+ All Categories
Home > Documents > Deviation Control

Deviation Control

Date post: 10-Jul-2016
Category:
Upload: swaala4real
View: 24 times
Download: 1 times
Share this document with a friend
Description:
Deviation Control
24
4/7/2016 1 PETR 5315 – Lecture 9 Deviation Control S. H. Emadi, Ph.D. PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 1 Deviation Control Whipstocks Retrievable Fixed Hydraulic Jetting BHA Configurations Downhole Motor Rotary Steerable System (RSS) PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 2
Transcript
Page 1: Deviation Control

4/7/2016

1

PETR 5315 – Lecture 9

Deviation Control

S. H. Emadi, Ph.D.

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 1

Deviation Control

• Whipstocks• Retrievable• Fixed

• Hydraulic Jetting• BHA Configurations• Downhole Motor• Rotary Steerable System (RSS)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 2

Page 2: Deviation Control

4/7/2016

2

Whipstocks

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 3

Whipstocks

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 4

Page 3: Deviation Control

4/7/2016

3

Mills

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 5

Starting Mill Window Mill

Watermelon Mill Tapered Mill

Hydraulic Jetting

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 6

• Fast & Economical• Soft Formation• One Large & Two Small Nozzles• Orient Large Nozzle• No Rotation at First (3 – 6 ft)• Conventional Drilling for 20 – 25 ft

Page 4: Deviation Control

4/7/2016

4

Bottom Hole Assembly (BHA)

• Drill Collar (DC)• Stabilizer• MWD• LWD• Drilling Jars• Mud Motor• Heavy Weight Drill Pipe (HWDP)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 7

Mechanics of BHAs• Slick Assembly in an Inclined Hole

• Assumptions: • 2D Wellbore• Drill Bit Rotation• Inertia• Drilling-Fluid Flow Effects• Drilling String Lies Down on the Low Side

• Drop (Pendulum Effect)

• Hold

• Build (Fulcrum Effect)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 8

Page 5: Deviation Control

4/7/2016

5

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 9

Fundamental of Drilling Engineering, R. F. Mitchel

Mechanics of BHAs• Drilling Anisotropy Index (h): the relative difference of drillabilities

parallel and perpendicular to bedding planes.

1

and

tan Φ

Where

: Equilibrium hole inclination angle

: Formation dip angle

Φ: Resultant force angle

: Bit-Displacement DirectionPETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 10

Page 6: Deviation Control

4/7/2016

6

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 11

Fundamental of Drilling Engineering, R. F. Mitchel

Mechanics of BHAs

If ≫

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 12

Page 7: Deviation Control

4/7/2016

7

Mechanics of BHAs

X

,  

,  0.5 , 

64

,                         

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 13

Mechanics of BHAs

1 cos1 cossin

sin 0.5

tan tan

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 14

Page 8: Deviation Control

4/7/2016

8

Mechanics of BHAs

• Example: Inc. 25deg, 8.5 , : 6.25 ,2.25 , 91 /

10 , 30,000 ,

a. 0, 0b. 0.1, 40

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 15

Mechanics of BHAs

•Slick Assembly in a Curved Hole•Assumptions:• DC lies down on the low side of the borehole for some

finite length just above the Tangency Point (TP).• DC’s are under constant compression between bit and TP. • Borehole has a constant curvature (R: Constant).

• is small compared with the WOB.

• Bit is at the center of wellbore.• No bending moment at the bit.

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 16

Page 9: Deviation Control

4/7/2016

9

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 17

Fundamental of Drilling Engineering, R. F. Mitchel

Mechanics of BHAs

• sin ))S

• Boundary Conditions (BC):• @ Bit

• S=0, U=0• @ TP

• S=L, U(L)= , 0, and " 0

• EI

• No bending moment @ bit, so

• , S s, , ,

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 18

Page 10: Deviation Control

4/7/2016

10

Mechanics of BHAs

,

,  ,  tan

12 sin

tan2

WhereR: Wellbore Radius of Curvature

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 19

Mechanics of BHAs

1

11

sin

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 20

Page 11: Deviation Control

4/7/2016

11

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 21

Types of stabilizers: (a) Welded-blade; (b) Integral-blade; (c) Sleeve; (d) nonrotating sleeve (Inglis 1987)

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 22

Adjustable-diameter stabilizer (AGS Tool 2010)

Page 12: Deviation Control

4/7/2016

12

Mechanics of BHAs

• Stabilizers• Effective use of stabilizer begun in 1953• Effects of position and size of DC’s• Pendulum Effect• Fulcrum Effect

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 23

Fundamental of Drilling Engineering, R. F. Mitchel

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 24

Fundamental of Drilling Engineering, R. F. Mitchel

• BHA with One Stabilizer in an Inclined Hole

• Length of Stabilizer is not considered• DC’s do not contact the wall of the

hole between the bit and the stabilizer.

Page 13: Deviation Control

4/7/2016

13

Mechanics of BHAs

• wsinφ

Which is valid for 0

• wsinφ

Which is valid for

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 25

Mechanics of BHAs

sin cos cot 1 cos0.5 0

Where

1 0.5 cos sin

cos sin 0.5 1sin

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 26

Page 14: Deviation Control

4/7/2016

14

Mechanics of BHAs

•Where

0.5 /

l /

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 27

Mechanics of BHAs

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 28

Fundamental of Drilling Engineering, R. F. Mitchel

• BHA with One Stabilizer in a Curved Hole

• Length of Stabilizer is not considered• DC’s do not contact the wall of the

hole between the bit and the stabilizer.

Page 15: Deviation Control

4/7/2016

15

Mechanics of BHAs

sin cos 0

Where

1 ∓ 0.5 cos sinsin

11∓ 0.5 cos sin

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 29

Mechanics of BHAs

• Where

1 1/ cos sin

sin l∓ .

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 30

Page 16: Deviation Control

4/7/2016

16

Mechanics of BHAs

• Complex BHA’s• Two or three stabilizers

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 31

Typical build, hold, and drop BHA’s (Fundamental of Drilling Engineering, R. F. Mitchel

Downhole Drilling Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 32

Page 17: Deviation Control

4/7/2016

17

Downhole Drilling Motors

• Turbine type (turbodrill or dynamic motors)

• Positive-Displacement Motor (PDM)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 33

Turbodrill with bent housing (Beaton et al. 2004)

Bent Sub & Bent Housing

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 34

Turbodrill with bent housing (Beaton et al. 2004)Mud Motor with bent sub (Bourgoyne et al. 1986)

Page 18: Deviation Control

4/7/2016

18

Downhole Drilling Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 35

Schematic of drilling fluid flow through a turbine (Beaton et al. 2004)Bent Housing

Downhole Drilling Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 36

Typical torque and HP curves at 500 gpm and MW=10 ppg(Beaton et al. 2004)

1

260

301

Page 19: Deviation Control

4/7/2016

19

Downhole Drilling Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 37

Components of PDM with adjustable bent housing (Underwood and Payne 1997)

• Dump Valve• Power Assembly• Connecting Rod• Bearing and Drive

Shaft• Bit Sub

Downhole Drilling Motors

•∆

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 38

WhereA: Cross-Sectional Area of Flow Path

: Rotor Pitch: No. of lubes in the rotor

Page 20: Deviation Control

4/7/2016

20

Downhole Drilling Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 39

Typical PDM Performance Characteristic Curves (Underwood and Payne 1997)

Steerable Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 40

Bent sub above the motor (Bourgoyne et al. 1986)

• Position of bent sub• Vertical wellbore• Kickoff Assembly• No more than 20

degrees

Page 21: Deviation Control

4/7/2016

21

Steerable Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 41

Schematic of bent-housing motor with stabilizers (Stefan Miska, 2011 )

• Bend angle 0 to 3 degrees• Usually run with MWD• Tool-face angle• Rotating or Sliding Mode• Type of formation• Field experience• Inexpensive• Disadvantages

Steerable Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 42

• Disadvantages• Poor Control on Directional Drilling• Drilling Overgauge hole• Poor Well Trajectory (Not very Smooth Well Path)• Poor Axial Force Transfer to the Drill Bit• Poor Hole Cleaning• Wellbore Stability Problem (e.g. Differential Sticking)• Long Tool-Face Adjustment Time

Page 22: Deviation Control

4/7/2016

22

Steerable Motors

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 43

A series of slide-rotate sequences for a 500 –ft wellbore section (Lesso et al. 2001)

Rotary Steerable System (RSS)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 44

Page 23: Deviation Control

4/7/2016

23

Rotary Steerable System (RSS)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 45

Rotary Steerable System (RSS)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 46

Page 24: Deviation Control

4/7/2016

24

Rotary Steerable System (RSS)

PETR 5315 - S. H. Emadi, Ph.D. - Spring 2016 47

•First Commercially Available in 1995•No Sliding•Bit Steering while Rotating•High ROP•Better Hole Cleaning•Less Wellbore Stability Problems•Drill more Complex Well Trajectories


Recommended