+ All Categories
Home > Documents > Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and...

Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and...

Date post: 12-May-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
4
VIROLOGICA SINICA DOI: 10.1007/s12250-015-3684-2 LETTER Diagnosis and phylogenetic analysis of orf virus in Aleppo and Saanen goats from an outbreak in Turkey Dear Editor, The Poxviridae family is divided into Chordopoxvirinae and Entomopoxvirinae genera. Parapoxvirus is one of 11 genera in the Chordopoxvirinae genus, including orf vir- us (ORFV), bovine papular stomatitis virus (BPSV), pseudocowpox virus (PCPV) and parapoxvirus of red deer in New Zealand (PVNZ) (Skinner et al., 2012). This virus, also known as contagious ecthyma or contagious pustular dermatitis, is a viral skin disease causing ed- ematous proliferative lesions, most often in hairless skin regions around the muzzle and buccal cavity. Several molecular diagnostic methods including polymerase chain reaction (PCR) and quantitative PCR (qPCR) have been developed to detect orf virus (Gallina et al., 2006). In this study, multiplex PCR was used to amplify both the B2L gene partial coding region and a housekeeping gene. A substantial amount of research has been conduc- ted on the B2L gene, and this presents opportunities for comparisons between different strains around the world. Field strains have been compared with human, sheep, and goat orf viruses and with other parapoxviruses such as PCPV and BPSV. Although the presence of the virus in Turkey was previously reported, its relationship with other orf viruses around the world has not yet been demonstrated, in contrast to parapoxvirus infections of cattle and humans in Turkey (Karakas et al., 2013; Oğuzoğlu et al., 2014). This study provides diagnostic and molecular characterization data for the economic- ally damaging parapoxvirus infection that circulated among goat flocks in Turkey in the 2013–2014 lambing season. Scab samples were taken from five affected lambs (aged 5–60 days) from a private goat herd reared from Aleppo and Saanen goats in Korkuteli, Antalya (South Anatolia), Turkey (Figure 1A). The herd was one-third Aleppo and two-thirds Saanen goats. The herd with preg- nant goats comprised approximately 1,700 goats that were not pasturing outside the farm. The lambs, which had been vaccinated against orf virus before the out- break, had facial and oral lesions, with papillomatous proliferative lesions especially around the upper and lower labia (Figure 1B-1, 1B-2). There were also diffuse nodular lesions in the lungs (Figure 1B-3). The farm had 750 lactating female goats and 475 newborns, of which 38 died during the outbreak. Scab materials were homogenized in phosphate-buf- fered saline (PBS), frozen and thawed for three cycles, and centrifuged at 4000 rpm/min for 15 minutes. The resulting supernatant was used for total DNA extraction by the phenol:chloroform:isoamylalcohol extraction method described by Sambrook et al. (2001). PCR was performed using a modification of the method of Inoshi- ma et al. (2000), using primers PPP-1 (5′-GTCGTCCAC- GATGAGCAGCT-3′) and PPP-4 (5′-TACGTGG- GAAGCGCCTCGCT-3′) specific for the parapoxvirus virus B2L gene (Inoshima et al., 2000). Internal control primers were used in the same reaction, as described by Markoulatos et al. (2000), for verification of the reac- tion, which was carried out in a total volume of 30 μL of mix containing (5 U/μL) Taq DNA polymerase (MBI, Fermentas, Waltham, MA, USA), 10 × Taq Buffer (1.25 mL including (NH 4 ) 2 SO 4 , 25 mmol/L MgCl 2 , and water (18 Mohm/cm, Applichem, Darmstadt, Germany)), primers, and 3 μL of extracted DNA. An initial denatura- tion step at 96 °C for 5 min was followed by 35 cycles of DNA denaturation at 96 °C for 30 s, primer annealing at 48 °C for 30 s, and an amplification step at 72 °C for 45 s. PCR products (595 bp) were purified with a Gene JET PCR purification Kit (Thermo Scientific, Waltham, MA, USA), and PCR fragments were sent to RefGen (Ankara, Turkey) for Sanger sequencing. BLAST searches in Gen- Bank revealed these sequences to be 98%–99% identical to various orf virus strains, and they were submitted to the NCBI GenBank database and assigned the accession numbers KP869116-KP869120. Homology analyses showed that all five strains cluster together, with similar nucleotide variation. Among the five sequences, TR- ORF-2013-Caprine 2, 3, 4, and 5 shared 100% nucle- otide identities, and TR-ORF-2013-Caprine-1 showed a 0.8% nucleotide difference from the other four field strains. All five strains showed only a 0.8% difference from the KC491193.1 goat orf virus strain detected in 2007 in Turkey (Figure 1C). BPSV Arkansas USA (AY386265.1), BPSV USA (AY424973.1), sea lion parapoxvirus USA (DQ163058.1), © Wuhan Instituts of Virology, CAS and Springer Science+Business Media Singapore 2016 1
Transcript
Page 1: Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and phylogenetic analysis of orf virus in Aleppo and Saanen goats from an outbreak in

VIROLOGICA SINICADOI: 10.1007/s12250-015-3684-2

LETTER

Diagnosis and phylogenetic analysis of orf virus in Aleppo andSaanen goats from an outbreak in Turkey Dear Editor,

The Poxviridae family is divided into Chordopoxvirinaeand Entomopoxvirinae genera. Parapoxvirus is one of 11genera in the Chordopoxvirinae genus, including orf vir-us  (ORFV),  bovine  papular  stomatitis  virus  (BPSV),pseudocowpox virus (PCPV) and parapoxvirus of reddeer in New Zealand (PVNZ) (Skinner et al., 2012). Thisvirus, also known as contagious ecthyma or contagiouspustular dermatitis, is a viral skin disease causing ed-ematous proliferative lesions, most often in hairless skinregions around the muzzle and buccal cavity. Severalmolecular  diagnostic  methods  including  polymerasechain reaction (PCR) and quantitative PCR (qPCR) havebeen developed to detect orf virus (Gallina et al., 2006).In this study, multiplex PCR was used to amplify boththe B2L gene partial coding region and a housekeepinggene. A substantial amount of research has been conduc-ted on the B2L gene, and this presents opportunities forcomparisons between different strains around the world.Field strains have been compared with human, sheep,and goat orf viruses and with other parapoxviruses suchas PCPV and BPSV. Although the presence of the virusin Turkey was previously reported, its relationship withother  orf  viruses  around  the  world  has  not  yet  beendemonstrated, in contrast to parapoxvirus infections ofcattle  and  humans  in  Turkey  (Karakas  et  al.,  2013;Oğuzoğlu et al., 2014). This study provides diagnosticand molecular characterization data for the economic-ally  damaging  parapoxvirus  infection  that  circulatedamong goat flocks in Turkey in the 2013–2014 lambingseason.Scab samples  were  taken from five  affected lambs

(aged 5–60 days) from a private goat herd reared fromAleppo and Saanen goats in Korkuteli, Antalya (SouthAnatolia), Turkey (Figure 1A). The herd was one-thirdAleppo and two-thirds Saanen goats. The herd with preg-nant  goats  comprised approximately 1,700 goats  thatwere not pasturing outside the farm. The lambs, whichhad been vaccinated against  orf  virus before the out-break, had facial and oral lesions, with papillomatousproliferative  lesions  especially  around the  upper  andlower labia (Figure 1B-1, 1B-2). There were also diffuse

nodular lesions in the lungs (Figure 1B-3). The farm had750 lactating female goats and 475 newborns, of which38 died during the outbreak.Scab materials were homogenized in phosphate-buf-

fered saline (PBS), frozen and thawed for three cycles,and centrifuged at 4000 rpm/min for 15 minutes. Theresulting supernatant was used for total DNA extractionby  the  phenol:chloroform:isoamylalcohol  extractionmethod described by Sambrook et al. (2001). PCR wasperformed using a modification of the method of Inoshi-ma et al. (2000), using primers PPP-1 (5′-GTCGTCCAC-GATGAGCAGCT-3′)  and  PPP-4  (5′-TACGTGG-GAAGCGCCTCGCT-3′) specific for the parapoxvirusvirus B2L gene (Inoshima et al., 2000). Internal controlprimers were used in the same reaction, as described byMarkoulatos et al. (2000), for verification of the reac-tion, which was carried out in a total volume of 30 μL ofmix containing (5 U/μL) Taq DNA polymerase (MBI,Fermentas, Waltham, MA, USA), 10 × Taq Buffer (1.25mL including (NH4)2SO4, 25 mmol/L MgCl2, and water(18  Mohm/cm,  Applichem,  Darmstadt,  Germany)),primers, and 3 μL of extracted DNA. An initial denatura-tion step at 96 °C for 5 min was followed by 35 cycles ofDNA denaturation at 96 °C for 30 s, primer annealing at48 °C for 30 s, and an amplification step at 72 °C for 45s. PCR products (595 bp) were purified with a Gene JETPCR purification Kit (Thermo Scientific, Waltham, MA,USA), and PCR fragments were sent to RefGen (Ankara,Turkey) for Sanger sequencing. BLAST searches in Gen-Bank revealed these sequences to be 98%–99% identicalto various orf virus strains, and they were submitted tothe NCBI GenBank database and assigned the accessionnumbers  KP869116-KP869120.  Homology  analysesshowed that all five strains cluster together, with similarnucleotide variation.  Among the five sequences,  TR-ORF-2013-Caprine 2, 3, 4, and 5 shared 100% nucle-otide identities, and TR-ORF-2013-Caprine-1 showed a0.8% nucleotide  difference  from the  other  four  fieldstrains. All five strains showed only a 0.8% differencefrom the KC491193.1 goat orf virus strain detected in2007 in Turkey (Figure 1C).BPSV Arkansas  USA (AY386265.1),  BPSV USA

(AY424973.1), sea lion parapoxvirus USA (DQ163058.1),

© Wuhan Instituts of Virology, CAS and Springer Science+Business Media Singapore 2016 1

Page 2: Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and phylogenetic analysis of orf virus in Aleppo and Saanen goats from an outbreak in

Phylogenetic analysis of orf virus in goats in Turkey

2 VIROLOGICA SINICA

Page 3: Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and phylogenetic analysis of orf virus in Aleppo and Saanen goats from an outbreak in

pseudocowpox virus Turkey (KF554010.1), and pseudo-cowpox virus USA (AY424972.1) were used as outlierstrains. These parapoxviruses were found to be distantlyrelated  to  goat  and  sheep  orf  viruses,  except  for  thepseudocowpox virus USA strain, which was closely re-lated to our field strains, with 99.5% sequence homo-logy. The Turkish pseudocowpox virus showed a largedistance  from our  field  strains,  with  a  100  bootstrapvalue and 84.9% sequence identity. Strain Hubei/2010/goat/China/KF913722, FJSL/2012/goat/China/KC568398.1,and B047/1987/capra_hircus/Germany/KF478799.1 se-quences were strongly similar to our five field strains,with 99.84% identity.TR-ORF-1987-Sheep-87/B2L gene/Turkey/KF714241.1,

and TR-ORF-2009-Sheep-13/B2L gene/Turkey/KF714238.1shared 99.84% identity at the nucleotide level with fourof the strains characterized in this study, with TR-ORF-2013-Caprine 1 being the only exception. They also dis-played 99.76% similarity with TR-ORF-2013-Caprine 1.TR-ORF-2008-Sheep-12/B2L gene/Turkey/KF714237.1showed  99.92% and  99.84% identity  with  TR-ORF-2013-Caprine 2, 3, 4, and 5, and TR-ORF-2013-Caprine1, respectively. TR-ORF-2010-Goat-2/B2L gene/Turkey/KF714240.1, TR-ORF-2010-Goat-2/B2L gene/Turkey/KF714240.1,  and  TR-ORF-2007-Sheep-10/B2Lgene/Turkey/KF714236.1 strains exhibited 99.76% and99.68% identity with TR-ORF-2013-Caprine 2, 3, 4, and5 and TR-ORF-2013-Caprine 1, respectively.CTF_GAntep_n1/2012/B2L gene/human/Turkey/

KC776922.1 showed 99.84 and 99.76% identity withTR-ORF-2013-Caprine  2,  3,  4,  and  5,  and  TR-ORF-2013-Caprine 1, respectively. CTF_GAntep_2/2012/B2Lgene/human/Turkey/KC776923.1,  which  displayed99.76%  and  99.67%  identity  with  TR-ORF-2013-Caprine 2, 3, 4, and 5, and TR-ORF-2013-Caprine 1, re-spectively, showed a greater similarity to these strainsthan TR-ORF-S-Human/2011/B2L gene/Turkey/JQ936990.1,  which had 99.51% and 99.60% identitywith TR-ORF-2013-Caprine 2, 3, 4, and 5, and TR-ORF-2013-Caprine 1, respectively.The other strains from different geographical regions

(China's Taiwan, South Korea, China, India, and USA)also demonstrated 99.67%–99.84% identity globally. Fi-

nally, EEV envelope phospholipase gene/reindeer/Fin-land/JF773696.1  had  99.68% similarity  with  all  fivestrains characterized in this study.Amino acid (aa) sequence comparisons between the

Turkish goat orf strains and the selected reference orfstrains showed that they were nearly identical but con-tained a few changes (Figure 1D). Like other referenceorf strains, the Lysine  (K) at position 18 of the aa se-quence in all the Turkish strains was changed to Glutam-ic acid (E). The Alanine (A) at position 51 was changedto Threonine  (T), and the Leucine  (L) at position 131was changed to Threonine (T) concurrently in all Turk-ish goat orf strains. Some other individual aa changeswere  observed  in  TR-ORF-1  and  TR-ORF-4.  In  TR-ORF-1; the Glutamic acid, (E) at position 35 of the aasequence was changed to Glutamine (Q). In TR-ORF-4,the Histidine  (H) at position 120 was changed to Tyr-osine (Y), and Arginine (R) at position 144 was changedto Cysteine (C).Animal  husbandry  in  Turkey  includes  10  million

goats, constituting 2.5% of total milk production. In re-cent years, Aleppo and Saanen goats have been increas-ingly exported to Turkey for milk production. However,importing animals increases the risk of exposure associ-ated with infectious agents such as orf virus, which canlead to outbreaks in goats and associated economic dam-age.  Orf  virus  infection has  a  worldwide distribution(Fleming et al., 2007, Kumar et al., 2014) and causes theformation of lesions around the mouth and nostrils sothat  animals  are  unable  to  graze  and  become  weak(Mazur et al., 1989). The disease mainly infects lambsyounger than 1 year. Viral circulation happens very rap-idly through direct contact or scab shedding (Fleming etal., 2007). Orf virus can also cause mortality in younganimals, although the rate is lower than the incidence ofthe disease, which can reach 90% (Mazur et al., 1989;Fleming et al., 2007). Mortality is either due to second-ary bacterial and fungal infections or because the lambsare unable to suckle (Haig et al., 2002). In the presentoutbreak, the kid fatality rate was 8% (38/475). Few in-vestigations have focused on Turkish goat orf viruses(Oguzoglu et al., 2009). The present study illustrates therelationship of Turkish goat orf viruses with other orf

Figure 1. (A) Samples collected from Antalya city, Korkuteli county, South Anatolia, Turkey in 2013–2014. (B-1, B-2)Kids showing multiple proliferative lesions on the upper and lower labia and the junction of lips. (B-3) Lung of a kid withnodules. (C) Phylogenic analysis of local goat orf viruses based on partial B2L protein coding sequences. The se-quences obtained were aligned using CLC Main Workbench v5.5 (CLCBio, Aarhus, Denmark), and analyzed with Mega6.06 (Tamura et al., 2013). The Maximum-Likelihood trees were generated based on the Hasegawa-Kishino-Yano mod-el with 1,000 bootstrap replicates. Virus strains represented are indicated by name following GenBank accession num-ber. Sea lion parapoxvirus, pseudocowpox viruses and bovine papular stomatitis viruses are included as an outlier. Allsequences were compared against nucleotide numbers 11,053–11,557 of their complete genome. (D) Multiple align-ment of the deduced amino acid sequences of B2L genes of Turkish goat orf strains with those of orf strains from vari-ous countries. Dots denote amino acid identity with a goat orf virus from China (KC568399).

Zeynep Akkutay-Yoldar et al

www.virosin.org 3

Page 4: Diagnosis and phylogenetic analysis of orf virus in Aleppo and … · 2016-01-21 · Diagnosis and phylogenetic analysis of orf virus in Aleppo and Saanen goats from an outbreak in

and parapoxviruses around the world. All five strainsshared  99.92%  identity  at  the  nucleotide  level  withKC491193.1. Few amino acid changes were seen in theB2L gene between Turkish goat orf strains from the sameherd and orf strains from different countries (Figure 1-D).  However,  this  strain  was  localized  in  a  separatebranch on the phylogenetic tree. The phylogenetic ana-lysis results,  which also included sequence data fromseveral years in Turkey (1975, 1987, 2006, 2007, 2008,2009, and 2010), showed that these orf virus outbreaksare closely related antigenically. Moreover, homology-based phylogenetic analysis showed that the goat orf vir-us B2L gene partial coding region encoding the majorenvelope protein p42K is not only similar to that of goatorf viruses but also to that of sheep, deer, human, andcow parapoxviruses (Sullivan et al., 1994). This indic-ates that orf virus infection is endemic in small rumin-ants in Turkey, with continuous risk of human transmis-sion.  The  phylogenetic  characterization  among para-poxvirus strains indicates that the B2L region is a highlyconserved region in orf viruses. As has already been car-ried out by some researchers, future studies can employdifferent open reading frames (ORFs) to detect variableregions in the virus genome (Peralta et al., 2015). Appro-priate  vaccination  programs  and  sanitation  measureswould both decrease economic losses and reduce the riskof human infection.

FOOTNOTES

We  thank  veterinary  surgeon  Osman  Talayman  for  his  helpsampling scab materials from lambs. This study did not receiveany funding. All institutional and national guidelines for the careand use of animals were followed. The authors declare that thereare no conflicts of interests.

Zeynep Akkutay-Yoldar*, Tuba Cigdem Oguzoglu,Yılmaz Akça

Department of Virology, Faculty of Veterinary Medicine, AnkaraUniversity, Ankara, Diskapi 06110, Turkey* Correspondence:Phone: +90-312-3170315-4294, Fax: +90-312-3164472,Email: [email protected]: 0000-0002-1178-5347

Published Online: 20 January 2016

REFERENCES

Fleming SB, Mercer A. 2007. In: Poxviruses.  Mercer AA, Schmidt A,Weber O (eds). Basel: Birkhaeuser Verlag. pp. 127–165.

Gallina L, Dal Pozzo F, Mc Innes CJ, et al. 2006. J Virol Methods, 134:140–145.

Haig DM, McInnes CJ. 2002. Virus Res, 88: 3–16.Inoshima Y, Morooka A, Sentsui H. 2000. J Virol Methods, 84: 201–208.Karakas  A,  Oguzoglu  TC,  Coskun  O,  et  al.  2013.  Arch  Virol,  158:1105–1108.

Kumar  N,  Wadhwa  A,  Chaubey  KK,  et  al.  2014.  Virus  Genes,  48:312–319.

Markoulatos P, Mangana-Vougiouka O, Koptopoulos G, et al. 2000. J Vir-ol Methods, 84: 161–167.

Mazur C, Machado R. 1989. Vet Record, 125: 419–420.Oguzoglu TC, Atalay-Vural S, Karapınar Z, et al. 2009. 3rd Annual Meet-ing EPIZONE ”Crossing Boarders”, Antalya, Turkey.

Oğuzoğlu TÇ, Koç BT, Kirdeci A, et al. 2014. VirusDisease, 25: 381–384.Peralta A, Robles C, Martínez A, et al. 2015. Virus Genes, 50: 381–388.Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual.Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

Skinner M, Buller R, Damon I, et al. 2012. In: Virus Taxonomy: Classific-ation and Nomenclature of Viruses. King A MQ, Adams MJ, CarstensEB, Lefkowitz EJ (eds). London: Academic Press. pp. 291–309.

Sullivan JT, Mercer AA, Fleming SB, et al. 1994. Virology, 202: 968–973.Tamura  K,  Stecher  G,  Peterson  D,  et  al.  2013.  Mol  Biol  Evol,  30:2725–2729.

Phylogenetic analysis of orf virus in goats in Turkey

4 VIROLOGICA SINICA


Recommended