+ All Categories
Home > Documents > Differential Protein Expression Analysis · Quantify protein expression between wild type and...

Differential Protein Expression Analysis · Quantify protein expression between wild type and...

Date post: 11-May-2020
Category:
Upload: others
View: 11 times
Download: 0 times
Share this document with a friend
26
Differential Protein Expression Analysis Robert Cole, Ph.D. 371 Broadway Research Building 410-614-6968 [email protected] Mass Spectrometry/Proteomics Facility at Johns Hopkins School of Medicine The Core Facility Gel Electrophoresis Protein Digestion + Processing Mass Spectrometry DIGE Workshop In collaboration with GE HealthCare Hands-on Training in 2D and DIGE SDS-PAGE Participants analyze real samples Offered quarterly
Transcript
Page 1: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

1

Differential Protein Expression Analysis

Robert Cole, Ph.D.

371 Broadway Research [email protected]

Mass Spectrometry/Proteomics Facilityat Johns Hopkins School of Medicine

The Core Facility

Gel Electrophoresis Protein Digestion + Processing Mass Spectrometry

DIGE WorkshopIn collaboration with

GE HealthCare

Hands-on Training in 2D and DIGE SDS-PAGEParticipants analyze real samplesOffered quarterly

Page 2: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

2

Walkup use of MALDI-TOF

MALDI-TOF Training:Learn to operate MALDI-TOFOffered Thursdays by appointment

LCQ Deca XP

Plus

Services• Consultation • 2D Gel Electrophoresis • Mass Spectrometry Analysis (PMF, Tandem)• Protein Identification and Modifications

(isolated proteins, gel spots, complex mixtures) • Protein Quantification

(DIGE, iTRAQ or 18O-labeling analysis) • MALDI-TOF Training• LCQ Workshop • DIGE Workshop • iTRAQ Workshop

Why Protein Expression Analysis?

Quantify protein expression between normal vs disease samples

Quantify protein expression between wild type and mutant cell lines

Quantify proteins present in protein complexes

Determine protein subcellular localization

Follow protein trafficking

Map metabolic pathways

…many, many others

Page 3: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

3

Differential Protein Expression Analysis

Topics

Protein identification by mass spectrometry

Differential protein expression techniques

Sample preparation

Protein Identification Workflow 1

Databasesearch

Separation IdentificationDigestion Analysis

Coomassie BlueSilver StainFluorescent Dye

TrypsinPeptide Masses

Peptide Mass Fingerprint(PMF)

uses just peptide masses

1D Gel

2D Gel

HPLC

1990.2

Mass to charge ratio (m/z)

0

50

100

% In

tens

ity

500 1200 1900 2600 3300 4000

831.5985.6

1141.7

1398.91555.0

1875.2

2048.1 2414.4

2558.4

2870.6

3319.7

1972.1

1578.91381.8

Peptide Masses Recovered from an Gel Band

Page 4: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

4

Database Searching with Peptide Masses depends on

Mass Accuracy and Protein Coverage

Peptide Mass ppM # Match Proteins

1975.95 100 20010 44

1526.88 100 19710 19

1055.54 100 51410 87

100 ppm = 0.10 Da per 1000 Da10 ppm = 0.01 Da per 1000 Da

Protein Identification Workflow 2

Databasesearch

Separation IdentificationDigestion Analysis

2 - Peptide FragmentsCoomassie BlueSilver StainFluorescent Dye

Trypsin1- Peptide Masses

EACDPLR

Tandem MSor

MS/MS

uses peptide mass+ sequence

1D Gel

2D Gel

HPLC

Tandem MS (or MS/MS)

Uses Peptide Mass and Sequence Tag

Mass Accuracy <100 ppm

One Peptide (at least two preferred)

>3 amino acids masses in sequence

Complex protein samples

Protein modifications identified and mapped to an amino acid

PMF

Uses Peptide Masses

Mass Accuracy <100 ppm

Protein Coverage >30%

Low Sample Complexity

No more than three proteins

Protein modifications suggestedby a change in peptide mass

PMF vs. Tandem MS

Page 5: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

5

How much protein do you need?

-100 kD

- 50 kD

- 25 kD

-220 kD

10 20 30 40 50 100 ng

Silver stained gel

100 fmol per protein – in gel band or spot10 fmol per protein – in solution

Search Engines for Protein Identification from MS Data

Summary of ProgramsProteome Software www.proteomesoftware.com/ExPASy expasy.proteome.org.au

Free ProgramsProteinProspector prospector.ucsf.eduXProteo xproteo.com:2698Prowl prowl.rockefeller.eduMascot www.matrixscience.com (Free up to 300 ions)

Open Source ProgramsOMSSA pubchem.ncbi.nlm.nih.gov/omssa/X! Tandem www.thegpm.org/

Commerical ProgramsMascot www.matrixscience.com Sequest fields.scripps.edu/sequest/Spectrum Mill www.chem.agilent.com/Proteolynx www.waters.com/WatersDivision/

Topics

Protein identification by mass spectrometry

Differential protein expression techniquesDifferential protein expression techniques

Sample preparation

Page 6: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

6

Differential Protein ExpressionProtein Pre-Fractionation (sample complexity)

(low abundance proteins)Protein/Peptide Labeling

Fluorescent tag (Cy dyes)Stable isotope (13C, 15N, 18O)Mass tags (Signature mass)

Protein/Peptide SeparationGel Electrophoresis (MW, pI)Chromatography (MW, charge, affinity)Both

Quantification (comparison of label)

Protein Identification (by mass spectrometry)

Sample Preparation Must Be Reproducible!

Replicates 1 2 3 1 2 3

Poor! Good!

Gel Based Techniques

Page 7: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

7

2

1D Gel AnalysisGel slice number Name of protein

22 Polymeric immunoglobulin receptor

22 Transferrin22 Vanin 1

21 1B-glycoprotein

21 Complement component 5

21 hGC-1 (human G-CSF-stimulated clone-1)

21 IgG Fc-binding protein21 Mac-2-binding protein

18 -1-antichymotrypsin18 Albumin

17 Amylase, pancreatic, -2A17 Amylase, salivary, -1A17 Catalase

Sample

Slice

Kristiansen et al. Molec Cell Proteomics 3:715–728, 2004.

1

1D Gel Analysis

Strengths:

• Simple

• Cheap

• Membrane proteins

• High MW proteins (>100 kDa)

Limitations:

• Time consuming

• Limited resolution

• Low MW Proteins (<7kDa)

• Not Quantitative

Principle of 2-D Gel Electrophoresis

First dimension:according to the isoelectric point (isoelectric focusing)

Second dimension:separation according to molecular weight (SDS gel electrophoresis)

Page 8: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

8

Bacterial Strain #1 Bacterial Strain #2

2D Gel Analysis

Major problem with reproducibility and matching spots

pIMW

Gel Based Techniques with

Fluorescent Tags

Difference Gel Electrophoresis (DIGE)Disease sampleLabel with fluor 2

Control SampleLabel with fluor 1

Separate proteins on one 2-D gel

Image gelExcitation wavelength 1

Excitation wavelength 2

View differences

Mix samples

Protein comparison in a single gel!

Page 9: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

9

Cy3 Labeled Glial-line 1 Proteins3.0 10.0IEF SD

S-PAG

E

250-150-

100-

75-

50-

37-

25-

20-

Cy5 Labeled Glial-line 2 Proteins3.0 10.0IEF SD

S-PAG

E

250-150-

100-

75-

50-

37-

25-

20-

Overlay of Glial-lines 1 and 2 Gel Images

3.0 10.0IEF SDS-PA

GE

250-150-

100-

75-

50-

37-

25-

20-

Page 10: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

10

Three Fluorescent Cy Dyes

Cy2, Cy3, Cy5

ε-amino group of lysine

Matched for charge (carries +1 charge)

Matched for MW (~450 Da)

Only 3-5% of proteins are labeled (minimal labeling)

Cy2

Cy5

Cy3

Disease sampleLabel with Cy5

Control SampleLabel with Cy3

Separate proteins on one 2-D gel

Excitation wavelength 1

Excitation wavelength 2

View differences

Mix samples

DIGE Analysis Pooled Samples labeled with Cy2(on all gels to compare one gel to another)

Differential Protein Expression Between Two Glial Cell Lines

250-150-

100-

75-

50-

37-

25-

20-

3.0 10.0IEF SDS-PA

GE

Page 11: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

11

Third Cy Dye (Cy2) Labeling as an Internal Standard

All possible protein spots overlaid on every gel.

Simplifies gel to gel matching.

Each spot has it’s own internal standard spot for normalizing across gels.

Reduces experimental variations.

Accounts for differences in sample load.

Differential Protein Expression Between 1st and 3rd Trimester Sera

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Page 12: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

12

DIGE Analysis of Ecoli proteins spiked with four proteins

Albumin0.5 X Conalbumin

100 X

Phosphorylase b0.5 X

Trypsin Inhibitor4 X

250-150-

100-

75-

50-

37-

25-

20-

4 7IEF SDS-PA

GE

Relative Abundances of Four Proteins in Ecoli Lysates are within 10% of Predicted Values

0.000144%3.844Trypsin inhibitor

1.3E-108%0.460.5Phosphorylase B

1.6E-1410%89.67100Conalbumin

2.7E-063%0.510.5Albumin

t-testErrorObserved Ratio

Expected Ratio

Spiked Proteins

Strengths

• Superb resolving power

• Quantitative comparisons of ~2000 proteins on one gel

• Simplified comparison between gels

• Highly reproducible

• Detect post-translationalmodifications

Limitations

• <7,000 and >130,000 Da

• Strongly hydrophobic Highly basic proteins

• Difficult to automate

Strengths/Limitations of 2D-DIGE Gels

Page 13: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

13

Mass Spectrometry Based Techniques

Multi-dimensional Chromatography

Link et al. Nat. Biotech 17:676-682, 1999

Denatured proteins

Digest

Peptide mixLoad

Peptide ID by Tandem MS

2D chromatographyseparations of

peptides

Col1

Col2

Peptides Identified

Col2only Col 1 and Col2

219

115

(Shotgun or MudPit)

Summary of Multi-Dimensional Chromatography

Strengths:• Reduces sample complexity

• Low abundance proteins

• Membrane proteins

• All MW Proteins

• Flexible (different column combinations)

• Can automate

Limitations:• Complex setup

• No faster than 2D gels

• Computer intensive

• Not Quantitative

• Reproducibility

Page 14: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

14

Mass Spectrometry Based Techniques

with Stable Isotopes or

MassTags

Three Basic Methods

Enzymatic: 18O-Labeling with Trypsin

Chemical: ICAT (Isotopic Coded Affinity Tags)iTRAQ (Isobaric Tags for Relative and

Absolute Quantitation)

Metabolic: SILAC (Stable Isotope Labeling of Amino acids in Cell culture)

18O-labeling Protocol

Disease sampleControl sample

Mix labeled peptides

Analyze by mass spectrometry

Trypsin Trypsin + 18O-water

C-terminal C-terminal(adds 4 Da)

Page 15: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

15

+TOF MS: Experiment 1, 25.186 to 25.314 mi...a=3.56446231548684480e-004, t0=-4.886713...

Max. 2290.5 counts.

581.0 582.0 583.0 584.0 585.0 586.0 587.0 588.0m/z, amu

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Inte

nsity

, cou

nts

584.32

584.82

582.32

585.33

Relative Quantification from Full Mass Spectrum

(Ratio of 18O to 16O doubly charged peptides should be 4)

Quantifying Peptides by 18O-Labeling

Intensity

m/z (mass divided by charge)

Strengths/Limitations of 18O-Labeling

Strengths:

• No extra steps

• Relative quantification using multiple peptides from same protein

• Post-translationalmodification information

• 18O labeling kit (Prolytica)

Limitations:

• No reduction in sample complexity

• Only 4 amu mass increase

• 18O exchange with water

• Quantification error ~20%

• No good software yet

Isotope–Coded Affinity Tags(ICAT)

SH

cys

Binds to Cysteines

Biotin Linker

heavy or

light isotope

S

HN NHO

NH O O

NH

IO OX

X

X

X

X

X

X

X

Gygi et al .Nature Biotech 17: 994-999, 1999

Reduce sample complexity.

Analyze only cysteine-containing peptides.

Page 16: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

16

Isotope-Coded Affinity Tag (ICAT)(cysteine-containing peptides)

550550 560560 570570 580580

mass

Light

Heavy

Hansen et al. Molec Cell Proteomics 2:299–314, 2003Gygi et al .Nature Biotech 17: 994-999, 1999

Strengths/Limitations of ICAT

Strengths:• Overcomes many 2D gel

limitations

• Relative quantification

• Reduces complexity of protein digest (only cysteine containing peptides)

• Low abundance proteins

• Compatible with gels

Limitations:• ~20% of proteins

lack cysteines

• Protein identifications often based on one peptide

• No post-translationalmodification information

• Quantification error ~20%

• Multi-step process, peptide losses

iTRAQ Tags(Isobaric Tag for Relative and Absolute

Quantitation)

Peptide Reactive Group

(binds to amines)

Reporter Balance PRG

ReporterMass114115116117

BalanceMass

31302928

Isobaric Tag(Total mass = 145)

Four possible tags

Page 17: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

17

The Structure

Three Disease Protein SamplesControl Protein

Sample

Mix Tag 114, 115, 116, and 117 Labeled Peptides

Digest

Label Peptides with Tag 114

Digest

Label Peptides with Tag 115

Digest

Label Peptides with Tag 117

Digest

Label Peptides with Tag 116

Analyze SCX Fractions by LC-MS/MS

Fractionate Peptide Mixture on SCX Column

iTRAQ Workflow 1

iTRAQ_KL_100ug

-150

-50

50

150

250

350

450

0 10 20 30 40 50 60 70

Time (min)

Abs

orba

nce

(mA

U)

How many

fractions to

collect?

Strong Cation Exchange (SCX) Chromatography

Of iTRAQ Labeled Mitochandria Peptides

Depends on

sample complexity

speed of mass spectrometer

Page 18: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

18

Base Peak Chrom. of +TOF MS: Experiment 1, from 050822_VanEyk_KL_fraction_... Max. 4234.0 cps.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95Time, min

0

500

1000

1500

2000

2500

3000

3500

40004234

Inte

nsity

, cps

578.95528.33

473.60

581.35

411.74549.99410.75

523.75

415.20404.74 536.11

536.11

Peptide Elution Profile: SCX Fraction 3 of 6

Base Peak Chrom. of +TOF MS: Experiment 1, from 050926_VanEykJ_KL_K10.wif... Max. 2556.0 cps.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90Time, min

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

24002556

Inte

nsity

, cps

467.62

431.60 475.63

639.37

400.27

498.55

431.93581.10

951.87454.77

Peptide Elution Profile: SCX Fraction 10 of 24

40 min

+TOF MS: Experiment 1, 40.039 to 40.775 min ...a=3.56446231548684480e-004, t0=-4.8867138...

Max. 257.6 counts.

400 450 500 550 600 650 700m/z, amu

0

20

40

60

80

100

120

140

160

180

200

220

240

258

Inte

nsity

, cou

nts

427.29 643.42

482.82465.07

498.83421.06

Mass Spectrum of iTRAQ Labeled Peptides Eluting at 40 min

Page 19: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

19

+TOF Product (643....a=3.564462315486...

Max. 524.0 counts.

200 400 600 800 1000m/z, amu

0

100

200

300

400

500

Inte

nsity

, cou

nts

371.27

420.80 900.51357.27 464.32

Fragmentation Spectrum of 643 Ion

+TOF Product (643....a=3.564462315486...

Max. 524.0 counts.

114.0 115.0 116.0 117.0m/z, amu

0

20

40

60

80

100

120In

tens

ity, c

ount

s

117.12

116.12

115.11

114.11

Expanded Reporter RegionRatios to 114

Should be 2, 5 and 10

Validation of Relative Protein Ratios using iTRAQ

10 ug5 ug2 ug1 ugBSA

10 ug5 ug2 ug1 ugB-galactosidase

10 ug5 ug2 ug1 ugA-lactalbumin

10 ug5 ug2 ug1 ugB-lactoglobulin

10 ug5 ug2 ug1 ugLysozyme

10 ug5 ug2 ug1 ugApotransferrin

1:5

Sample 3116

1:101:21:1Expect Ratio to Sample 1

Sample 4117

Sample 2115

Sample 1114

ProteinMix

iTRAQ analysis shows relative protein ratios

not absolute protein ratios

4.63.41.8Apotransferrin

6.04.11.9Lysozyme

8.55.02.5B-lactoglobulin

5.93.61.6A-lactalbumin

6.13.61.8B-galactosidase

6.43.71.8BSA

Ratio 117:114(10 expected)

Ratio 116:114(5 expected)

Ratio 115:114(2 expected)

ProteinMix

Page 20: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

20

Two treated samples

Mix Tag 114, 115, 116, and 117 Labeled Peptides

Digest

Label Peptides with Tag 114

Digest

Label Peptides with Tag 115

Digest

Label Peptides with Tag 117

Digest

Label Peptides with Tag 116

Analyze SCX Fractions by LC-MS/MS

Fractionate Peptide Mixture on SCX Column

iTRAQ Workflow 2Two controls

Using iTRAQ to Identify and Quantify Proteins Expression of Mouse MyocaridalMitocohondria Proteins After Morphine

Treatment

Collaboration with Leslie Kane and Jenny Van Eyk at Johns Hopkins University

2) Mice treated 5 days with placebo or morphine

714621679731Total Protien (ug)

for iTRAQ

M2M1P2P1Sample

P1 P2 M1 M2M

1) Mouse Groups: Placebo 1 and 2 (P1,P2) Morphine treated 1 and 2 (M1, M2)

BCA protein quantification

5µg per lane

3) Extract Mitochondria

4) Remove aliquots to assay:

A-Total protein amount B-Reproducibility of sample preparation by gel electrophoresis

5) iTRAQ Labeling: P1 – 114P2 – 115M1 – 116M2 - 117

6) SCX Fractionation

7) LC-MS/MS Analysis

Page 21: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

21

Protein Ratios Based on Multiple PeptidesN Accession Protein Name Ratio 115:114 Ratio 116:114 Ratio 117:114

1 gi|20455479 ATP synthase beta chain, mitochondrial precursor 0.9085 1.0834 1.10462 gi|416677 ATP synthase alpha chain, mitochondrial precursor 0.9314 0.925 0.92083 gi|51338804 NAD(P) transhydrogenase, mitochondrial precursor (Pyr 0.9905 0.9487 0.91424 gi|14548302 Ubiquinol-cytochrome-c reductase complex core protein 0.9288 1.0355 1.00825 gi|127741 Myosin heavy chain, cardiac muscle alpha isoform (MyH 0.8016 0.907 0.86326 gi|21903382 ADP,ATP carrier protein, heart/skeletal muscle isoform 0.9794 0.9418 1.08487 gi|125313 Creatine kinase, sarcomeric mitochondrial precursor (S- 0.941 0.9892 0.92148 gi|29427692 Mitochondrial inner membrane protein (Mitofilin) 0.9584 1.1019 1.09659 gi|47117271 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitoc 0.9567 1.0813 1.039

10 gi|25089776 ATP synthase D chain, mitochondrial 1.045 0.9008 0.936611 gi|12643614 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 0.9855 1.055 0.796612 gi|14548301 Ubiquinol-cytochrome-c reductase complex core protein 0.977 1.0643 1.028713 gi|32363401 NADH-ubiquinone oxidoreductase 39 kDa subunit, mitoc 0.9544 0.9841 0.874914 gi|59799337 Carnitine O-palmitoyltransferase I, mitochondrial muscle 0.9734 0.8598 0.97615 gi|122513 Hemoglobin beta-1 chain (B1) (Hemoglobin beta-major c 1.2587 0.8148 1.326216 gi|52782785 Succinate dehydrogenase [ubiquinone] flavoprotein subu 0.9795 0.8802 0.772917 gi|51702234 Cytochrome c, somatic 0.8554 0.855 0.871218 gi|62510804 NADH-ubiquinone oxidoreductase 51 kDa subunit, mitoc 0.9999 1.1336 1.109919 gi|10720404 Voltage-dependent anion-selective channel protein 1 (VD 0.9558 0.8763 0.927620 gi|21759257 Phosphate carrier protein, mitochondrial precursor (PTP 0.9284 0.9522 0.974321 gi|2494234 Trifunctional enzyme alpha subunit, mitochondrial precu 0.9429 0.9185 0.821622 gi|47605546 ATP synthase oligomycin sensitivity conferral protein, m 1.0661 1.2229 1.178823 gi|122385 Hemoglobin alpha chain 1.4621 0.9395 1.360924 gi|52000730 Electron transfer flavoprotein-ubiquinone oxidoreductase 1.0063 0.9472 1.068825 gi|46397780 Voltage-dependent anion-selective channel protein 2 (VD 0.994 0.7796 0.924926 gi|135025 Succinyl-CoA ligase [GDP-forming] alpha-chain, mitoch 1.1187 1.0015 0.997727 gi|6648069 Acyl-CoA dehydrogenase, very-long-chain specific, mito 1.2454 1.4535 1.306828 gi|21263432 ATP synthase gamma chain, mitochondrial precursor 0.966 0.9831 1.014529 gi|51316075 Trifunctional enzyme beta subunit, mitochondrial precurs 1.0348 1.0581 1.052730 gi|2497985 Mitochondrial 2-oxoglutarate/malate carrier protein (OGC 0.9901 0.9518 0.856431 gi|136429 Trypsin precursor 0.936 0.9008 0.803232 gi|21362402 Succinate dehydrogenase cytochrome b560 subunit, mi 0.9899 1.2713 1.415333 gi|52000877 Ubiquinol-cytochrome c reductase iron-sulfur subunit, m 1.1465 0.9537 1.062234 gi|416827 Cytochrome c oxidase subunit IV isoform 1, mitochondr 0.9521 1.063 1.270135 gi|47117166 NADH-ubiquinone oxidoreductase subunit B17.2 (Comp 0.9159 1.0694 0.956736 gi|23503090 NADH-ubiquinone oxidoreductase MLRQ subunit (Comp 0.8453 0.8299 0.83

37 gi|128751 NADH-ubiquinone oxidoreductase chain 4 (NADH dehyd 1.0998 1.3008 1.177938 gi|127676 Myoglobin 1.0821 1.0059 0.815539 gi|729927 Long-chain-fatty-acid--CoA ligase 1 (Long-chain acyl-Co 0.9547 0.9015 0.903640 gi|114788 Band 3 anion transport protein (Anion exchange protein 0.9805 0.7817 1.082141 gi|3023546 Cytochrome c oxidase polypeptide VIb (Cytochrome c o 1.0534 1.1336 1.027942 gi|8928228 NDRG2 protein (Ndr2 protein) 1.1141 1.2381 0.920943 gi|20454828 ATP synthase B chain, mitochondrial precursor 0.9317 0.9631 1.063944 gi|117757 Cytochrome c1, heme protein, mitochondrial (Cytochrom 1.0053 1.0109 0.980645 gi|23503049 SAM50-like protein CGI-51 0.9398 1.0085 1.052846 gi|47117273 NADH-ubiquinone oxidoreductase 49 kDa subunit, mitoc 1.125 1.2326 1.197247 gi|1708406 Isocitrate dehydrogenase [NADP], mitochondrial precurs 1.0033 1.1002 0.996848 gi|48428148 Cytochrome c oxidase polypeptide VIc 0.9961 0.9779 0.907749 gi|47117296 NADH-ubiquinone oxidoreductase subunit B14.5b (Com 0.9141 0.9153 0.855650 gi|6166595 Myosin-binding protein C, cardiac-type (Cardiac MyBP-C 0.7116 1.0161 1.218951 gi|12643945 Voltage-dependent anion-selective channel protein 3 (VD 0.9371 0.6087 0.806452 gi|461587 ATP synthase e chain, mitochondrial 0.9164 0.9197 0.9153 gi|116982 Cytochrome c oxidase subunit 1 (Cytochrome c oxidase 1.0794 1.6895 1.685854 gi|32363396 NADH-ubiquinone oxidoreductase B8 subunit (Complex 0.9946 1.1637 0.999855 gi|128789 NADH-ubiquinone oxidoreductase chain 5 (NADH dehyd 1.1626 1.971 1.99356 gi|17380333 Ubiquinol-cytochrome c reductase complex 14 kDa prot 0.8577 0.812 0.861757 gi|23396786 NADH-ubiquinone oxidoreductase 30 kDa subunit, mitoc 0.7506 0.8655 0.672958 gi|51701449 Succinate dehydrogenase [ubiquinone] iron-sulfur protei 0.9662 0.9876 1.033359 gi|20140777 Ubiquinol-cytochrome c reductase complex ubiquinone- 0.8723 0.8361 0.941560 gi|117104 Cytochrome c oxidase polypeptide Vb, mitochondrial pr 1.0632 1.0278 1.042461 gi|52782750 ATP synthase g chain, mitochondrial (ATPase subunit G 0.879 0.6913 0.868662 gi|117100 Cytochrome c oxidase polypeptide Va, mitochondrial pr 1.0756 1.0307 0.978863 gi|20139147 NADH-ubiquinone oxidoreductase B9 subunit (Complex 0.9805 0.8983 1.004564 gi|32363395 NADH-ubiquinone oxidoreductase 13 kDa-B subunit (Co 1.052 0.9504 1.06865 gi|135762 3-ketoacyl-CoA thiolase, mitochondrial (Beta-ketothiolas 1.4354 1.5099 1.579466 gi|17380523 Spectrin alpha chain, erythrocyte (Erythroid alpha-spect 0.9823 0.7433 0.964567 gi|25108876 D-beta-hydroxybutyrate dehydrogenase, mitochondrial p 0.7651 1.1896 1.268468 gi|32363438 NADH-ubiquinone oxidoreductase subunit B14.5a (Com 1.0773 1.1949 1.059869 gi|1171862 NADH-ubiquinone oxidoreductase 23 kDa subunit, mitoc 1.1473 1.274 1.182670 gi|32363403 NADH-ubiquinone oxidoreductase PDSW subunit (Comp 1.1114 1.0316 0.956171 gi|47117291 NADH-ubiquinone oxidoreductase 15 kDa subunit (Com 1.0061 1.0209 1.045272 gi|32363402 NADH-ubiquinone oxidoreductase 19 kDa subunit (Com 0.9934 0.9451 0.889373 gi|3023355 ATP synthase epsilon chain, mitochondrial 1.012 1.336 1.2899

74 gi|117066 Cytochrome c oxidase subunit 3 (Cytochrome c oxidase 1.0425 1.1063 1.017875 gi|54038837 Prohibitin (B-cell receptor associated protein 32) (BAP 3 0.9002 1.245 1.337776 gi|2506246 Spectrin beta chain, erythrocyte (Beta-I spectrin) 1.0932 0.9099 0.884177 gi|21363012 Serotransferrin precursor (Transferrin) (Siderophilin) (Bet 1.433 1.4048 1.671178 gi|17380131 NipSnap2 protein (Glioblastoma amplified sequence) 1.0592 1.1662 0.803879 gi|21759002 Acyl carrier protein, mitochondrial precursor (ACP) (NAD 0.9253 0.8967 1.09180 gi|47605479 Calcium-binding mitochondrial carrier protein Aralar1 (M 1.142 1.3063 1.288981 gi|112985 Aspartate aminotransferase, mitochondrial precursor (Tr 1.1249 0.9788 0.868582 gi|3287881 NADH-ubiquinone oxidoreductase 18 kDa subunit, mitoc 0.9829 0.935 1.19683 gi|32363398 NADH-ubiquinone oxidoreductase B14 subunit (Complex 0.9959 0.8353 0.880384 gi|3023547 Cytochrome c oxidase polypeptide VIIa-heart, mitochon 1.1378 1.1193 1.039685 gi|24638337 Vesicle-associated membrane protein-associated protei 1.0706 1.0453 1.090486 gi|46396884 Riboflavin biosynthesis protein ribD 0.8063 0.9453 0.850487 gi|47117308 NADH-ubiquinone oxidoreductase ASHI subunit, mitoch 0.8017 0.8672 0.888888 gi|20139062 NADH-ubiquinone oxidoreductase B16.6 subunit (Comp 0.856 1.1778 0.843889 gi|114392 Sodium/potassium-transporting ATPase beta-1 chain (S 1.1966 1.5938 0.908890 gi|13431757 Programmed cell death protein 8, mitochondrial precurs 0.8394 1.0086 1.087891 gi|122646 Hemoglobin beta chain 1.3944 0.8233 1.2592 gi|122717 Hemoglobin delta chain 1.3224 0.9568 1.19193 gi|122680 Hemoglobin beta chain 1.1086 0.6969 0.52294 gi|113018 Acyl-CoA dehydrogenase, medium-chain specific, mitoc 1.1897 1.0182 0.735895 gi|24638340 Vesicle-associated membrane protein-associated protei 0.8975 1.0945 1.271896 gi|47116757 Glutathione S-transferase kappa 1 (GST 13-13) (Glutath 1.13 1.7755 1.31197 gi|52000840 NADH-ubiquinone oxidoreductase subunit B14.7 (Comp 1.1563 1.1113 1.00998 gi|20455499 NADH-ubiquinone oxidoreductase 24 kDa subunit, mitoc 0.7512 0.8399 0.712899 gi|62510510 Coiled-coil-helix-coiled-coil-helix domain containing prote 0.8996 0.9177 0.7529

100 gi|117102 Cytochrome c oxidase polypeptide Vb (VI) 1.0345 1.248 0.7659101 gi|2506313 Cytochrome c oxidase polypeptide VIa-heart, mitochond 1.4353 1.6053 1.3916102 gi|32469593 Acyl-CoA dehydrogenase family member 9, mitochondri 0.9931 0.831 0.8777103 gi|117708 Gap junction alpha-1 protein (Connexin 43) (Cx43) (Gap 0.7444 0.8554 0.5425104 gi|1709409 NADH-ubiquinone oxidoreductase 13 kDa-A subunit, mi 1.1284 0.9746 1.0065105 gi|3123245 NADH-ubiquinone oxidoreductase 24 kDa subunit 1.0779 1.0245 1.0817106 gi|117502 Calreticulin precursor (CRP55) (Calregulin) (HACBP) (ER 0.9547 1.1397 1.2674107 gi|13633877 Reticulon protein 2 (Neuroendocrine-specific protein-like 0.8207 0.9 0.9205108 gi|127167 Myosin regulatory light chain 2, ventricular/cardiac musc 0.7507 0.8006 0.8096109 gi|37077191 Acetyl-coenzyme A synthetase (Acetate--CoA ligase) (A 1.0089 0.8299 0.5473110 gi|62510451 Calcium-binding mitochondrial carrier protein Aralar2 (M 0.9153 0.9638 0.9616

Page 22: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

22

+TOF Product (594.4): Experiment 4, 30.262 min from 050822_VanEyk_KL_fract...a=3.56509510749935590e-004, t0=-4.74340876995043890e+001

Max. 120.0 counts.

100 200 300 400 500 600 700 800 900 1000m/z, amu

0

10

20

30

40

50

60

70

80

90

100

110

120

Inte

nsity

, cou

nts

145.1054

594.3456

500.7791114.1031

291.2030

244.1644

216.1776 472.2535

585.3454175.1108 357.2324 616.3070 716.3780 944.5509

+TOF Product (594.4): Experiment 4, 30.262 min from 050822_VanEyk_KL_fract...a=3.56509510749935590e-004, t0=-4.74340876995043890e+001

Max. 120.0 counts.

113.0 114.0 115.0 116.0 117.0 118.0m/z, amu

0

5

10

15

20

25

30

35

40

45

50

55

60

Inte

nsity

, cou

nts

115.0999114.1031

117.1097

116.1068

Protein: ATP SYNTHASE BETA CHAIN, MITOCHONDRIAL PRECURSOR

Peptide: VLDSGAPIJ

Fragmentation Spectrum Expanded Reporter Region

No Change

P P M M

P = PlaceboM = Morphine

+TOF Product (458.5): Experiment 2, 52.128 min from 050822_VanEyk_KL_fracti...a=3.56509510749935590e-004, t0=-4.74340876995043890e+001

Max. 89.0 counts.

113.0 114.0 115.0 116.0 117.0 118.0m/z, amu

0

5

10

15

20

25

30

Inte

nsity

, cou

nts

116.1047

117.1090

115.1040114.1061

Protein: Cytochrome c oxidase subunit 1

Peptide: VFSWLATLHGGNIJ

Fragmentation Spectrum Expanded Reporter Region

Up Regulated!

+TOF Product (458.5): Experiment 2, 51.989 min from 050822_VanEyk_KL_fracti...a=3.56509510749935590e-004, t0=-4.74340876995043890e+001

Max. 58.0 counts.

100 200 300 400 500 600 700 800 900 1000m/z, amu

0

5

10

15

20

25

30

35

40

45

50

5558

Inte

nsity

, cou

nts

159.0885 527.7857

291.2032385.2246

116.1041

318.6840145.1031

492.2710460.2365

584.3385332.6849478.2550

195.0678 632.3573309.6799

P P M M

P = PlaceboM = Morphine

18O-Labeling

Compares 2 samples

Labels C-terminus of peptides

Sample complexity limited (due to 18O exchange with water over time)

Quantify from intact peptides(MS)

No steps added to protein identification

No Analysis Software available

iTRAQ

Compares up to 4 samples

Labels N-terminus + primary amines

Complex samples (can fractionate with SCX chromatography after labeling)

Quantify from fragmenting peptides (MS/MS)

Adds one step to protein identification

Analysis Software available

iTRAQ vs. 18O-Labeling

Page 23: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

23

Topics

Protein identification by mass spectrometry

Differential protein expression techniques

Sample preparationSample preparation

Sample Preparation is Everything!

BeforeBuffer exchange

andConcentration

AfterBuffer exchange

andConcentration

Lung Lavage

Sample Preparation is Everything!

BeforeBuffer exchange

andConcentration

Serum after

removing albumin

AfterBuffer exchange

andConcentration

Page 24: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

24

Effect of Desalting on Mass Spectrometry

1000 1500 2000 2500 3000 3500 4000 4500 Mass (m/z)

After Desalting

Protein digest in Phosphate/NaCl/DTT/urea buffer

Buffer exchange techniques

• Dialysis

• Spin dialysis

• Chromatography

• Precipitation/resuspension

• Slow

• Detergents can concentrate with protein

• Protein losses

• Difficult to resolubilize, protein losses

Detect Low Abundance Proteinsby

Fractionating Proteins Before Labeling

Bergh et al. 2003Electrophoresis24: 1471-1481

AdultCat

Kitten30 day

GradientC18 column

Page 25: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

25

Detecting Low Abundance Proteins by DIGE Analysis

Total Lysates

40% Acn Fraction 46% Acn Fraction

Kitten Cy3Adult Cy5

pI3.0 11.0

250150

75

50

37

25

10

10.53.5 5.8 8.2

15 ug protein, 7 cm IPG strip,1 gel

75 ug protein, 24 cm IPG strip,3 gels

MS Compatible Protein Stains

Silver stains - no gluteraldehyde fixation stepMany protocolsCheck with MS lab

Colloidal Coomassie blue stain (preferred)SimplyBlue (Invitrogen) GelCode Blue (Pierce) (Electrophoresis 9, 255-262, 1988)

Fluorescent stainsSyproRuby (Molecular probes)Deep Purple (GE Healthcare)

Page 26: Differential Protein Expression Analysis · Quantify protein expression between wild type and mutant cell lines ... Determine protein subcellular localization Follow protein trafficking

26

Differential Protein ExpressionProtein Pre-Fractionation (sample complexity)

(low abundance proteins)Protein/Peptide Labeling

Fluorescent tag (Cy dyes)Stable isotope (13C, 15N, 18O)Mass tags (Signature ions)

Protein/Peptide SeparationGel Electrophoresis (MW, pI)Chromatography (MW, charge, affinity)Both

Quantification (comparison of label)

Protein Identification (by mass spectrometry)

Best Approach?There is NO one best approach

Gel based techniques - Total Protein(isoforms, PTMs)

MS based techniques- Peptides(membrane proteins, large or small proteins)

All approaches are complementary

Technically challenging


Recommended