+ All Categories
Home > Documents > Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1....

Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1....

Date post: 31-Mar-2021
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
10
3 5. 1 6. 20. 1. 2. 4. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 17. 18. 19. = 2( + 1)(2 2 + + 1) = +1 2√ + √ +2 =3 2 =( 7 + 15) 2 (22 7 + 15) = ( + 7) 2 (5 + 14) = 32 8 + 49 6 √4 2 +7 = 3 2 +4 2√ = 2 3 √ 4 βˆ’ 1 = 2(2βˆ’ 1) 3 (10 + 3) =1 = 1 ( + 1) 2 = 3 2 βˆ’ 2 (3βˆ’ 1) 2 = 20 4 + 59 2 βˆ’ 14 (5 2 + 2) 2 = 4( 2 βˆ’ 1) 2 ( 2 + 2) ( 2 + 1) 2 = 9 8 √ 2 βˆ’ 1 βˆ’ ( 9 2 βˆ’ 1) √ βˆ’ 1 2 βˆ’ 1 = βˆ’4 4 + 24 ( 3 + 3) 2 = 5 2 5 2 +3 2 (√ + 1) 2 = βˆ’2 (βˆ’ 1) 2 = 2 ( 2 + 4) 2 = 1 2 βˆ’ √ + 7 οΏ½ + 7 2 οΏ½ 2 4√ Differentiation Using Product and Quotient Rule 1 .
Transcript
Page 1: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½ οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½

3οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½ οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½

5. οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½

οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½

οΏ½ οΏ½ οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½ οΏ½ οΏ½ οΏ½οΏ½ οΏ½ οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½

οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½ οΏ½οΏ½οΏ½

οΏ½

οΏ½οΏ½οΏ½οΏ½

οΏ½ οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½

οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½ οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½

οΏ½

οΏ½οΏ½οΏ½

οΏ½οΏ½ οΏ½οΏ½οΏ½ οΏ½οΏ½16.οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½

οΏ½ οΏ½οΏ½οΏ½

οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½20.οΏ½ οΏ½οΏ½ οΏ½ οΏ½οΏ½

οΏ½οΏ½οΏ½οΏ½οΏ½

οΏ½

1. 2.

4.

6.

7.8.

9.10.

11. 12.

13. 14.

15.

17. 18.

19.

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 2(𝑑𝑑 + 1)(2𝑑𝑑2 + 𝑑𝑑 + 1) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=𝑑𝑑 + 12βˆšπ‘‘π‘‘

+ βˆšπ‘‘π‘‘ + 2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 3𝑑𝑑2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= (𝑑𝑑7 + 15)2(22𝑑𝑑7 + 15)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 𝑑𝑑(𝑑𝑑 + 7)2(5𝑑𝑑 + 14) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=32𝑑𝑑8 + 49𝑑𝑑6

√4𝑑𝑑2 + 7

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=3𝑑𝑑2 + 4

2βˆšπ‘‘π‘‘

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=2𝑑𝑑3

βˆšπ‘‘π‘‘4 βˆ’ 1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 2(2𝑑𝑑 βˆ’ 1)3(10𝑑𝑑 + 3) 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= 1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=1

(𝑑𝑑 + 1)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=3𝑑𝑑2 βˆ’ 2𝑑𝑑(3𝑑𝑑 βˆ’ 1)2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=20𝑑𝑑4 + 59𝑑𝑑2 βˆ’ 14

(5𝑑𝑑2 + 2)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=4𝑑𝑑(𝑑𝑑2 βˆ’ 1)2(𝑑𝑑2 + 2)

(𝑑𝑑2 + 1)2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=9𝑑𝑑8βˆšπ‘‘π‘‘2 βˆ’ 1 βˆ’ 𝑑𝑑(𝑑𝑑9

2βˆ’ 1)

βˆšπ‘‘π‘‘ βˆ’ 1𝑑𝑑2 βˆ’ 1

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=βˆ’4𝑑𝑑4 + 24𝑑𝑑

(𝑑𝑑3 + 3)2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=52

52𝑑𝑑 + 3𝑑𝑑2

(βˆšπ‘‘π‘‘ + 1)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=βˆ’2

(𝑑𝑑 βˆ’ 1)2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=2𝑑𝑑

(𝑑𝑑2 + 4)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=

12βˆ’ βˆšπ‘‘π‘‘ + 7

�𝑑𝑑 + 72οΏ½

24βˆšπ‘‘π‘‘

Differentiation Using Product and Quotient Rule 1

.

Page 2: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

21. Find the horizontal tangents of: 𝑦 = π‘₯4 βˆ’ 2π‘₯2 + 2

Horizontal tangents occur when slope = zero.

𝑦′ = 4π‘₯3 βˆ’ 4π‘₯ = 0

π‘₯(π‘₯ + 1)(π‘₯ βˆ’ 1) = 0

π‘₯ = 0, βˆ’1, 1

π‘ƒπ‘œπ‘–π‘›π‘‘π‘ : (0,2) (βˆ’1,1) (1,1)

(The function is even, so we only get two horizontal tangents.)

22. Find equations of the tangent line and normal line to the curve y = √π‘₯

1+π‘₯2 at the point (1, Β½).

slope of the tangent line at (1, Β½) :

tangent line at (1, Β½):

𝑦 βˆ’ 1 = βˆ’1

4(π‘₯ βˆ’ 1) β†’ 𝑦 = βˆ’

1

4π‘₯ +

3

4

normal line at (1, Β½):

𝑦 βˆ’1

2= 4(π‘₯ βˆ’ 1) β†’ 𝑦 = 4π‘₯ βˆ’

7

2

Page 3: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

23. At what points on the hyperbola xy = 12 is the tangent line parallel to the line 3x + y = 0?

Since xy = 12 can be written as y = 12/x, we have:

𝑑𝑦

𝑑π‘₯= 12(π‘₯βˆ’1)β€² = βˆ’

12

π‘₯2

Let the x-coordinate of one of the points in question be π‘Ž.

Slope of the tangent line at that point is βˆ’12

π‘Ž2 , and that has to be equal to the slope of line

3x + y = 0

βˆ’12

π‘Ž2 = βˆ’3 π‘œπ‘Ÿ π‘Ž = Β±2

the required points are: (2, 6) and (-2, -6)

Page 4: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

1. State the Product Rule: d f x g xdx

2. State the Quotient Rule: f xd

dx g x

3. Find the derivative of each.

(a) 36 5 3f x x x (b) 22 sin cosh t t t t t

(c) 22 cotf x x x

(d) tansin 1x xf xx

(e) 2

22

3 11

x xf x x xx

(f) tan sinf x x x

__ __ _____

𝑑

𝑑π‘₯[𝑓(π‘₯)𝑔(π‘₯)] = 𝑓′(π‘₯)𝑔(π‘₯) + 𝑓(π‘₯)𝑔′(π‘₯)

𝑑

𝑑π‘₯[𝑓(π‘₯)

𝑔(π‘₯)] =

𝑓′(π‘₯)𝑔(π‘₯) βˆ’ 𝑓(π‘₯)𝑔′(π‘₯)

𝑔2(π‘₯)

𝑓′(π‘₯) = 6(π‘₯3 βˆ’ 3) + (6π‘₯ + 5)(3π‘₯2) β„Žβ€²(π‘₯) = 2 sin 𝑑 + 2 𝑑 cos 𝑑 + 2𝑑 cos 𝑑 βˆ’ 𝑑2 sin 𝑑

𝑓′(π‘₯) = 4π‘₯ cot π‘₯ βˆ’ 2π‘₯2 𝑐𝑠𝑐2π‘₯

𝑓′(π‘₯) =(sin π‘₯ + 1)(1 + 𝑠𝑒𝑐2π‘₯) βˆ’ (π‘₯ + tan π‘₯)(cos π‘₯)

=

(sin π‘₯ + 1)2

sin π‘₯ βˆ™ 𝑠𝑒𝑐2π‘₯ + 1 + 𝑠𝑒𝑐2π‘₯ βˆ’ π‘₯ π‘π‘œπ‘  π‘₯ (sin π‘₯ + 1)2

(2π‘₯ βˆ’ 1)(π‘₯2 + 1) βˆ’ (π‘₯2 βˆ’ π‘₯ βˆ’ 3)(2π‘₯)𝑓′(π‘₯) = [

(π‘₯2 + 1)2

π‘₯2 βˆ’ π‘₯ βˆ’ 3] [π‘₯2 + π‘₯ + 1] + [

π‘₯2 + 1] [2π‘₯ + 1]

𝑓′(π‘₯) = 𝑠𝑒𝑐2π‘₯ βˆ™ sin π‘₯ + tan π‘₯ βˆ™ cos π‘₯

= sec π‘₯ βˆ™ tan π‘₯ + sin π‘₯

= 24π‘₯3 + 15π‘₯2 βˆ’ 18 = 2 sin 𝑑 + 4 𝑑 cos 𝑑 βˆ’ 𝑑2 sin 𝑑

Product & Quotient Rules with Trig

Page 5: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

5. Find the equation of the tangent line to f x x 1x2 1 at the point where f x crosses the x-axis.

(g) f x 2cos____xx

(h) h x csc2 x

4. Evaluate f

4 if f x sin x sin x cos x , then find the equation of the tangent line at

4x .

𝑓′(π‘₯) =(βˆ’ sin π‘₯)(π‘₯2) βˆ’ (cos π‘₯)(2π‘₯)

(π‘₯2)2

=βˆ’π‘₯2 sin π‘₯ βˆ’ 2π‘₯ cos π‘₯

π‘₯4

= (0 βˆ’ 1 βˆ™ cos π‘₯

𝑠𝑖𝑛2π‘₯) (

1

sin π‘₯) + (

1

sin π‘₯) (

0 βˆ’ 1 βˆ™ cos π‘₯

𝑠𝑖𝑛2π‘₯)

= βˆ’2cot π‘₯

𝑠𝑖𝑛2π‘₯

β„Žβ€²(π‘₯) =𝑑

𝑑π‘₯[(

1

sin π‘₯) (

1

sin π‘₯)]

𝑃 (πœ‹

, 1) 4

𝑓′(π‘₯) = cos π‘₯(sin π‘₯ + cos π‘₯) + sin π‘₯(cos π‘₯ βˆ’ sin π‘₯)

= 2 sin π‘₯ cos π‘₯ + π‘π‘œπ‘ 2π‘₯ βˆ’ 𝑠𝑖𝑛2π‘₯

= 2 (√2

2) (

√2

2) + (

√2

2)

2

βˆ’ (√2

2)

2

= 1

π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘Žπ‘‘ 𝑃 (πœ‹

4, 1) : 𝑦 = π‘₯ + (1 βˆ’

πœ‹

4)

π‘₯ βˆ’ π‘–π‘›π‘‘π‘’π‘Ÿπ‘ π‘’π‘π‘‘π‘–π‘œπ‘›: (π‘₯ βˆ’ 1)(π‘₯2 + 1) = 0 ∴ 𝑃(1,0)

𝑓′(π‘₯) = (1)(π‘₯2 + 1) + (π‘₯ βˆ’ 1)(2π‘₯) ∴ 𝑓′(1) = 2

π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘Žπ‘‘ 𝑃(1,0): 𝑦 = 2π‘₯ βˆ’ 2

Page 6: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

6. 11

y xx

that are parallel to the line 2y x 6 .

7. If 3x2

f xx

and g x 5x 4x 2

, verify that f x gx , and explain the relationship between f

and g.

Find the equation of the tangent lines to the graph of

π‘Žπ‘™π‘™ π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™ 𝑙𝑖𝑛𝑒𝑠 β„Žπ‘Žπ‘£π‘’ π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’ π‘ π‘™π‘œπ‘π‘’

π‘ π‘™π‘œπ‘π‘’ π‘œπ‘“ π‘‘β„Žπ‘’ π‘‘π‘Žπ‘›π‘”π‘’π‘‘ 𝑙𝑖𝑛𝑒 𝑖𝑠 βˆ’1

2

𝑦′ =(1)(π‘₯ βˆ’ 1) βˆ’ (π‘₯ + 1)(1)

(π‘₯ βˆ’ 1)2

=βˆ’2

(π‘₯ βˆ’ 1)2

∴ βˆ’2

(π‘₯ βˆ’ 1)2= βˆ’

1

2 β†’ (π‘₯ βˆ’ 1)2 = 4 β†’ (π‘₯ βˆ’ 1) = Β± 2 β†’ π‘₯ = βˆ’1 & π‘₯ = 3

π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘Žπ‘‘ (βˆ’1,0) π‘œπ‘Ÿ (3,2): 𝑦 = βˆ’1

2π‘₯ βˆ’

1

2 & 𝑦 = βˆ’

1

2π‘₯ +

7

2

𝑓′(π‘₯) =(3)(π‘₯ + 2) βˆ’ (3π‘₯)(1)

(π‘₯ + 2)2

=6

(π‘₯ + 2)2

𝑔′(π‘₯) =(5)(π‘₯ + 2) βˆ’ (5π‘₯ + 4)(1)

(π‘₯ + 2)2

=6

(π‘₯ + 2)2

𝑓(π‘₯) =π‘₯ + 2

=π‘₯ + 2

=3π‘₯ 3(π‘₯ + 2) βˆ’ 6 βˆ’6

π‘₯ + 2+ 3

𝑔(π‘₯) =5π‘₯ + 4

π‘₯ + 2=

5(π‘₯ + 2) βˆ’ 6

π‘₯ + 2=

βˆ’6

π‘₯ + 2+ 5

𝐼𝑓 𝑓′(π‘₯) = 𝑔′(π‘₯), π‘‘β„Žπ‘’π‘› 𝑓(π‘₯)π‘Žπ‘›π‘‘ 𝑔(π‘₯)π‘œπ‘›π‘™π‘¦ π‘‘π‘–π‘“π‘“π‘’π‘Ÿ 𝑏𝑦 π‘Ž π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘. π‘ƒπ‘Ÿπ‘œπ‘œπ‘“:

____

Page 7: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

8. Determine whether there exist any values of x in the interval 0,2 such that the rate of change of

secf x x and the rate of change of cscg x x are equal.

9. Sketch the graph of a differentiable function f such that 2 0f , 0f for 2x , and 0f for2x

10. If 2 3g , 2 2g , 2 1h , and 2 4h , find 2f for

(a) 2f x g x h x (b) 4f x h x (c) g x

f xh x (d) 2f x g x h x

𝑓′(π‘₯) =𝑑

𝑑π‘₯[

1

cos π‘₯] =

(0)(cos π‘₯) βˆ’ (1)(βˆ’ sin π‘₯)=

sin π‘₯

π‘π‘œπ‘ 2π‘₯

𝑔′(π‘₯) =𝑑

𝑑π‘₯[

1

sin π‘₯] =

π‘π‘œπ‘ 2π‘₯

(0)(sin π‘₯) βˆ’ (1)(cos π‘₯)

𝑠𝑖𝑛2π‘₯= βˆ’

cos π‘₯

𝑠𝑖𝑛2π‘₯

𝑠𝑖𝑛 π‘₯= βˆ’

cos π‘₯

π‘π‘œπ‘ 2π‘₯ 𝑠𝑖𝑛2π‘₯

𝑠𝑖𝑛3π‘₯ = βˆ’π‘π‘œπ‘ 3π‘₯ β†’ sin π‘₯ = βˆ’ cos π‘₯

π‘₯ =3πœ‹

4 & π‘₯ =

7πœ‹

4

π‘Žπ‘›π‘ π‘€π‘’π‘Ÿπ‘  𝑀𝑖𝑙𝑙 π‘£π‘Žπ‘Ÿπ‘¦

𝑓′(2) = 0 𝑓′(2) = βˆ’4 𝑓′(2) = βˆ’10 𝑓′(2) = 28

____

Page 8: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

π‘π‘œπ‘–π‘›π‘‘ π‘œπ‘“ π‘–π‘›π‘‘π‘’π‘Ÿπ‘π‘’π‘π‘‘: π‘Ž + 𝑏 + 𝑐 = 0

π‘”π‘Ÿπ‘Žπ‘β„Ž π‘π‘Žπ‘ π‘ π‘’π‘  π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž π‘‘β„Žπ‘’ π‘π‘œπ‘–π‘›π‘‘ (2,7): 4π‘Ž + 2𝑏 + 𝑐 = 7

π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘Žπ‘‘ (2,7) β„Žπ‘Žπ‘  π‘‘β„Žπ‘’ π‘ π‘™π‘œπ‘π‘’ π‘œπ‘“ 10: 𝑓′(π‘₯) = 2π‘Žπ‘₯ + 𝑏 β†’ 4π‘Ž + 𝑏 = 10

π‘Ž + 𝑏 + 𝑐 = 04π‘Ž + 2𝑏 + 𝑐 = 74π‘Ž + 𝑏 = 10

π‘Ž = 3 𝑏 = βˆ’2 𝑐 = βˆ’1

𝑓(π‘₯) = 3π‘₯2 βˆ’ 2π‘₯ βˆ’ 1

11. Find a second-degree polynomial f x ax2 bx c such that f x has an x-intercept at x 1 , and

the graph of f x has a tangent line with a slope of 10 at the point 2,7

12. If the normal line to the graph of a function f at the point 1,2 passes through the point 1,1 , then

what is the value of f 1 ?

𝑓′(1) 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘™π‘œπ‘π‘’ π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ 𝑙𝑖𝑛𝑒 π‘Žπ‘‘ π‘₯ = 1. 𝐼𝑑 𝑖𝑠 π‘›π‘’π‘”π‘Žπ‘‘π‘–π‘£π‘’ π‘Ÿπ‘’π‘π‘–π‘π‘Ÿπ‘œπ‘π‘Žπ‘™ π‘œπ‘“ π‘‘β„Žπ‘’ π‘›π‘œπ‘Ÿπ‘šπ‘Žπ‘™ 𝑙𝑖𝑛𝑒 π‘ π‘™π‘œπ‘π‘’:

π‘šπ‘‘ = βˆ’1

π‘šπ‘›

π‘šπ‘› =2 βˆ’ 1

=1

21 βˆ’ (βˆ’1)

𝑓′(1) = π‘šπ‘‘ = βˆ’2

13. If y x sin x , find3

3d ydx

𝑑3𝑦

𝑑π‘₯3= βˆ’3 sin π‘₯ βˆ’ π‘₯ cos π‘₯

Page 9: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

𝑦 = cos π‘₯

𝑦′ = βˆ’π‘ π‘–π‘› π‘₯

𝑦′′ = βˆ’ cos π‘₯

𝑦′′′ = 𝑠𝑖𝑛 π‘₯

𝑦(4) = cos π‘₯ = 𝑦

999 = 249 βˆ™ 4 + 3

𝑦(999) = 𝑦′′′ = 𝑠𝑖𝑛 π‘₯

𝑦 = 𝑠𝑖𝑛 π‘₯

𝑦′ = cos π‘₯

𝑦′′ = βˆ’ 𝑠𝑖𝑛 π‘₯

𝑦′′′ = βˆ’π‘π‘œπ‘  π‘₯

𝑦(4) = 𝑠𝑖𝑛 π‘₯ = 𝑦

725 = 181 βˆ™ 4 + 1

14. Find the following

(a) x999

999d cosdx

(c) x725

725d sindx

𝑦(999) = 𝑦′ = π‘π‘œπ‘  π‘₯

15.

dx

If sin 2x 2sin x cos x and cos 2x cos2 x sin2 x ( (re)memorize these), use these identities toevaluate the following using the product rule.

(a) d sin 2x (b) d cos 2xdx

𝑑π‘₯[𝑠𝑖𝑛 2π‘₯] =

𝑑 𝑑[2 sin π‘₯ cos π‘₯]

𝑑π‘₯

= 2(cos π‘₯)(cos π‘₯) + 2(sin π‘₯)(βˆ’ sin π‘₯)

= 2(π‘π‘œπ‘ 2π‘₯ βˆ’ 𝑠𝑖𝑛2π‘₯)

= 2 cos 2π‘₯

𝑑

𝑑π‘₯[cos 2π‘₯] =

𝑑

𝑑π‘₯[π‘π‘œπ‘ 2π‘₯ βˆ’ 𝑠𝑖𝑛2π‘₯]

=𝑑

[(π‘π‘œπ‘  π‘₯)(π‘π‘œπ‘  π‘₯) βˆ’ (𝑠𝑖𝑛 π‘₯)(𝑠𝑖𝑛 π‘₯)] 𝑑π‘₯

= [(βˆ’π‘ π‘–π‘› π‘₯)(π‘π‘œπ‘  π‘₯) + (π‘π‘œπ‘  π‘₯)(βˆ’ 𝑠𝑖𝑛 π‘₯)] βˆ’ [(π‘π‘œπ‘  π‘₯)(𝑠𝑖𝑛 π‘₯) + (𝑠𝑖𝑛 π‘₯)(π‘π‘œπ‘  π‘₯)]

= βˆ’2 sin π‘₯ cos π‘₯ βˆ’ 2 sin π‘₯ cos π‘₯ = βˆ’ sin 2π‘₯ βˆ’ sin 2π‘₯

= βˆ’2 sin 2π‘₯

𝑏. 𝑑

𝑑π‘₯[cos 2π‘₯]

Page 10: Differentiation Using Product and Quoti Rule...Differentiation Using Product and Quotient Rule 1. 21.Find the horizontal tangents of: = ... Product & Quotient Rules with Trig 5. Find

2

SOLUTIONS

1. lim β„Žβ†’0

(π‘₯π‘₯ + β„Ž)2 βˆ’ π‘₯π‘₯2

β„Ž=

𝑑𝑑𝑑𝑑π‘₯π‘₯

π‘₯π‘₯2 = 2π‘₯π‘₯

2. lim β„Žβ†’0

tan (π‘₯π‘₯ + β„Ž) βˆ’ tanβ„Žβ„Ž

=𝑑𝑑𝑑𝑑π‘₯π‘₯

tan π‘₯π‘₯ =1

𝑠𝑠𝑠𝑠𝑠𝑠2 π‘₯π‘₯

3. lim β„Žβ†’0

(π‘₯π‘₯ + β„Ž)4 βˆ’ π‘₯π‘₯4

β„Ž=

𝑑𝑑𝑑𝑑π‘₯π‘₯

π‘₯π‘₯4 = 4π‘₯π‘₯3

4. lim β„Žβ†’0

2(π‘₯π‘₯ + β„Ž)2 + 3(π‘₯π‘₯ + β„Ž) βˆ’ 2π‘₯π‘₯2 βˆ’ 3π‘₯π‘₯β„Ž

=𝑑𝑑𝑑𝑑π‘₯π‘₯

(2π‘₯π‘₯2 + 3π‘₯π‘₯) = 4π‘₯π‘₯ + 3

5. lim β„Žβ†’0

sin[2(π‘₯π‘₯ + β„Ž)]βˆ’ sin 2π‘₯π‘₯β„Ž

=𝑑𝑑𝑑𝑑π‘₯π‘₯

sin 2π‘₯π‘₯ = 2 cos 2π‘₯π‘₯

6. lim β„Žβ†’0

cos(π‘₯π‘₯ + β„Ž)2 βˆ’ cos π‘₯π‘₯2

β„Ž=

𝑑𝑑𝑑𝑑π‘₯π‘₯

cos π‘₯π‘₯2 = βˆ’2π‘₯π‘₯ sin π‘₯π‘₯2

7. lim π‘₯π‘₯β†’3π‘₯π‘₯2βˆ’9π‘₯π‘₯βˆ’3

= lim π‘₯π‘₯β†’3π‘₯π‘₯2βˆ’32

π‘₯π‘₯βˆ’3= οΏ½ 𝑑𝑑

𝑑𝑑π‘₯π‘₯ π‘₯π‘₯2οΏ½

π‘₯π‘₯=3= 6

8. lim π‘₯π‘₯β†’5

π‘₯π‘₯2 βˆ’ 52

π‘₯π‘₯ βˆ’ 5= οΏ½

𝑑𝑑𝑑𝑑π‘₯π‘₯

π‘₯π‘₯2οΏ½π‘₯π‘₯=5

= 10

9. lim π‘₯π‘₯β†’5

π‘₯π‘₯2 βˆ’ 25π‘₯π‘₯ βˆ’ 5

= lim π‘₯π‘₯β†’5

π‘₯π‘₯2 βˆ’ 52

π‘₯π‘₯ βˆ’ 5= οΏ½

𝑑𝑑𝑑𝑑π‘₯π‘₯

π‘₯π‘₯2οΏ½π‘₯π‘₯=5

= 10

10. lim π‘₯π‘₯β†’πœ‹πœ‹/3

sin π‘₯π‘₯ βˆ’ sinπœ‹πœ‹3π‘₯π‘₯ βˆ’ πœ‹πœ‹

3= οΏ½

𝑑𝑑𝑑𝑑π‘₯π‘₯

sin π‘₯π‘₯οΏ½π‘₯π‘₯=πœ‹πœ‹/3

= cos(Ο€/3) = 1/2

11. lim π‘₯π‘₯β†’πœ‹πœ‹/3

sin π‘₯π‘₯ βˆ’ √32

π‘₯π‘₯ βˆ’ πœ‹πœ‹3

= �𝑑𝑑𝑑𝑑π‘₯π‘₯

sin π‘₯π‘₯οΏ½π‘₯π‘₯=πœ‹πœ‹/3

= cos(Ο€/3) = 1/2

12. lim π‘₯π‘₯β†’πœ‹πœ‹/4

cos π‘₯π‘₯ βˆ’ √22

π‘₯π‘₯ βˆ’ πœ‹πœ‹4

= �𝑑𝑑𝑑𝑑π‘₯π‘₯

cos π‘₯π‘₯οΏ½π‘₯π‘₯=πœ‹πœ‹/4

= βˆ’sin οΏ½Ο€4οΏ½ = βˆ’

√22

13. lim π‘₯π‘₯β†’0

sin π‘₯π‘₯π‘₯π‘₯

= lim π‘₯π‘₯β†’0

sin π‘₯π‘₯ βˆ’ sin 0π‘₯π‘₯ βˆ’ 0

= �𝑑𝑑𝑑𝑑π‘₯π‘₯

sin π‘₯π‘₯οΏ½π‘₯π‘₯=0

= cos 0 = 1

14. lim π‘₯π‘₯β†’πœ‹πœ‹

sin π‘₯π‘₯π‘₯π‘₯ βˆ’ πœ‹πœ‹

= lim π‘₯π‘₯β†’πœ‹πœ‹

sin π‘₯π‘₯ βˆ’ sinπœ‹πœ‹π‘₯π‘₯ βˆ’ πœ‹πœ‹

= �𝑑𝑑𝑑𝑑π‘₯π‘₯

sin π‘₯π‘₯οΏ½π‘₯π‘₯=πœ‹πœ‹

= cosπœ‹πœ‹ = βˆ’1


Recommended