+ All Categories
Home > Documents > Diagnosis and Treatment of Root Perforations

Diagnosis and Treatment of Root Perforations

Date post: 22-Oct-2015
Category:
Upload: nico-stuparu
View: 164 times
Download: 1 times
Share this document with a friend
Popular Tags:
13
Diagnosis and treatment of accidental root perforations IGOR TSESIS & ZVI FUSS A review of endodontic and periodontal aspects on the prognosis, diagnosis, prevention, and treatment of accidental root perforations is presented. Successful treatment depends mainly on proper diagnosis and immediate sealing of the perforation to eliminate risk of infection. A classification of root perforations is presented in the review to assist the clinician in making a proper choice of treatment protocol. Introduction Root perforation is an artificial communication be- tween the root canal system to the supporting tissues of teeth or to the oral cavity (1). Often, the cause is iatrogenic as a result of misaligned use of rotary burs during endodontic access preparation and search for root canal orifices (2–4). Accidental root perforation may also complicate the endodontic treatment per se, for example, during efforts to negotiate calcified and curved canals as well as following lateral extension of the canal preparation to a so-called strip-perforation (5). Inappropriate post space preparation for perma- nent restoration of endodontically treated teeth is yet another common iatrogenic cause of root perforation (3). Non-iatrogenic causes, including root resorption and caries (4, 6–9), will not be addressed in this review. Accidental root perforations, which may have serious implications, occur in approximately 2–12% of endo- dontically treated teeth (4, 10–14). Bacterial infection emanating either from the root canal or the period- ontal tissues, or both, prevents healing and brings about inflammatory sequels where exposure of the supporting tissues is inflicted. Thus, painful conditions, suppurations resulting in tender teeth, abscesses, and fistulae including bone resorptive processes may follow. Down-growth of gingival epithelium to the perfora- tion site can emerge, especially when accidental perforations occur in the crestal area by lateral perforation or perforation in furcations of two- and multi-rooted teeth. Once an infectious process has established itself at the perforation site, prognosis for treatment is precarious and the complication may prompt extraction of the affected tooth (10, 15). Yet, if discovered early and properly managed, prolonged survival of the tooth is possible. This review relates specifically to the diagnosis and the impact of various factors on the prognosis, as well as the principles for treatment of root perforations. It also discusses measures for prevention. Factors of significance to prognosis for treatment Whether or not a root perforation can be successfully treated depends on whether the perforation can be repaired such that bacterial infection of the perforation site can either be prevented or eliminated (16). A number of factors including time from the perforation to detection, size, and shape of the perforation as well as its location impact the potentials to control infection at the perforation site. Time Indeed, numerous experimental studies have demon- strated that time is a most critical factor determining outcome of treatment, with immediate closure carry- ing the best prognosis. Lantz & Persson (17–19) produced root perforations in dogs that were treated either immediately or after some delay. The most 95 Endodontic Topics 2006, 13, 95–107 All rights reserved Copyright r Blackwell Munksgaard ENDODONTIC TOPICS 2006 1601-1538
Transcript
Page 1: Diagnosis and Treatment of Root Perforations

Diagnosis and treatment ofaccidental root perforationsIGOR TSESIS & ZVI FUSS

A review of endodontic and periodontal aspects on the prognosis, diagnosis, prevention, and treatment of

accidental root perforations is presented. Successful treatment depends mainly on proper diagnosis and immediate

sealing of the perforation to eliminate risk of infection. A classification of root perforations is presented in the review

to assist the clinician in making a proper choice of treatment protocol.

Introduction

Root perforation is an artificial communication be-

tween the root canal system to the supporting tissues of

teeth or to the oral cavity (1). Often, the cause is

iatrogenic as a result of misaligned use of rotary burs

during endodontic access preparation and search for

root canal orifices (2–4). Accidental root perforation

may also complicate the endodontic treatment per se,

for example, during efforts to negotiate calcified and

curved canals as well as following lateral extension of

the canal preparation to a so-called strip-perforation

(5). Inappropriate post space preparation for perma-

nent restoration of endodontically treated teeth is yet

another common iatrogenic cause of root perforation

(3). Non-iatrogenic causes, including root resorption

and caries (4, 6–9), will not be addressed in this review.

Accidental root perforations, which may have serious

implications, occur in approximately 2–12% of endo-

dontically treated teeth (4, 10–14). Bacterial infection

emanating either from the root canal or the period-

ontal tissues, or both, prevents healing and brings

about inflammatory sequels where exposure of the

supporting tissues is inflicted. Thus, painful conditions,

suppurations resulting in tender teeth, abscesses, and

fistulae including bone resorptive processes may follow.

Down-growth of gingival epithelium to the perfora-

tion site can emerge, especially when accidental

perforations occur in the crestal area by lateral

perforation or perforation in furcations of two- and

multi-rooted teeth.

Once an infectious process has established itself at the

perforation site, prognosis for treatment is precarious

and the complication may prompt extraction of the

affected tooth (10, 15). Yet, if discovered early and

properly managed, prolonged survival of the tooth is

possible. This review relates specifically to the diagnosis

and the impact of various factors on the prognosis, as

well as the principles for treatment of root perforations.

It also discusses measures for prevention.

Factors of significance to prognosisfor treatment

Whether or not a root perforation can be successfully

treated depends on whether the perforation can be

repaired such that bacterial infection of the perforation

site can either be prevented or eliminated (16). A

number of factors including time from the perforation

to detection, size, and shape of the perforation as well

as its location impact the potentials to control infection

at the perforation site.

Time

Indeed, numerous experimental studies have demon-

strated that time is a most critical factor determining

outcome of treatment, with immediate closure carry-

ing the best prognosis. Lantz & Persson (17–19)

produced root perforations in dogs that were treated

either immediately or after some delay. The most

95

Endodontic Topics 2006, 13, 95–107All rights reserved

Copyright r Blackwell Munksgaard

ENDODONTIC TOPICS 20061601-1538

Page 2: Diagnosis and Treatment of Root Perforations

favorable healing response was evidenced when per-

forations were sealed immediately. Seltzer et al. (20)

treated 22 perforations in monkeys at intervals from

immediately to 10 months post-perforation. While the

periodontium was damaged in all teeth, the most severe

tissue destruction was in the untreated perforations and

in teeth where treatment was delayed. Beavers et al.

(16) observed consistent periodontal healing following

treatment of experimentally produced root perfora-

tions in a monkey model. The high success rate was

attributed to the immediate obturation of the perfora-

tions and the aseptic technique used. Others support-

ing these results found that delay in repair of

perforations decreased the prognosis for healing (21,

22). However, Benenati et al. (23) observed that a

delay in repairing perforations with amalgam did not

influence the prognosis, if the perforation site had been

kept aseptic in the time interval from its inception.

Consequently, to minimize the potential for emer-

gence of infection of the perforation site, these studies

infer that the best time to repair root perforations is

immediately after occurrence. Proper treatment of the

perforation may not always be possible, due to lack of

time, lack of experience of the operator, and proper

equipment. The perforation is then best maintained by

an adequate, bacterially tight temporary seal, and referral

to a specialist for as rapid a treatment as possible.

Size

Large-sized perforations may not respond to repair as

well as smaller ones (24). Himel et al. (25) evaluated the

effect of three materials on healing of perforations of the

pulp chamber floor of mandibular molars in dogs, and

found that the larger teeth with proportionally smaller

perforations showed a better healing response. Large

perforations are more likely to occur during operative

procedures, when aggressive burs are used, causing more

traumatic injuries to the surrounding tissues. Further-

more, large perforations can cause the problem of an

incomplete seal of the defect, thus allowing continuous

bacterial irritation of the perforation area (26). Small

perforations clearly are easier to repair and therefore

provide potential for predictable healing.

Location

The most important parameter affecting treatment

prognosis is the location along the root surface. A

perforation occurring relatively close to the crestal bone

and the epithelial attachment is critical as it may lead to

bacterial contamination from the oral environment along

the gingival sulcus. Furthermore, apical migration of the

epithelium to the perforation site can be expected,

creating a periodontal defect (3, 17–20, 26–30). Once

the periodontal pocket is formed, persistent inflammation

of the perforation site is most likely maintained by

continuous ingress of irritants from the pocket (26, 27).

These perforations have a poor treatment prognosis from

a periodontal aspect, and treatment from the inside of the

root canal, even if adequately performed, cannot normally

improve the condition.

Perforations of the furcation areas of multi-rooted

teeth are similarly critical (3, 7, 17–19, 27, 31, 32) (Fig.

1A). At times, they are especially troublesome as the

inflammatory process may cause rapid and extensive

destruction of the periodontal tissues that ultimately

leads to a permanent communication with the oral

cavity and a persistently suppurating lesion (20, 24).

Nevertheless, a high healing rate was attained in the

treatment of experimental furcation perforations in

monkeys (16). In 24 teeth of two monkeys, furcation

perforations were sealed with either hard-setting

calcium hydroxide or Teflon disks. All procedures were

performed under strict aseptic conditions after ex-

tirpating the pulps, and the access cavities were sealed

with hand-mixed zinc oxide eugenol cement and

amalgam. Furcation perforations showed evidence of

histologic healing after various time periods with no

epithelial migration to the wound site (Fig. 1B, C). An

additional set of lateral perforations exhibited similar

evidence of periodontal tissue healing following treat-

ment. According to the graphic illustrations given, the

furcation perforations were produced in the middle of

the pulpal floor and directly into the crestal bone. The

fact that the epithelial attachment was not compro-

mised may explain the high success rate, as well as the

strict asepsis and the atraumatic preparation of the

experimental perforations. The long-term healing

response was not studied in this report.

Hartwell & England (30) had a high clinical success

rate following repair of furcation perforations in

monkeys using freeze-dried bone. However, histologi-

cally, a layer of epithelium was found immediately

beneath the perforation with no bone healing in any of

the samples. From the radiographs presented in the

study, the perforation defects were located at the crestal

bone level and thus susceptible to epithelial migration.

Tsesis & Fuss

96

Page 3: Diagnosis and Treatment of Root Perforations

Perforations, coronal to the crestal bone, are easy to

access and seal, and teeth may be restored without

periodontal involvement. For a good prognosis, there

should be sufficient sound tooth structure for an

adequate restoration.

Perforations, apical to the crestal bone and epithelial

attachment, are considered to have a good treatment

prognosis when adequate endodontic treatment is

rendered and the main canal is accessible. In these

cases, the risk of periodontal involvement is reduced,

making the prognosis good (16, 20).

Classification of root perforations

Based on the factors impacting the outcome of

treatment considered above, the following classifica-

tion of root perforations, proposed by Fuss & Trope

(1), may assist the clinician to select a treatment

strategy:

Fresh perforation – treated immediately or shortly

after occurrence under aseptic conditions, Good Prog-

nosis.

Old perforation – previously not treated with likely

bacterial infection, Questionable Prognosis.

Small perforation (smaller than #20 endodontic

instrument) – mechanical damage to tissue is minimal

with easy sealing opportunity, Good Prognosis.

Large perforation – done during post preparation,

with significant tissue damage and obvious difficulty in

providing an adequate seal, salivary contamination, or

coronal leakage along temporary restoration, Question-

able Prognosis.

Coronal perforation – coronal to the level of crestal

bone and epithelial attachment with minimal damage

to the supporting tissues and easy access, Good

Prognosis.

Crestal perforation – at the level of the epithelial

attachment into the crestal bone, Questionable Prog-

nosis.

Apical perforation – apical to the crestal bone and the

epithelial attachment, Good Prognosis.

In multi-rooted teeth where the furcation is perfo-

rated, the prognosis differs according to the factors

described for single-rooted teeth.

Determination of the presence andlocation of root perforation

As accurate detection of root perforations and deter-

mination of location are crucial to the treatment

outcome, certain signs, and tools must be recognized

in making the diagnosis. Sudden bleeding and pain

during instrumentation of root canals or post prepara-

tions in teeth are warning signals of a potential root

perforation. The appearance of blood on paper points

Fig. 1. A histologic section is seen in (A) of a tooth with an old (infected) furcation perforation that resulted ininflammation, bone resorption, and proliferation of the epithelium in the perforation area. Microphotographs of tissuesections in (B) and (C) are from the study of Beavers et al. (16). (B) Tissue defect immediately after bur penetration of thefurcation in a mandibular molar. Forty-two days following immediate seal of the perforation in (C) with a teflon disk andzinc oxide eugenol cement resulted in a healing response. Note emerging bone fill of the perforation along with cellularcementum formation on the canal walls and absence of epithelial proliferation (microphotographs in (B) and (C) kindlyprovided by Dr G. Bergenholtz).

Accidental root perforations

97

Page 4: Diagnosis and Treatment of Root Perforations

may also be indicative, but unreliable as bleeding may

originate from the apical foramen or from residues of

vital pulp tissue. To enhance radiographic detection, it

has been proposed to place a highly radiopaque

calcium-hydroxide paste, by inclusion of barium

sulfate, in the root canal (33). However, caution should

be exercised in crestal perforations as this measure can

result in extrusion of the material into the periodontal

tissues and cause unnecessary mechanical and chemical

irritation impairing the treatment prognosis (Fig. 2).

Radiographs taken at different angles with radiopaque

instruments in the root canal are a better option and

may confirm the presence of a root perforation (Fig. 3).

However, when the perforation is located at the buccal

Fig. 2. Case demonstrates a treatment attempt of an old large crestal perforation that resulted in root resorption (A).Calcium hydroxide placed in the root canal was extruded into the resorption cavity (B). One week post-treatment,necrosis of the mucosa adjacent to the perforation area is obvious (C).

Fig. 3. Radiograph of a maxillary right incisor with a post in the root canal and a radiolucent area in the coronal third ofthe root (A). In an angulated view, penetration of the post to the periodontal tissue can be seen (B).

Tsesis & Fuss

98

Page 5: Diagnosis and Treatment of Root Perforations

or palatal aspects of the root, the diagnostic value

of radiographs is limited (Fig. 4). Anatomical struc-

tures, as well as radiopaque materials superimposing on

the image of the root, may also obscure the perforation

site.

Electronic apex locators (EALs) can accurately

determine the location of root perforations, making

them significantly more reliable than radiographs (34).

After root instrumentation, it is recommended that the

working length be verified with EALs. Readings, that

are significantly shorter than the original length can be

an indication of perforation (34).

A dental operating microscope is another helpful

tool (35, 36) effective in detecting root perforations

during orthograde root canal therapy and in surgical

endodontic treatments. High magnification with co-

axial illumination allows precise detection and visuali-

zation of perforations along straight non-curved root

canals.

A narrow isolated periodontal defect is a possible sign

of periodontal breakthrough due to root perforation.

Probing the gingival sulcus to reveal possible commu-

nication with the oral cavity is recommended in such

teeth. To determine locally isolated vertical bone losses,

periodontal probing should be carried out by walking

the probe around the tooth while pressing gently on

the floor of the sulcus (37). In the presence of narrow

isolated periodontal defects, differential diagnosis from

vertical root fracture should be made with explorative

surgery (38, 39).

Treatment aspects

Measures for prevention

Care should always be excerised during endodontic and

operative procedures to prevent the complication of a

root perforation. The following precautions may serve

as general guidelines.

Before accessing root canals

The crown-root alignment should always be evaluated

and bony eminences noticed. Often, palpation is useful

to detect the direction of the root relative to the crown.

Careful examination of radiographs is important to

evaluate the shape and depth of the pulp chamber and

width of the furcation floor. Indeed, adequate knowl-

edge is needed of the location and dimensions of the

pulp chamber (40). Attention should also be given to

root inclination, the long tooth axis, the shape, number

and degree of canal curvatures, presence of calcifica-

tions, and type of previous restorations. Additional

radiographs of good diagnostic quality should be taken

from other angles if needed (41).

During access preparation

The use of magnification is advantageous to observe

canal orifices and the coronal alignment of the root

canal. A rubber dam should not be placed before access

Fig. 4. Radiograph showing a maxillary first molar with a large post in the palatal root. Radiolucencies affect the palatalroot and the furcation area (A). Furcal perforation is to be suspected but cannot be confirmed because of superimpositionof root structures on the post in the palatal canal. Studying the extracted tooth, a large furcation perforation becameevident at the buccal aspect of the palatal root (B).

Accidental root perforations

99

Page 6: Diagnosis and Treatment of Root Perforations

preparations in teeth with narrow or calcified pulp

chambers (41, 42), in re-treatments, and when acces-

sing crowned teeth. In such cases, the pulp chamber

may not readily be seen, as calcification processes

induced by the previous treatment may have altered its

normal anatomy. Krasner & Rankow (43) studied 500

extracted, permanent human teeth and found that the

pulp chamber was always centrally located at the level of

the cemento-enamel junction (CEJ). The CEJ was the

most consistent anatomic landmark observed. They

proposed to ignore the clinical crown contour as a

guide in directing the access preparation and instead

use the CEJ. Radiographs taken during the access

preparation with a bur in place may be helpful.

Kvinnsland et al. (3) found that in maxillary anterior

teeth, all perforations were located at the labial root

aspect due to the operator’s underestimation of the

palatal root inclination in the upper jaw.

During root canal preparation

Overzealous use of rotary instrumentation can cause

apical or crestal perforations of the root canal wall, also

called ‘strip perforation’ (5). Hence, large tapered

instruments and Gates–Glidden (GG) burs should

therefore be used with caution (44). Modern flexible

nickel titanium instruments along with copious irriga-

tion and lubrication were proposed for curved canals to

prevent apical perforations (45, 46).

During post preparation

Utmost care should always be exercised during post

preparations so that root canals are not overextended.

Generally speaking, a safe preparation is best attained

with the surgical microscope immediately after com-

pletion of a root canal filling. Kuttler et al. (47)

examined the effects of post space preparation with GG

drills on residual dentin thickness in distal roots of

mandibular molars in vitro and found that such post

space preparation carries a significant risk of perforation

(7.3% with GG #4). Kvinnsland et al. (3) observed that

more than half of the perforations in their cases of root

perforation occurred during post-preparation proce-

dures.

Treatment by an orthograde approach

As early as 1903, Peeso (48) stated that successful

management of root perforations is dependent on early

diagnosis of the defect, choice of treatment, materials

used, host response, and the experience of the

practitioner. These factors are also valid today. No

doubt, the rationale for orthograde treatment of root

perforations is the same as that of conservative

endodontic therapy, i.e. prevention and treatment of

periradicular inflammation. This may be achieved by

measures aimed to control infection of the perforation

site, or if already infected, by using procedures that can

disinfect the site and provide the best possible seal

against penetration of bacterial elements.

Fresh perforations that occur during either operative

or endodontic procedures are followed by hemorrhage.

The first step then is to control the hemorrhage by

pressure or irrigation (49). Subsequently, the perfora-

tion should be adequately sealed. The efficacy of a

sealing material depends primarily on sealability and

biocompatibility and thus ability to support osteogen-

esis and cementogenesis. It may also be advantageous

that the material is relatively inexpensive, radiopaque,

and bacteriostatic (50). In certain instances, it could

also be beneficial to use a resorbable matrix in which a

sealing material can be condensed (25, 51).

No material offers all of these properties. In search for

the ideal material, numerous sealing materials and

techniques have been tested over the years with varying

success, including amalgam (17, 18, 23, 26, 28, 52–

54), phosphate cement (17, 18), gutta-percha (3, 17,

18, 23, 27, 31), zinc oxide eugenol (4, 20, 56),

SuperEBA (55), dentin chips (27), AH-26 (27),

various formulations of calcium hydroxide (26–28,

56), Cavit (7, 12, 17, 18, 22, 28, 29), tricalcium

phosphate (13, 25, 26), hydroxylapatite (26, 54, 57),

glass ionomer cement (53, 58), resin-ionomer (59),

mineral trioxide aggregate (MTA) (60, 61), tin foil

(62), and indium foil (63, 64). Yet, the material factor

must be regarded as only one of several critical factors

(discussed above) that is significant to the outcome of

treatment (54). Clearly, the selection of material must

be related to the type of perforation. Consequently, an

apical perforation should be treated according to

routine endodontic principles and sealed with root

canal filling materials. Infected apical perforations may

be medicated with an antibacterial intracanal dressing

before obturation. It has been suggested that large

apical perforations should be treated similar to teeth

with immature apices, i.e. with long-term calcium

hydroxide treatment to achieve a hard tissue barrier (1,

7, 8). When the original canal is not accessible and

Tsesis & Fuss

100

Page 7: Diagnosis and Treatment of Root Perforations

apical periodontitis has emerged, root end resection

may be the treatment of choice.

Management of crestal root perforations

Treatment of crestal perforations carries a guarded

prognosis because of their proximity to the epithelial

attachment. For sealing, any biocompatible material

with a short setting time and good sealability should be

selected (1). Orthodontic extrusion has been recom-

mended for single-rooted teeth to bring the perfora-

tion to a coronal position, where it can be sealed

externally without surgical intervention.

Perforations in the furcal region of molars are

particularly challenging. Large furcation perforations

make the control of sealing material hazardous, and risk

of extrusion of the filling material into periodontal

tissues is common (1), an additional complication that

significantly impairs the chances for a desirable period-

ontal healing (23, 27, 54).

For large perforations, an internal matrix technique

has been suggested (24, 30, 53–55). The defect

(perforations in the furcation area and in straight

canals) should then be directly accessible and visualized

for the successful use of this technique (Fig. 5). The

internal matrix must, of course, be sterile, possible to

manipulate, and should not produce inflammation

(24). Materials suggested in the literature are hydro-

xylapatite (24), decalcified freeze-dried bone (30),

plaster of Paris (calcium sulfate) (53), hydroxyapati-

te1calcium sulfate (54), and resorbable collagen with

MTA (65). Petersson et al. (27) and Bogaerts (55) have

stated that materials based on calcium hydroxide as a

main ingredient are not suitable for crestal and

furcation perforations because of the initial inflamma-

tory response to these materials, which could lead to

breakdown of the supporting tissues and subsequent

pocket formation (25, 28).

Resin-modified flowable glass ionomer cement can

be used as an artificial floor barrier without risk of

pushing the material into the supporting tissues (Figs 6

and 7). Furthermore, other materials can be added and

condensed to improve sealability with minimal inflam-

matory response (identical healing for glass ionomer

cements when used alone or over calcium sulfate or

hydroxyapatite barrier) (66).

MTA has recently been proposed for repair of root

perforations (67) (Fig. 8). Several in vitro studies on

MTA have demonstrated its sealing ability (67–69).

When used to repair perforations in animal models,

Fig. 5. Case of a maxillary left second molar serving as a distal abutment in a bridge. Root canal treatment was initiatedbecause of pulp necrosis (A) in which a large furcation perforation occurred during access cavity preparation through thecrown (B). Treatment attempt of the perforation included closure with calcium sulfate (C), covered by a resin-composite(D) before completion of root canal treatment (E).

Accidental root perforations

101

Page 8: Diagnosis and Treatment of Root Perforations

minimal or no inflammation was presented and, in

addition, cementum repair occurred at the material

interface (60, 61). It is reasonable to assume that the

high surface pH of MTA supports repair and hard tissue

formation in a similar fashion as calcium hydroxide.

Thus, Holland et al. (70) have proposed that calcium

oxide in MTA reacts with tissue fluids to form calcium

hydroxide, which in turn may encourage hard tissue

deposition.

It should be noted that there are no comparative

human studies to demonstrate the superiority of MTA

to other materials. Yet, numerous case reports exist in

the literature showing excellent healing results with

MTA when used as a vehicle for repair of root

Fig. 6. Case of a mandibular first molar with an old furcation perforation (A). In spite of the poor prognosis, treatmentwas initiated by post removal, gentle saline irrigation, and sealing the defect with a glass ionomer cement (Chelon Silve,3M-Espe, Seefeld, Germany). The cement, with a setting time of 5 min, served as a barrier to avoid contamination duringretreatment of the root canals. Radiograph in B is 3 years post-treatment and demonstrates resolution of both the apicaland furcation lesions. A piece of the post displaced into the periodontal tissues during treatment remains (from Fuss &Trope (1)).

Fig. 7. Radiograph of a mandibular molar with an old large furcation perforation. It was deemed possible to resolve thelesion as there was no pocket probing depth to the furcation (A). The amalgam was gently removed through the rootcanal and the large perforation was sealed with glass ionomer cement. Thirty months following treatment, repair in thefurcation is evident (B). Note that the material was not pushed into the periodontal tissues in spite of the largeperforation defect (from Fuss & Trope (1)).

Tsesis & Fuss

102

Page 9: Diagnosis and Treatment of Root Perforations

perforations (71, 72). A disadvantage is the prolonged

setting time that requires two appointments to

complete root canal therapy with permanent sealing.

The cost of this material is substantial.

Several studies have shown that MTA is microscopi-

cally identical and chemically similar to Portland

cement (73–75). Both materials show comparable

biocompatibility and histologic tissue responses (76–

78). Thus, Portland cement should be considered in

future research.

Treatment by a surgical approach

Indications for surgical intervention are large perfora-

tions, perforations as a result of resorption, failure of

healing after non-surgical repair (4), non-surgically

inaccessible perforations, extensive coronal restorations

(7), when concomitant management of the period-

ontium is indicated (8), and large overfilling of the

defect (31). The purpose of surgical treatment is to

achieve a tight and permanent seal that will prevent

bacteria and their byproducts in the root canal from

entering the surrounding periodontal tissues (79–81).

Before corrective surgery, root canals must be properly

treated and permanently filled, if possible (8, 82, 83).

When surgical intervention is needed in an apical

perforation, resection of the apical root to sound root

structure with an adequate filling is recommended (8,

82, 84). While Oswald (82) has stated that for crestal

perforations surgical repair will almost certainly result

in a loss of the epithelial attachment and pocket

formation, Rud et al. (80) found that after sealing root

perforation elsewhere with dentin-bonded resin-com-

posite (Retroplast), bone regenerated and a period-

ontal ligament space was partly formed with a lamina

dura against the material.

Before surgical intervention, the following para-

meters should be considered (8):

� amount of remaining bone,

� extent of osseous destruction,

� duration of the defect,

� periodontal disease status,

� soft tissue attachment level,

� patient’s oral hygiene, and

� surgeon’s expertise in tissue management.

Rud et al. (80) suggested that even if a small bridge of

crestal bone remains, it should be preserved by all

means. Accessibility to the perforation is a definitive

factor to be decided upon before a surgical repair

attempt. Buccal perforations are easy to repair, whereas

lateral and lingual/palatal perforations especially offer

substantial technical difficulties, which may make the

operator abstain.

During surgical procedures, hemostasis is critical and

may be achieved by various methods like profound

anesthesia with a vasoconstriction agent (infiltration of

2% Lidocaine with 1 : 50 000 epinephrine), (8, 85)

cotton pellets soaked in epinephrine, Gelfoam (86),

calcium sulfate (53, 87), and CollaCote collagen

sponges saturated with 2.25% racemic epinephrine

(88). A Class I cavity is prepared and the preferred

filling material is placed (8, 83).

Guided tissue regeneration has been attempted to

manage perforations and offer the possibility of

successful repair in surgical treatments by serving as a

Fig. 8. Radiograph of a mandibular second molar with anold furcation perforation (A). The perforation was sealedwith mineral trioxide aggregate (MTA) (B). Twelve monthsfollowing treatment, the lesion in the furcation resolved (C).

Accidental root perforations

103

Page 10: Diagnosis and Treatment of Root Perforations

barrier for apical migration of epithelium (89, 90). The

technique is, however, both costly and technically

demanding (89) and has only gained support by case

reports (89–92), which calls for additional clinical

studies before this technique can be advocated.

Intentional replantation

Intentional replantation may be considered when

orthograde and surgical treatments are not possible,

undesirable, or have already failed (93, 94). This

procedure can be recommended as a substitute for

surgical treatment when the perforation defect is too

large for repair and when the perforation is inaccessible

without excessive bone removal (24, 95).

Generally, intentional replantation is not recom-

mended for teeth with periodontal disease, furcation

involvement, or gingival inflammation (95, 96). How-

ever, recently, it was evaluated for treatment of period-

ontally involved teeth, with good results (97).

The procedure involves atraumatic tooth extraction to

avoid excessive damage to the cementum and period-

ontal ligamentum. Replantation should be completed

quickly to reduce the extra alveolar time and risk for

external root resorption. After removal, the tooth should

be kept in forceps and bathed gently in a balanced salt-

solution. The dental operating microscope has the

advantage of careful inspection of the root surface and

perforation site. Modest or no post-operative pain can be

expected following the procedure (96, 98) (Fig. 9).

Teeth with divergent or long and curved roots are not

suitable for intentional replantation because of the risk

of fracture during extraction. The advantages of this

procedure are the short time involved and easy

manipulation. It allows thorough examination of the

root surface and adequate seal of the perforation defect.

The success rate reported in clinical follow-ups ranges

from 80% to 90% for carefully performed procedures

with proper case selection (93, 96, 98, 99). Several case

reports present successful treatment (100–103), but no

Fig. 9. Case of a mandibular first molar with an apical perforation of the mesial root subjected to intentional replantation(A). After careful luxation and extraction by forceps (B), the apical 3 mm were resected and prepared for retrogradefillings with IRM (C, D). The radiograph in E shows the reimplanted tooth. Twelve months post-operatively, periapicalhealing is evident (F).

Tsesis & Fuss

104

Page 11: Diagnosis and Treatment of Root Perforations

studies have evaluated the long-term success of

intentional tooth replantation with root perforations.

Inflammatory root resorption and ankylosis due to

trauma to the periodontal ligament are complications

that may occur after intentional replantation (96).

References

1. Fuss Z, Trope M. Root perforations: classification and

treatment choices based on prognostic factors. EndodDent Traumatol 1996: 12: 255–264.

2. American Association of Endodontists. Glossary ofendodontic terms, 7th edn. Chicago: American Asso-ciation of Endodontists, 2003.

3. Kvinnsland I, Oswald RJ, Halse A, GronningsaeterAG. A clinical and roentgenological study of 55 casesof root perforation. Int Endod J 1989: 22: 75–84.

4. Nicholls E. Treatment of traumatic perforations of thepulp cavity. Oral Surg Oral Med Oral Pathol 1962: 15:603–612.

5. Abou-Rass M, Frank AL, Glick DH. The anticurvaturefiling method to prepare the curved root canal. J AmDent Assoc 1980: 101: 792–794.

6. Eleftheriadis GI, Lambrianidis TP. Technical quality ofroot canal treatment and detection of iatrogenic errorsin an undergraduate dental clinic. Int Endod J 2005:

38: 725–734.7. Sinai IH. Endodontic perforations: their prognosis

and treatment. J Am Dent Assoc 1977: 95: 90–95.8. Gutmann JL, Harrison JW. Surgical Endodontics.

Boston, MA: Blackwell Scientific Publications, 1991,p. 409.

9. Fuss Z, Tsesis I, Lin S. Root resorption – diagnosis,classification and treatment choices based on stimula-tion factors. Dent Traumatol 2003: 19: 175–182.

10. Ingle JL. A standardized endodontic technique utiliz-ing newly designed instruments and filling materials.Oral Surg Oral Med Oral Pathol 1961: 14: 83–91.

11. Seltzer S, Bender IB, Smith J, Freedman I, NazimovH. Endodontic failures – an analysis based on clinical,roentgenographic, and histologic findings. Oral SurgOral Med Oral Pathol 1967: 23: 500–530.

12. Kerekes K, Tronstad L. Long-term results of endo-dontic treatment performed with a standardizedtechnique. J Endod 1979: 5: 83–90.

13. Sinai IH, Romea DJ, Glassman G, Morse DR, FantasiaJ, Furst ML. An evaluation of tricalcium phosphate as atreatment for endodontic perforations. J Endod 1989:

15: 399–403.14. Farzaneh M, Abitbol S, Friedman S. Treatment

outcome in endodontics: the Toronto study. Phases

I and II: Orthograde retreatment. J Endod 2004: 30:627–633.

15. Gorni FG, Gagliani MM. The outcome of endodonticretreatment: a 2-yr follow-up. J Endod 2004: 30: 1–4.

16. Beavers RA, Bergenholtz G, Cox CF. Periodontalwound healing following intentional root perforationsin permanent teeth of Macaca mulatta. Int Endod J1986: 19: 36–44.

17. Lantz B, Persson PA. Experimental root perforation indogs’ teeth. A roentgen study. Odontol Revy 1965: 16:238–257.

18. Lantz B, Persson PA. Periodontal tissue reactions afterroot perforations in dogs’ teeth. A histologic study.Odontol Tidskr 1967: 75: 209–237.

19. Lantz B, Persson PA. Periodontal tissue reactions aftersurgical treatment of root perforations in dogs’ teeth.A histologic study. Odontol Revy 1970: 21: 51–62.

20. Seltzer S, Sinai I, August D. Periodontal effects of rootperforations before and during endodontic proce-dures. J Dent Res 1970: 49: 332–339.

21. Bhaskar SN, Rappaport HM. Histologic evaluation ofendodontic procedures in dogs. Oral Surg Oral MedOral Pathol 1971: 31: 526–535.

22. Harris WE. A simplified method of treatment forendodontic perforations. J Endod 1976: 2: 126–134.

23. Benenati FW, Roane JB, Biggs JT, Simon JH. Recallevaluation of iatrogenic root perforations repairedwith amalgam and gutta-percha. J Endod 1986: 12:161–166.

24. Lemon RR. Nonsurgical repair of perforation defects.Internal matrix concept. Dent Clin North Am 1992:

36: 439–457.25. Himel VT, Brady J Jr, Weir J Jr. Evaluation of repair of

mechanical perforations of the pulp chamber floorusing biodegradable tricalcium phosphate or calciumhydroxide. J Endod 1985: 11: 161–165.

26. Balla R, LoMonaco CJ, Skribner J, Lin LM. Histolo-gical study of furcation perforations treated withtricalcium phosphate, hydroxylapatite, amalgam, andLife. J Endod 1991: 17: 234–238.

27. Petersson K, Hasselgren G, Tronstad L. Endodontictreatment of experimental root perforations in dogteeth. Endo Dent Traumatol 1985: 1: 22–28.

28. El Deeb ME, El Deeb M, Tabibi A, Jensen JR. Anevaluation of the use of amalgam, Cavit, and calciumhydroxide in the repair of furcation perforations. JEndod 1982: 8: 459–466.

29. Jew RC, Weine FS, Keene JJ Jr, Smulson MH. Ahistologic evaluation of periodontal tissues adjacent toroot perforations filled with Cavit. Oral Surg Oral MedOral Pathol 1982: 54: 124–135.

30. Hartwell GR, England MC. Healing of furcationperforations in primate teeth after repair with dec-alcified freeze-dried bone: a longitudinal study. JEndod 1993: 19: 357–361.

31. Stromberg T, Hasselgren G, Bergstedt H. Endodontictreatment of traumatic root perforations in man. Aclinical and roentgenological follow-up study. SvenTandlak Tidskr (Swed Dent J) 1972: 65: 457–466.

32. Frank AL. Resorption, perforations, and fractures.Dent Clin North Am 1974: 18: 465–487.

33. Hovland EJ, Dumsha TC. Problems in the manage-ment of tooth resorption. In: Gutmann JL, Dumsha

TC, Lovdahl PE, Hovland EJ, eds. Problem Solving inEndodontics, 3rd edn. St Louis: CV Mosby Company,

1997: 253–276.34. Fuss Z, Assooline LS, Kaufman AY. Determination of

location of root perforations by electronic apex

Accidental root perforations

105

Page 12: Diagnosis and Treatment of Root Perforations

locators. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 1996: 82: 324–329.

35. Wong R, Cho F. Microscopic management of proce-dural errors. Dent Clin North Am 1997: 41: 455–479.

36. Daoudi MF, Saunders WP. In vitro evaluation of furcalperforation repair using mineral trioxide aggregate orresin modified glass ionomer cement with and withoutthe use of the operating microscope. J Endod 2002: 28:512–515.

37. Cohen S, Liewehr F. Diagnostic procedures. In:

Cohen S, Burns RC, eds. Pathways of the Pulp, 8thedn. St Louis, MO: CV Mosby, 2002: 12.

38. Fuss Z, Lustig J, Katz A, Tamse A. An evaluation ofendodontically treated vertical root fractured teeth:impact of operative procedures. J Endod 2001: 27: 46–48.

39. Tamse A. Vertical root fractures in endodonticallytreated teeth: diagnostic signs and clinical manage-

ment. Endod Topics 2006: 13: 84–94.40. Deutsch AS, Musikant BL. Morphological measure-

ments of anatomic landmarks in human maxillary andmandibular molar pulp chambers. J Endod 2004: 30:388–390.

41. Moreinis SA. Avoiding perforation during endodonticaccess. J Am Dent Assoc 1979: 98: 707–712.

42. Torabinejad M, Lemon RR. Procedural accidents. In:Walton RE, Torabinejad M, eds. Principles andPractice of Endodontics, 3rd edn. Philadelphia: WB

Saunders, 2002: 312–331.43. Krasner P, Rankow HJ. Anatomy of the pulp-chamber

floor. J Endod 2004: 30: 5–16.44. Wu MK, van der Sluis LW, Wesselink PR. The risk of

furcal perforation in mandibular molars using Gates-Glidden drills with anticurvature pressure. Oral SurgOral Med Oral Pathol Oral Radiol Endod 2005: 99:378–382.

45. Hulsmann M, Herbst U, Schafers F. Comparativestudy of root-canal preparation using lightspeed andquantec SC rotary NiTi instruments. Int Endod J 2003:36: 748–756.

46. Schafer E, Schulz-Bongert U, Tulus G. Comparison ofhand stainless steel and nickel titanium rotary instru-mentation: a clinical study. J Endod 2004: 30: 432–435.

47. Kuttler S, McLean A, Dorn S, Fischzang A. Theimpact of post space preparation with Gates–Gliddendrills on residual dentin thickness in distal roots ofmandibular molars. J Am Dent Assoc 2004: 135: 903–909.

48. Peeso FA. The ‘‘ABC’’ of crown and bridge work.Dent Cosmos 1903: 45: 274–279.

49. Grossman LI. Endodontic Practice, 8th edn. Philadel-phia: Lea & Febiger, 1974, p. 205.

50. Alhadainy HA. Root perforations. A review ofliterature. Oral Surg Oral Med Oral Pathol 1994: 78:368–374.

51. Levin MP, Getter L, Cutright DE, Bhaskar SN.Biodegradable ceramic in periodontal defects. OralSurg Oral Med Oral Pathol 1974: 38: 344–351.

52. Weisman MI. Treatment of an unusual perforation ofan anterior tooth; report of a case. Oral Surg Oral MedOral Pathol 1959: 12: 732–735.

53. Alhadainy HA, Himel VT. An in vitro evaluation ofplaster of Paris barriers used under amalgam and glassionomer to repair furcation perforations. J Endod1994: 20: 449–452.

54. Rafter M, Baker M, Alves M, Daniel J, Remeikis N.Evaluation of healing with use of an internal matrix torepair furcation perforations. Int Endod J 2002: 35:775–783.

55. Bogaerts P. Treatment of root perforations withcalcium hydroxide and SuperEBA cement: a clinical

report. Int Endod J 1997: 30: 210–219.56. Bramante CM, Berbert A. Root perforations dressed

with calcium hydroxide or zinc oxide and eugenol.J Endod 1987: 13: 392–395.

57. Roane JB, Benenati FW. Successful management of aperforated molar using amalgam and hydroxylapatite.J Endod 1987: 13: 400–404.

58. Fuss Z, Abramovitz I, Metzger Z. Sealing furcationperforations with silver glass ionomer cement: an in

vitro evaluation. J Endod 2000: 26: 466–468.59. Resillez-Urioste F, Sanandajt K, Davidson RM. Use of

a resin-ionomer in the treatment of mechanical rootperforation: report of a case. Quintessence Int 1998:

29: 115–118.60. Ford TR, Torabinejad M, McKendry DJ, Hong CU,

Kariyawasam SP. Use of mineral trioxide aggregate forrepair of furcal perforations. Oral Surg Oral Med OralPathol Oral Radiol Endod 1995: 79: 756–763.

61. Holland R, Filho JA, de Souza V, Nery MJ,Bernabe PF, Junior ED. Mineral trioxide aggregaterepair of lateral root perforations. J Endod 2001: 27:281–284.

62. Parreidt R. Root perforation and its treatment. DentCosmos 1903: 45: 580.

63. Auslander WP, Weinberg G. Anatomic repair ofinternal perforations with indium foil and silveramalgam: outline of a method. NY J Dent 1969: 39:454–457.

64. Aguirre R, ElDeeb ME, ElDeeb M. Evaluation of therepair of mechanical furcation perforations usingamalgam, gutta-percha, or indium foil. J Endod 1986:

12: 249–256.65. Bargholz C. Perforation repair with mineral trioxide

aggregate: a modified matrix concept. Int Endod J2005: 38: 59–69.

66. Alhadainy HA, Himel VT, Lee WB, Elbaghdady YM.Use of a hydroxylapatite-based material and calciumsulfate as artificial floors to repair furcal perforations.Oral Surg Oral Med Oral Pathol Oral Radiol Endod1998: 86: 723–729.

67. Lee SJ, Monsef M, Torabinejad M. Sealing ability of amineral trioxide aggregate for repair of lateral rootperforations. J Endod 1993: 19: 541–544.

68. Ferris DM, Baumgartner JC. Perforation repaircomparing two types of mineral trioxide aggregate. JEndod 2004: 30: 422–424.

Tsesis & Fuss

106

Page 13: Diagnosis and Treatment of Root Perforations

69. Weldon JK Jr, Pashley DH, Loushine RJ, Weller RN,Kimbrough WF. Sealing ability of mineral trioxideaggregate and super-EBA when used as furcationrepair materials: a longitudinal study. J Endod 2002:

28: 467–470.70. Holland R, de Souza V, Nery MJ, Otoboni Filho JA,

Bernabe PF, Dezan Junior E. Reaction of dogs’ teethto root canal filling with mineral trioxide aggregate ora glass ionomer sealer. J Endod 1999: 25: 728–730.

71. Arens DE, Torabinejad M. Repair of furcal perfora-tions with mineral trioxide aggregate: two case

reports. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 1996: 82: 84–88.

72. Main C, Mirzayan N, Shabahang S, Torabinejad M.Repair of root perforations using mineral trioxideaggregate: a long-term study. J Endod 2004: 30: 80–83.

73. Estrela C, Bammann LL, Estrela CR, Silva RS, PecoraJD. Antimicrobial and chemical study of MTA, Port-land cement, calcium hydroxide paste, Sealapex andDycal. Braz Dent J 2000: 11: 3–9.

74. Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemicaldifferences between white and gray mineral trioxideaggregate. J Endod 2005: 31: 101–103.

75. Ribeiro DA, Duarte MA, Matsumoto MA, MarquesME, Salvadori DM. Biocompatibility in vitro tests ofmineral trioxide aggregate and regular and whitePortland cements. J Endod 2005: 31: 605–607.

76. Ribeiro DA, Sugui MM, Matsumoto MA, Duarte MA,Marques ME, Salvadori DM. Genotoxicity andcytotoxicity of mineral trioxide aggregate and regularand white Portland cements on Chinese hamster ovary(CHO) cells in vitro. Oral Surg Oral Med Oral PatholOral Radiol Endod 2006: 101: 258–261.

77. Saidon J, He J, Zhu Q, Safavi K, Spangberg LS. Celland tissue reactions to mineral trioxide aggregate andPortland cement. Oral Surg Oral Med Oral PatholOral Radiol Endod 2003: 95: 483–489.

78. Menezes R, Bramante CM, Letra A, Carvalho VG,Garcia RB. Histologic evaluation of pulpotomies indog using two types of mineral trioxide aggregate andregular and white Portland cements as wound dres-sings. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 2004: 98: 376–379.

79. Rud J, Andreasen JO, Jensen JF. A multivariate analysisof the influence of various factors upon healing afterendodontic surgery. Int J Oral Surg 1972: 1: 258–271.

80. Rud J, Rud V, Munksgaard EC. Retrograde sealing ofaccidental root perforations with dentin-bondedcomposite resin. J Endod 1998: 24: 671–677.

81. Tsesis I, Rosen E, Schwartz-Arad D, Fuss Z. Retro-spective evaluation of surgical endodontic treatment:traditional vs. modern technique. J Endod, (in press).

82. Oswald RJ. Procedural accidents and their repair. DentClin North Am 1979: 23: 593–616.

83. Arens D. Practical Lessons in Endodontic Surgery. CarolStream, IL: Quintessence Books, 1998: 187–190.

84. Luebke RG, Dow PR. Correction of an endodonticroot perforation. Oral Surg Oral Med Oral Pathol1964: 17: 98–101.

85. Witherspoon DE, Gutmann JL. Haemostasis inperiradicular surgery. Int Endod J 1996: 29:135–149.

86. Walia H, Streiff J, Gerstein H. Use of a hemostaticagent in the repair of procedural errors. J Endod 1988:

14: 465–468.87. Kim S, Rethnam S. Hemostasis in endodontic

microsurgery. Dent Clin North Am 1997: 41: 499–511.

88. Vy CH, Baumgartner JC, Marshall JG. Cardiovasculareffects and efficacy of a hemostatic agent in periradi-cular surgery. J Endod 2004: 30: 379–383.

89. Goon WW, Lundergan WP. Redemption of a perfo-rated furcation with a multidisciplinary treatmentapproach. J Endod 1995: 21: 576–579.

90. Barkhordar RA, Javid B. Treatment of endodonticperforations by guided tissue regeneration. Gen Dent2000: 48: 422–426.

91. Duggins LD, Clay JR, Himel VT, Dean JW. Acombined endodontic retrofill and periodontal guidedtissue regeneration technique for the repair of molarendodontic furcation perforations: report of a case.

Quintessence Int 1994: 25: 109–114.92. Dean JW, Lenox RA, Lucas FL, Culley WL, Himel VT.

Evaluation of a combined surgical repair and guidedtissue regeneration technique to treat recent root canalperforations. J Endod 1997: 23: 525–532.

93. Grossman LI. Intentional replantation of teeth. J AmDent Assoc 1966: 72: 1111–1118.

94. Weine FS. The case against intentional replantation. JAm Dent Assoc 1980: 100: 664–668.

95. Kratchman S. Intentional replantation. Dent ClinNorth Am 1997: 41: 603–617.

96. Bender IB, Rossman LE. Intentional replantation ofendodontically treated teeth.Oral Surg Oral Med OralPathol 1993: 76: 623–630.

97. Demiralp B, Nohutcu RM, Tepe DI, Eratalay K.Intentional replantation for periodontally involvedhopeless teeth. Dent Traumatol 2003: 19: 45–51.

98. Raghoebar GM, Vissink A. Results of intentionalreplantation of molars. J Oral Maxillofac Surg 1999:

57: 240–244.99. Koenig KH, Nguyen NT, Barkhordar RA. Intentional

replantation: a report of 192 cases. Gen Dent 1988: 36:327–331.

100. Barnett RJ, Burton WE, Nuckles DB. Intentionalreplantation: report of a successful case. QuintessenceInt 1992: 23: 755–757.

101. Tang PM, Chan CP, Huang SK, Huang CC. Inten-tional replantation for iatrogenic perforation of thefurcation: a case report. Quintessence Int 1996: 27:691–696.

102. Poi WR, Sonoda CK, Salineiro SL, Martin SC.Treatment of root perforation by intentional reim-plantation: a case report. Endod Dent Traumatol 1999:15: 132–134.

103. Shuman IE. Repair of a root perforation with a resin-ionomer using an intentional replantation technique.Gen Dent 1999: 47: 392–395.

Accidental root perforations

107


Recommended