn?oMj.aE

10 29.75 0.1326 3.03 736 960 1519 0.484 6.59

9 29.60 0.0899 1.79 642 991 1542 0.416 9.54

14 29o70 0.1077 2,75 823 1204 1700 0.484 7.26

13 29.75 0.1310 3.43 844 1075 1606 0.525 6,34

15 29.60 0.0906 2.57 911 1335 1790 0.509 8,18

3 29»75 0.1326 2.71 661 832 1415 0.467 7.09

6 29.65 0.1067 2.11 638 940 1501 0.425 8.30

11 29.65 0.1086 2.53 751 1058 1592 0.471 7.67

12 29.60 0.0916 2.07 727 1142 1658 0.438 8.95

NOZZLE g 0.10 An~ 1.415 in2

66 30.30 Ool329 4.07 985 1122 1641 0.600 3.10

76 30.10 0.0894 2.64 959 13a 1799 0.534 4o34

123 30.40 0,1100 3.07 900 1057 1593 0,565 3.95

64 30.25 0.1303 3.36 829 864 1440 0.576 3.61

65 30.30 0.1342 3.71 890 992 1544 0.576 3.27

70 30.15 0.1102 2,89 844 1058 1593 0.530 3.84

71 30.15 0.1098 3.29 964 1213 1714 0.563 3.54

74 30o05 0.0861 1.96 755 982 1538 0.491 4.99

125 30.50 0.1328 4.14 1000 1101 1629 0.614 3.11

*Run numbers refer to Ref.( 2)9from which operational data were taken.

- 39

Page 100: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 101: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DATA SHEET

COMPARISON OF EFFECTIVE EXHAUST-GAS VELOCITY

.2NOZZLE : 0.05 An = 0.707 in'

Run pt MT T u TE aEu/aE

rtAnS<MTaE

51 30.29 0.1623 5.55 1037 968 1521 0.680 1.37

53 30.29 0.1611 5.25 1017 910 1478 0.689 1.42

55 30.29 0.1579 4.80 980 850 1428 0.682 1.50

57 30.29 0.1564 4.50 926 802 1390 0.666 1.56

59 30.29 0.1542 4.10 855 750 1342 0.636 1.63

61 30.29 0.1385 4.57 1062 1005 1553 O.684 1.57

63 30.29 0.1361 4.25 1012 950 1511 0.665 I.64

65 30.29 0.1357 4o00 951 888 1460 0.651 1.72

67 30.29 0.1331 3.72 898 838 1418 0.634 1.80

69 30.29 0.1309 3.37 831 760 1351 0.615 1.92

71 30.16 0.1116 3.70 1088 1110 1631 0.665 1.86

73 30.16 0.1111 3.40 985 1032 1535 O.642 1.98

75 30.16 0.1101 3.20 936 962 1518 0.616 2 o 02

77 30.16 0.1089 3.07 909 902 1472 0.616 2.11

79 30.16 0.1064 3oOO 909 817 1401 0.647 2.26

81 30.16 0.0831 2.72 1052 1245 1703 0.607 2.38

83 30.16 0.0822 2.50 978 1152 1663 0.588 2o48

85 30.16 0*0822 2.32 911 1072 1608 0.567 2.57

87 30.16 0.0806 2.10 838 990 1542 0.543 2.71

89 30.16 0.0794 1.90 771 895 1469 0.526 2.93

40

Page 102: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 103: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DATA SHEET

COMPARISON OF EFFECTIVE EXHAUST-GAS VELOCITY

NOZZLE : 0.025 An ^ 0.3535 in2

Run pt M T T u TE aEU/aE

ptAnS(M>raE

3 29.41 0.1038 3*35 1040 1100 1629 0.640 0.964

5 29,41 Ooll25 3*35 958 928 1493 0,641 0.964

7 29*41 0.1175 3.40 933 850 1430 O0652 0.964

9 29 o41 0„1223 3,37 888 785 1374 O.646 0.964

11 29,41 0,0797 2*45 990 1195 1692 O.584 1 .<~ j

13 29«41 0.0854 2.50 944 1020 1568 0.602 1.20

15 29,41 0,0896 2.52 905 935 1499 0.604 lo24

17 29,41 0,0947 2.53 860 850 1430 0.601 lo21

19 29*41 0.0529 1<,65 1005 1285 1760 0,572 1 76

21 29,41 0,0585 1,70 935 1160 1670 0.560 1 68

23 29.41 0.637 1*70 859 1015 1562 0.549 1.58

25 29o41 0,0681 1<>72 814 898 1468 0.554 1,64

27 29.41 0.0437 1.25 921 1260 1740 0.529 2as

29 29.41 0,0449 1.25 898 1225 1716 0,523 2ol4

31 29.41 0.0489 1.25 825 1084 1616 0.511 2.08

33 29,41 0„0537 1,25 750 940 1504 0,499 2 o04

41

Page 104: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 105: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DATA SHEET

THRUST AND IMEP REIATION

NOZZLE : 0.05

Run TE aE Mt IMEP T t (8q WMTaE

51 968 1521 0.1623 286 5<,55 0*680 526

53 910 1478 0.1611 265 5 5.25 0.689 506

55 850 1428 0.1579 229 5 4o80 0.682 464

57 802 1390 O.I564 218.5 4o50 0.666 458

59 750 1342 Ool542 175.5 4ol0 0.636 384

61 1005 1553 0.1385 268 4*57 0.684 566

63 950 1511 0.1361 240 4o25 0.665 531

65 888 1460 0.1357 218.5 4o00 0.651 502

67 838 1418 0.1331 197 3o72 0.634 475

69 760 1351 Ool309 148 3o37 0.615 381

71 1110 1631 O0III6 258 3 870 0.665 645

73 1032 1535 Oollll 227 3,40 O0642 606

75 962 1518 0.1101 217o5 3o20 0.616 592

77 902 1472 0.1089 187o5 3o07 0.616 531

79 817 1401 O0IO64 157.5 3a00 0.647 480

81 1245 1730 0.0831 243 2.72 0.607 768

83 1152 1663 0.0822 222 2.50 0.588 739

85 1072 1608 0.0822 205 2.32 0.567 705

87 990 1542 0.0806 179 2 o10 0.543 652

89 895 1469

„ IMEPW -

0.0794 158.5 lo90 0,526 620

Mip x ag

- 42

Page 106: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 107: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

DATA SHEET

THRUST AND IMEP REIATIQN

NOZZLE % 0.025

Run TE aE Mp IMEP T T gQ WMT

aE

3 1100 1629 Ool038 227 3.35 0,640 611

5 928 H93 0.1125 192 3»35 0.641 520

7 850 1430 Ooll75 196 3*40 0.652 532

9 785 1374 0,1223 161 3o37 O.646 435

11 1195 1692 0.0797 221 2.45 0.584 745

13 1020 1568 0*0854 190 2„50 0.602 645

15 935 1499 0.0896 181 5 2o52 0.604 615

17 850 1430 0.0947 143 2.53 0.601 480

19 1285 1760 0.0529 187 5 1.65 0,572 915

21 1160 1670 0.0585 184 lo70 0.560 856

23 1015 1562 0.0637 152.5 1.70 0.549 696

25 898 1468 0.0681 143 lo72 0.554 650

2? 1260 1740 0,0437 168 1.25 0.529 1008

29 1225 1716 0o0449 \6Q lo25 0.523 1008

31 1084 1616 0.0489 UB 1,25 0.511 851

33 940 1504 0537 122,5 1.25 0.499 689

43

Page 108: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 109: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

vOO =»* «0 ># vO H(M ia rH &A •-£> Ai H O tO O »A (N Ocv O^o »AtO ^O <r\ O t*- to -^O o ca to vQ <A O vacm»A>A»<f^fcAkA»AiA--4c>v0v0 vaia-^d-C^C'-vOvO

-4"\0 CV O ->* H CM O^p-4-ffi^-4-^f-«nt0v0Cs-fr\t00N

»awa»aia»A8Aiaiaia\Ov£>\OvO\QvOvOv£>vO f- C-OOOOOOOOOOOOCOOOOOaOoooooooooooooooooooo

oeooooeocoeaoeaeooooCVCVCVCVOiHHHHHHHiHHiHHHHHiH

rH r-i i-l O (HI• ©ooooeo

rH i—I r—\ rH rH f~b rH rH

j-JrHOi ~4-t0tOQ>HOisDv£>vjDHHHHHC300HHOOOsO vO \D \D ^OO Or—li—liHr-lr-i r-i r-i r-i r-i r-\

5

of o.

Ol

QtO^I^A10C>^t©-<fr<sJ!-HI«)«OSAOO^<A*AC>aoeoooooooeeoooooeoojv -4cv h g\£"s0 ia-4-Hcv o o to O ia cr\ <a H onr^f^cnNNC\iOirJoi(MNHHWHHHiHH

<A HA iA «Ae © o e

\Q*Ag\tO0^tOQtO^iCVOJCxiCVHCMAfCMrH

«MAIA HA

t© ^> t- £•>»£>- CA CM »A OtOSACV rH tO >A-d-AiO r^-lAtV N Oi H H N C\i (V H H

vO lAtO O \QO ilA (A <JvNHH'iArNHWtlOsDsAMSOHOOHW-^-^tOcr\ ^4 *+vO r~5 _J _j ru .»+ tv» rn rt\.

—rH! (H rH «—i rH rH rH rH rH O O ^3^888^^OOOOOOOOOOOOOOOOOOOO

HtX> ~3"tO «A O«A r-i «A »A <A >Qo o ooo £» o

r-j cm to

o oto«0 OJ H H rl «0 ,

OtO !> «ArHtOQN^OE^AiCViACA- *o o oto to to o -

&PrH

HHlOOOrHHOOOrHOOOOrHOOOO

Pn

*H

CM HjTJO O^sO -4-CV ff» «n g% C1- lA H rl«HHOHHrHHOAJ CAO iA- H HH HtnCV W CV HOOOOOOOOOOOOOOOOOOOOo««esQO0ooo oooooeoo©

J Pn

vQt©r^^0^tOHO^^s©^H%0'S*-trHrHON\0=«4-

\OP^C\i0^tf)^^HtOA10^^^rHHE^CVQ\iiAOOOOOOOOOOOOOOOOOOOOvoeoooooooeoo«o«ooooOOOOOOOOOOOOOOOOOOOO

AJtO O^^OE^-^HACAO^ACAsOAl E^tAiAO^tH"^r^i^wcvHf^^cvtVHsrfAc^cvcv-^srf^cncvOOOOOOOOOOOOOOOOOOOO

o o o o c oooocooeoooooooOOOOOOOOOOOOOOOOOOOO

« iiAU^M^iA»A>X)^O^O^D\OC^J>'E>E>*-C^tOtOtOtOtO

- 44

Page 110: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 111: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

HOW kA »A »A m O iA'^^ o oo to H o^H Oi CO CO -si" -tf iH tQ tH UAO^KAO O u\ tovO W\ »A -st C*- \D \D ^O^i»v£l\00 OCOvO

CL,

0)

sf-^t-^-^corococo^ONOsONO O O O O\0\OvOvOOiOiOiOi O0^OO>vr\>-Aif\sri,

ooooooooecoaaooooooooooooooooooo

I•t

P0)

•H

ft<L>

ft

a-p

vOCO tf\C\i OvOCV QsC\i OtO-^^H^^CO'Si-V\vOrHHOiOiJ'-t--tOO>>»A\Os£)C^

c • e o a <- • o i . « . . e seaHHrHHHHHHOOOOOOOO

tO Oi Q>tO to£= Q>. O Oi to,

iO HHOj~H r~H ir^ i~HI

«0 N«\H tO «>£tO£- ^> -J -4- »A \0 Oi co co -^OOOOOOOOOO

H H rl rl rI r—I r-f i—j rH f—I jH

OOHOO>AN«I^CJN OOi tO O%0 Oi HU"\D~t0E"-O?r\->tOOOGOC«<rOr-l H CM Oi H H r-3 H

kg V W 9 W V W

to C^ to -4" wr\ ir\ ir\

ft

I

pa ft

II

Oi3

OOOOO *AOiA,OV\OOOO^T»C^OivOHHOHOOr-'^i-OiCOtQOOi O^OvOCV O^tO -df to to kA'J-^OvOOiHHHCNiHr-IHr-trHHrHrHH

cvoiH

QV'sO Oi OO On. CO £*»•4 »A SA *A co =4 OiO^-^tQO^tOHtOOO^H

5- g> O Oi irvc^i>^'<i'-<t4rv»£>C\ir^c^^OOHrHOOOOOOOOOOOOooo«&o«oe<»oooo9»oooooooooooooooo

%vOtOOOtOOOHOiOHQtOOiO^O<TNOvOO'vOtOiHJr\Ql^Cf\^0-4h iH5,-'^0OO^tOC-OtOtOI^ OtO^\OtOtO\OiTvoo«o««C4eoe<>*09«rHOOOOOOOHOOOOOOO

vO Oi Oi Q> H Oi iAO^tiO -^to-^HO ^^cor"^OOOito<ro»Acoiwr\0\co»AfO-.TOOOOOOOOOOOOOOOO

> v i -. .. u •. voooooei—IrHrHrHrHiHiHrHirHsHjHrHirHrHrHr-1

\OOiOir^BHCVif\^tO-4'tO'=4'HO-4,

>d-cAE>»^-ooc\icot,r\»A{n»A^c^uNf^«lfVHHrltn«MHH>tC,\NHm-4no!OOOOOOOOOOOOOOOOo«ooooaooowoo«oooooooooooooooooo

Pn

ir\HE^C\itOOH%DO%OS>OiA«NsO=vtO^ O "A. O -d- -*t Qs Oi %0 Oi >fr £*=• o^ h o^ oco co oi oi -J co oi Oi «\ -~t co oi m w\ co cooooooooooooooooo009900e«000«00«0oooooooooooooooo

co»A?*-O^HCOW\t*-0>.iH?OM\ €fr H TOOi CO CO

tf

Page 112: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 113: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Pn

CMt0<>%O^c^*n?r\a\ir\<r<\sOCM£«"-inu>QN-J, H->3-

O CM CO -4" CO O c^ Q\ <T\ E*- H lAHvOOCOH^O CAcr\ C^ CM CM H CN C> CM CM r-i -<t (T\ <T\ CM CM ^ -4 C^\ C^\ Oioooooooooooooooooooo

CO

Pi

ur\<DM»v0\0\0(nOHC>?,"«)Ot0«0if>C>«)H>sfH HHHH(M>O60!)lA»A(AUMnHHrlrHrl

• V 9 < b j 3 *> 3 e> k 3 v e o • a e <>

CVCVCVCVCN HHHHHHHHHHHHHHH

hiaco c> c- cm

<r\ r-i i-i \0 a t>o »rNt» h into, m-Kfro^^tONc^mf-c^o ,OOtOCOC-OtOtO ?> !*- O 60 CO CO CO O CO CO t> vO

d d d d d d d d d d d d d d d d d d d d

insAOOOC^iAOCV^-OOOir\CMCOir\HirvCMOr*-rr\£*-"*tCM

O CM O <\J O OO D» m c> h oirviA-4--4--4"-4-^t»«tc^rrNC^\crNC^coir<^CV cv CM CM H

O OO^CMOi-tHIVNC^OOi lAOOHvOvOO^cnHr^HC^CM^o^^HCMc^vor^vOolc^HirvCMinvtr^(<\CM cm sfcnc^cnoi ir\ ^t ^" tn o^ \0 vO uMTvsi'

83cq

o

H ^ H -^ CO H t© iA -^ \0 ^Tv O sO H ^fr J> CM CO *f\ CO

C-CMvOtn-sJ-sJ-tO-ftO•>^*4t^c^CM-4t^(t\c<^

HOi £>4c>>Ai>^0 N O »ACM-^r^CNCMCMO^cncnf^CM

H «r\c-c^vDOOPr\CMHHO<r\OQCQC>-a^HHH(MHO\cnNvOO\OOCnOH

~ cSovO^HCOvom-tfCMH H H H HCMO^OmHOCO^O^OCMCMHHHOMHHHr-lrH.-l.HH

rf

OtnONo o ocomOtOO C>Ot>«M»rlOM CN CM \Q

iA«\»r\if\»Ar^c^ncn^OOOOO(OtOtOfrtHHHHHHHHHHHHHHHOOOOOo o

CMcrj

vO \Q MDvOMD-^O^OvOMJvOvOvOMD^vO'^vOvOMJM)OOOOOOOOOOOOOOOOOOOOm ir\ int»C>ONOOHHHHHHHHHHHHHOOcm oi cv c^r^f^c^<^c^ir^r^<^c«Ac^<^c^c<^rrN(r\r^

.

\ t-i r-{ r-i r-i r—i !—{ r-i t—{ r-{ r-i t—\ j—{ r-i r-\ r-\ i—\ r^ r-\ r—\

-tfOO^OOHirHHir~i r~i r-i r-i >—i >~i f—{ t-i

r~i r-i r-i r-\ t—{ s~i s-i r-i

CM CM CM CM CM CM CM""^ "4 "4" "^" "^ "4 "*3"

H H iH] H H H s—

j

t—\ r-4 r-i t~i t—i t—i e—i

tOOOHHCMCMCMCMCMC^ffNC^C^r^r^r^CMHiHir\irvirsu>inu^^^^^u>^ir\ir\sr\iir\ir\ir\ir\if\

«Hsn^A^CJsHf^'nf>C>HrrNV>{>ONHtn«%?>*0,>

ifMAnrkiAiAvD^OvO^O^Or-^-C^-D^r^tiOtOtOtOOO

4.6

Page 114: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 115: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

»ArH!>CVtX)0(HvDOvOi^-Oif\C\ivO->tvO0sOir\o»3--NfrocvvOcv ^tC-o^HOOcvc^vo^cvcv -sfrc^ cv c\i ir\-<f(r\cv u> ur, c^ c\ -4-ooooooooooooooooo

H iH H H HrHHOOOOOOOOO

HO

t^vflnO^O lf\rHC-CV lf\ CO 0°. IT\ CV lT\COvO<>coto?>-<>cocoi>ONCOi>c^cocoi>vOco

v # % i * • i 6 o o o e t 'J fc B -3OOOOOOOOOOOOOOOOO

o*eo««eeooottoo« 0%

CMP0=1

j>cf\cv^«r\O-4'««tE^t0'sfiHvni -4-c\i<J-(C\J\ a\^ir\vOef\orr\NHiAOj>Ai>.OvOt»\0e«eoeoetaooao99ceo

-4r^rfNC\iv£> >*fr -^ <r\ CO !>• vr> -^J- CO CO \Q -<J-vO

CMsOCMC\lH»tf^£-Es-COO'>>.s0OtOmC\lH'. 3 „ j j c i c 3 * o a o o o »

\OO^p\fr\»Ti(>^HOO(^HvO"<tWt»\0

oPL,

CO

irM^OC>-~<it-E«->COC-HCVOCOCOH<VON^frOn CO C^- CO -<f E> CO r-i o^

HHiHMr-iHr-lrHfHQM^H^ UA OA C\ZO^WHOtOW

2°•4\flC0O ^KAO ^t4?vD H CO *P.O c^-^OrHOvrvHr-c^txa'rNOvDf^vOt-ic^c^oIinO HHOJ £- to CO gNWPvtrvvDv^ -4- -4- ^f vr. vr,HHHrHOOOOOOOOOOOOO

OOOOOOOOOOOOOOOOOcocpcocpcocpcpcpcpcocococococococpCVCVCVCViOiCviCVCVOi C\t CV C\i CV Oi Oi CM

1—Ir-Ir-li—IrHi—li—li—ir-IrHrHsHiHrHiHrHrH

r—li—lr-li—IrlHrldHrlHrlrlrIf—I H HHHHHHHr-lHrHHrHHHr-iHr-IH

HHHHriNNNHHOOOOOOri

OdHHHHHW(VC\iWW<n(*\N

- 47

Page 116: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 117: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDIX D

SAMPLE CALCULATION

Run #51

Nozzle 0.05

Pa 30.09 "Hg

1, Calculation of Scavenging ratic (Rs )

a. Using the Leary and Tsai orifice analysis

^ =(Mchart) Jj(

Pa 5^°x ^ (I)

30.00 T

f°r Mchart see f±S^re VI11

for Y see figure EC

v = (n^o^ P ' 1 * 3° ?09 * ^j§ * 0.992 = 0.1596Ma m (0,1128) / 30.00 538

Ma = 0-1596 #/gec

b. p = QJk.fg

NV.R«

=^HJV

N ~ 12°° ^s c

V = 0.0435 ft3o

PEf* W7~ PE=34c29"Hg

T„ = 538 R

B .60M* = 1.15 i-Rs 1200 x 0,04.35 f s

0.491 x PE x 144= x 328 ^^3 * 53.3 T

5' T,

R = 1.15 x 0.1596 m 2 ,

0.0846

48 -

Page 118: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 119: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure VIII

i

I<0

II

I

II<*)T

\ K JJ

1

& ^J

SC*

NV

J

j

ft ^r '

$3

— -

-<!

Vi55

^

w»}

* ^ ^ 5Q

$ $q

5*

I

- 49

Page 120: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 121: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure IX

1

Ps to

*

X

is^

i

\

1

J

i

t

E

i

I

<5

<]<*•

S3

~

-

1V

c

c

5 ^c

c

\

\

<

c

c \

i

<V

- 50

Page 122: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 123: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure X

Si

aSi Si Si

^ >4

£ £k

& 5^

>

^ ^^

1 U) s\ ^

1 sI

^ t H;—J

^ u <0

<0<0 V

\-

CO

SJ

R <0Si

s>

52

ss

5^

5-

51

\V

s,

0\

Si

>0

s;

w>

*

- 51

Page 124: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 125: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure II

is! * 51

i

(ops/,

8?

!<

1

0:

1O

NO

1

\*) *h/ 'mo,7y 7^/V

\

t 3 ^ 1^ ^ ^ ^Q S$ SS "^

- 5 2 -

Page 126: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 127: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

2. Calculation of the fuel-air ratio (F)

a. Entering figure X with Rs = 2.17 :

b. V-2*. - 0*22 . 0.424 *f= °- 00265 lb/sec

Rs 2.17 ^ = 0.1596 lb/sec

c. F= St- ,= 0.00265

Ma 0.424 x 0.1596

F - 0.0392

3» Calculation of Brake mean effective pressure (BMEP)

a. Dynamometer BMEPj^

From evaluation of dynamometer system

BMEPM = 5.62 (Brake load)

B.L. - 15.7 nHg

BMEPm - 5.62 x 15.7 - 88.3 psi

b. IMEP was determined from indicator card

IMEP = 286 psi

c. Determination of friction mean effective pressure

FMEP = IMEP - BMEPM

FMEP - 286 - 88.3 - 197.7 psi

However since the FMEP so determined was the total friction mean

effective pressure for 3 cylinders

FMEPC = iSZil = 65 e9 psi ( for one cylinder)

d. Corrected value of BMEP

BMEPC = 286 - 65.9 = 220.1 psi

- 53 -

Page 128: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 129: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

4. Determination of the Pinkel factors for correlation of data with

reference (5)

Mp = Ma-+ Mj, = 0.1596 4 0.00265 =* 0.1623 lb/sec

PT = 14.88 psi

AN = 0.05 Ap

Ieo = 32.2 a; 5.55 T= Reading on manometer

Mj. 0.1623 2

u = 1037.0 ft/sec

TE = 968°R

aE = 49 /te = 49 t^68 = 1521 ft/sec

u/aE - 1PJZ = 0.6801521

b ^N go _ 14.88 x 0.05 x 14.15 x 32.2D

* MpAg 144 0.1623 x 1521

T - 2° = 5o55

PtAn £2 = 1.37

5. Determination of Thrust and IMEP relationships

It was attempted to correlate thrust as measured on the force plate to

engine IMEP by the following dimensionless coefficients.

T eo MET * Ap x g0

Mpag tap x aE

T 5*55 lbs

^ - 0,1623 lb/sec

aE= 1521 ft/sec

IMEP = 286 psi

- 54

Page 130: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 131: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Mj,aE 0,1623 x 1521

0.680Mj.

•E

bIMEP x Ap x go ^ 286 x 14.15 x 32.2

Mp x aE 0.1623 x 1521

6. Determination of TMEP and IMEP relationships

a. An analysis of the blowdown turbine process leads to the follow-

ing expression

TMEP = 1±_X 9 / u2 j? kbIMEP Q^'i ) 2goJ p

b. F s (overall fuel-air ratio) =/"*F

F 8 - 0.4.24 x 0.0392 » 0.0166

Qc - 18,500 BTU/lb

J = 778 ft Ib/BTU

~0 kb= 0*75 (from NACA technical data)

">? i - 0.4j6 reference (ll)

3?kb . 0»75 __ = 1 ,

Q-7n'2„ J O.46 x 18 S 500 x 2 x 32.2 x 778 568 x 105^cyL go *

It follows that

„ BK - 1 , /W x u2 ?

IMEP 568 x 105 / F» J

TMEPIMEP

3^I£ = 0.112IMEP

1^66 x 15212/>

TMEP 4; IMEP _ 1-v 0.112 -i 11PIMEP 1

*

TMEP - 0.112(286) » 32.0 psi

- 55 -

Page 132: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 133: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

7o Determination of thrust and brake horsepower relations

c= i,iL BMEPr - 0.2135 BMEP

5o62

BMEPC « 220.1 psi

BHP » 0.2135 (220.B) = 47.1 hp

bo Thrust and brake horsepower are correlated on the basis of

the following dimensionless coefficients?

Pgo .

Ma2 '

T

Mav

Rs

and F .

c. Calculation of TP gom

Ma2and

Tgo

Ma

T, as 538°R

a = 49 /T^ = 49 i^38 - 1134 ft/sec

a2 = (1.134 x lO?)2 - 1.285 x 1C>6 ft2/Sec2

^ - 0.1596 lb/sec

TP = 47.1 hp

^r ,1q782 x AaiaJL x 10"2 = 4ol00.1596 x 1.285

S2? - 4ol0

T

Ma

F -

R« =

x 32.20.1596 x 1134

0.0392

2.17

= 0.988

- 56

Page 134: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 135: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDIX E

ENGINE FRICTION

Measurements of dynamometer brake load were made while running the

engine under the various load operating conditions „ AlsOj, for each test

run at these conditions^ a pressure-time indicator diagram was taken using

the MIT high speed pressure indicator apparatus » This diagram was further

translated into a p-v indicator card for the determination of indicated

mean effective pressure (3MEP) of the single cylinder.

Using this IMEP and the overall brake MEP determined from the

brake load measurement^ a value of overall friction MEP was obtained

from IMEP - BMEPM= FMEP 5 This overall FMEP was then divided by three

to obtain approximately the single cylinder FMEP„ By plotting these

values of FMEP versus IMEP;, no definite conclusions could be established

in regard to correlations of same nozzle area,, constant scavenge ratio,,

or fuel-air ratio, A qualitative mean line was established for compara-

tive purposes = See figure XII.

It follows that the single cylinder BMEP may be determined from

IMEP„ - FMEP =BMEPrt .

v c c

57

Page 136: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 137: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

Figure XII

V

^ 00

§

tf—

a

\

1

1>4

Cfc$. or * 5 m Si

i

••

CO>

v6 £> ^

£ > 5

k~ ^ *

a as•

1

1 5^ ,

V *°

•i

1co » • O

1•

c ) \ o

t• • •

oV •

o •

d

c

• \ °

fl

3 r\

o \

\ °

• < >

# \ °

o

\*2 S Y> ^ *o Q &

d3!/U1 —

.

—.

.... j

53

Page 138: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 139: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

APPENDH F

BIBLIOGRAPHT

1„ Parsons, T„M and A Zang, Measurement of the Available Energyin the Exhaust Gas of a Diesel Engine VJith Regard to Turbo-charg-ing Application; BS Thesis, MIT Library, May 1952„

2 Crowley, JJ)o, A CW Gottschalk, W eRo Nodell, The Utilization ofExhaust Gas Energy of a Two-stroke Diesel Engine; NavE Thesis

,

MIT Library , May 1957c

3o Taylor , C CF et al, Loop Scavenging vs* Through Scavenging ofthe Two-cycle Engine; SAE Paper #247 presented at the SAE NationalDiesel Engine Meeting, Cleveland , Ohio, Nov 5-6 s 1957

,

4. Leary, W cA e and D H e Tsai, Metering of Gases by means of ASMESquare Edge Orifice with Flange Taps

5» Pinkel, B,, Utilization of Exhaust Gas of Aircraft Engines;Tran SAE ^ (1946)714.

6o Smithy HeToj, Turbocharging the Two-stroke Diesel Engine; SAEJournal 6jJ (June 1955) 75

o

7. Chamberlain, oA o and G H Bollman, Turbocharging Two-stroke GasEngines; ASME (CGP Division) Proceedings 26th Conference , June1954o

8„ Livengood, J<,C and J<J)<, Stanitz, The Effect of Inlet-valve Design^Size, and Lift on the Air Capacity and Output of a Four-strokeEngine; NACA TN915, 1943.

9« Turner, L SR» and R»N, Noyes, Performance of Composite EngineConsisting of Reciprocating Engine(Sl), Blowdown Turbine andSteady-flow Turbine; NACA TN1447> 1947

.

10. Schweitzer , P H and T C o Tsu, Energy in the Engine Exhaust; ASMETrans, vol. 71, no 6 (1949)

llo Class Notes, Course 2<797, MIT

- 59

Page 140: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 141: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 142: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 143: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 144: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 145: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard
Page 146: DEVELOPMENT OFA PARAMETER · 2016. 6. 20. · *l developmentofadesignparameter forthe utilizationofexhaustgasenergy ofa two-strokedieselengine by robertw.witter,lieutenant,unitedstatescoastguard

thesW67

Development of a des•On parameter for th

3 2768 001 90017 8- n " DI-EYKNOx l.BRAry

;'•..

i 1 ' ' ' ;

1 1'

ri '

' '

[ ' 1 Vii i '1 ' t » • M '' U t it [riitjl ' ?' 1 1 1 lltl t\)[w\Vli\{\l till tilt ittrllllTlittttm

-'''" l

11Irftff'fUZ

''

' It]:

'

iitiiltnii'

• ' tit]

fi[|

,l

'iiii[ i*''

'

!

' ' ^ ''

'

1

-•

.

*

' i ' i

'

lllfrft

I


Recommended