+ All Categories
Home > Documents > Dimitris Drikakis - High-Resolution Methods

Dimitris Drikakis - High-Resolution Methods

Date post: 02-Jun-2018
Category:
Upload: mariana-tiscareno
View: 238 times
Download: 0 times
Share this document with a friend

of 9

Transcript
  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    1/9

    Dimitris Drikakis

    William Rider

    High Resolution Methods

    for Incompressible and

    Low Speed Flows

    W ith 480 Figures a nd 32 Tables

    4y Springer

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    2/9

    Contents

    1.

    I n t r o d u c t i o n

    P a r t I . F u n d a m e n t a l P h y s i c a l a n d M o d e l E q u a t i o n s

    2 .

    T h e F l u i d F l o w E q u a t i o n s

    7

    2.1 M athem atical Preliminaries 7

    2.2 Kine matic Con siderations 9

    2.3 T he Eq ua tion s for Variable De nsity Flows 10

    2.3.1 The Con tinuity Eq uatio n 10

    2.3.2 The M om entum Eq uation s 11

    2.3.3 The Energy Eq uatio n 14

    2.4 Com pressible Euler Eq uatio ns 16

    2.5 Low-Mach Nu m ber Scaling 20

    2.6 Boussinesq A ppro xim ation 23

    2.7 Variable Den sity Flow 23

    2.8 Zero Mach Nu mbe r Com bustion 24

    2.9 Init ial and Bo und ary Cond it ions 25

    3 . T h e V i s c o u s F l u i d F l o w E q u a t i o n s

    27

    3.1 Th e Stress an d Strain Tensors for a Ne wto nian Fluid 27

    3.2 Th e Navier-Stokes Eq uatio ns for Co nsta nt Density Flows . . . . 31

    3.3 Non -New tonian Co nsti tutive Eq uation s for the Shear-Stress

    Tensor 33

    3.3.1 Generalized N ew tonian Fluid s 33

    3.3.2 Visco elastic Flu ids 34

    3.3.3 O th er Viscoelastic M odels 37

    3.4 A lterna tive Forms of th e Adv ective and Viscous Term s 38

    3.5 No ndim ensionalization of th e Gov erning Eq ua tion s 39

    3.6 General Rem arks on Turbu lent Flow Simulations 42

    3.7 Reyno lds-Averaged Navier-Stokes Eq uat ion s (RAN S) 43

    3.8 Large Ed dy Simu lation (LES) 47

    3.9 Closing Re m arks 49

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    3/9

    XIV Contents

    4. Curvilinear Coordinates and Transformed Equations 51

    4.1 Generalized Curvilinear Coordinates 51

    4.2 Calculation of Metrics 55

    4.3 Transformation of the Fluid Flow Equations 57

    4.4 Viscous Terms 60

    4.5 Geometric Conservation Law 63

    5. Overview of Various Formulations and Model Equations

    . . 67

    5.

    1

    Overview of Various Formulations of the Incompressible Flow

    Equations 67

    5.1.1 Vorticity/Stream-Function Formulation 67

    5.1.2 The Vorticity/Vector-Potential Formulation 69

    5.1.3 Vorticity-Velocity Formulation 70

    5.1.4 Pressure-Poisson Formulation 70

    5.1.5 Projection Formulation 71

    5.1.6 Artificial-Compressibility Formulation 71

    5.1.7 Penalty Formulation 72

    5.1.8 Hybrid Formulations 73

    5.2 Model Equations 75

    5.2.1 Advection-Diffusion Equation 75

    5.2.2 Burgers Equation 76

    6. Basic Principles in Numerical Analysis

    79

    6.1 Stability, Consistency and Accuracy 79

    6.2 Fourier Analysis 83

    6.2.1 Fourier Analysis of First-Order Upwind 85

    6.2.2 Fourier Analysis of Second-Order Upwind 86

    6.3 Modified Equation Analysis 90

    6.4 Verification via Sample Calculations 94

    7. Time Integration Methods 99

    7.1 Time Integration of the Flow Equations 99

    7.2 Lax-Wendroff-Type Methods 100

    7.3 Other Approaches to Time-Centering 102

    7.4 Runge-Kutta Methods 103

    7.4.1 Second-Order Runge-Kutta 104

    7.4.2 Third-Order Runge-Kutta 106

    7.4.3 Fourth-Order Runge-Kutta 107

    7.4.4 TVD Runge-Kutta Methods Applied to Hyperbolic

    Conservation Laws 109

    7.5 Linear Multi-step Methods 113

    7.5.1 Adams-Bashforth Method 113

    7.5.2 Adams-Moulton Method 116

    7.5.3 Backward Differentiation Formulas 119

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    4/9

    ontents XV

    8. Numerical Linear Algebra 121

    8.1 Basic Numerical Linear Algebra 121

    8.2 Basic Relaxation Methods 123

    8.3 Conjugate Gradient and Krylov Subspace Methods 126

    8.4 Multigrid Algorithm for Elliptic Equations 130

    8.5 Multigrid Algorithm as a Preconditioner for Krylov Subspace

    Methods 138

    8.6 Newton s and Newton-Krylov Method 139

    8.7 A Multigrid Newton-Krylov Algorithm 140

    Part II. Solution Approaches

    9. Compressible and Preconditioned Compressible Solvers

    ... 147

    9.1 Reconstructing the Dependent Variables 147

    9.1.1 Riemann Solvers 148

    9.1.2 Basic Predictor-Corrector 152

    9.1.3 Characteristic Direct Eulerian 153

    9.1.4 Lagrange-Remap Approach 155

    9.2 Reconstructing the Fluxes 156

    9.2.1 Flux Splitting 157

    9.2.2 Flux Splitting Time Integration 158

    9.3 Preconditioning for Low Speed Flows 160

    9.3.1 Overview of Preconditioning Techniques 160

    9.3.2 Preconditioning Choices for Compressible Flows 161

    9.3.3 Preconditioning of Numerical Dissipation 167

    9.3.4 Differential Preconditioners 169

    10. The Artificial Compressibility Method

    173

    10.1 Basic Formulation 173

    10.2 Convergence to the Incompressible Limit 174

    10.3 Preconditioning and the Artificial Compressibility Method . . . 176

    10.4 Eigenstructure of the Incompressible Equations 177

    10.5 Estimation of the Artificial Compressibility Parameter 180

    10.6 Explicit Solvers for Artificial Compressibility 183

    10.7 Implicit Solvers for Artificial Compressibility 184

    10.7.1 Time-Linearized (Euler) Implicit Scheme 184

    10.7.2 Implicit Approximate Factorization Method 185

    10.7.3 Implicit Unfactored Method 186

    10.8 Extension of the Artificial Compressibility to Unsteady Flows 188

    10.9 Boundary Conditions 190

    10.10 Local Time Step 191

    10.11 Multigrid for the Artificial-Compressibility Formulation 192

    10.11.1 Rationale for Three-Grid Multigrid 192

    10.11.2 FMG-FAS Algorithm 193

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    5/9

    XVI Contents

    10.11.3 Remarks on the Full Approximation Storage (FAS)

    Procedure 196

    10.11.4 Effects of Pre- and Post-Relaxation on the Efficiency

    of FMG-FAS 197

    10.11.5 Transfer Operators 198

    10.11.6 Adaptive Multigrid 201

    11. Project ion Methods: The Basic Theory and the Exact Pro

    ject ion Method

    209

    11.1 Grids - Variable Positioning 210

    11.2 Continuous Projections for Incompressible Flow 211

    11.2.1 Continuous Projections for Constant Density

    Incompressible Flow 212

    11.2.2 Continuous Projections for Variable Density

    Incompressible Flow 213

    11.3 Exact Discrete Projections 213

    11.3.1 Cell-Centered Exact Projections 214

    11.3.2 Vertex-Centered Exact Projections 217

    11.3.3 The MAC Projection 219

    11.3.4 The MAC Projection Used with Godunov-Type

    Methods 220

    11.3.5 Other Exact Projections 223

    11.4 Second-Order Projection A lgorithms for Incompressible Flow 223

    11.5 Boundary Conditions 225

    11.5.1 Solvability 225

    11.5.2 Solid Wall Boundary Conditions 227

    12. Approximate Project ion Methods 237

    12.1 Numerical Issues with Approximate Projection Methods 237

    12.2 Projection Algorithms for Incompressible Flow 243

    12.3 Analysis of Projection Algorithms 244

    12.3.1 Basic Definitions for Analysis 244

    12.3.2 Analysis of Approxim ate Projection Algorithms 245

    12.3.3 Incremental Velocity Difference Projection 247

    12.3.4 Pressure Velocity Difference Projection 248

    12.3.5 Incremental Velocity Projection 248

    12.3.6 Pressure Velocity Projection 249

    12.3.7 Discussion of Analysis Results 249

    12.4 Pressure Poisson Equation Methods 250

    12.4.1 SIMPLE-Type Methods 251

    12.4.2 Implicit High-Resolution Advection 254

    12.4.3 Implicit Direct Methods 255

    12.5 Filters 256

    12.5.1 Classification of Error Modes 256

    12.5.2 Projection Filters 258

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    6/9

    Contents XVII

    12.5.3 Velocity Filters 263

    12.6 Method Demonstration and Verification 271

    12.6.1 Vortex-in-a-Box 271

    12.6.2 Inflow with Shear 272

    12.6.3 Doubling Periodic Shear Layer 273

    12.6.4 Long Tim e Integration 274

    12.6.5 Circular Drop Problem 279

    12.6.6 Results Using Various Filters 285

    Part III . Modern High Resolution Methods

    13 . Introduct ion to Modern High Resolut ion Methods

    295

    13.1 General Rem arks about High-Resolution Methods 295

    13.2 The Concept of Nonoscillatory Methods and Total Variation . 301

    13.3 Monotonicity 303

    13.4 General Rem arks on Riem ann Solvers 305

    14. High Resolut ion Go dunov Type M ethods for Project ion M eth

    ods 309

    14.1 First-O rder Algorithm 309

    14.2 High-Resolution Algorithms 316

    14.2.1 Piecewise Linear Methods (PLM ) 316

    14.2.2 Piecewise Parabo lic Methods (PPM ) 320

    14.2.3 Algorithm Verification Tests 323

    14.3 Staggered Grid Spatial Differencing 325

    14.4 Unsplit Spatial Differencing 327

    14.4.1 Least Squares Reconstruction 329

    14.4.2 Monotone Limiters and Extensions 333

    14.4.3 Monotonic Constrained Minimization 334

    14.4.4 Divergence-Free Reconstructions 336

    14.4.5 Extend ing Classical TVD Lim iters 336

    14.5 Multidimensional Results 340

    14.6 Viscous Terms 342

    14.7 Stability 343

    15. Centered High Resolut ion M ethods 347

    15.1 Lax-Friedrichs Scheme 348

    15.2 Lax-Wendroff Scheme 353

    15.3 First-O rder Centered Scheme 358

    15.3.1 Random Choice Method 359

    15.3.2 FORCE 361

    15.3.3 Variants of the FORCE Scheme 363

    15.4 Second- and Th ird-O rder Centered Schemes 364

    15.4.1 Nessyahu-Tadm or Second-Order Scheme 364

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    7/9

    XVIII Contents

    15.4.2 Two-Dimensional Form ulation 367

    15.4.3 Th ird-O rder Centered Scheme 369

    16.

    Riemann Solvers and TVD Methods in Strict Conservation

    Form

    373

    16.1 The Flux Limiter Approach 373

    16.2 Construction of Flux Lim iters 374

    16.2.1 Flux Limiter for th e G odunov/Lax-Wendroff TVD

    Scheme 375

    16.2.2 Flux Limiter for the Characteristics-Based/Lax-Friedrichs

    Scheme 376

    16.3 Other Approaches for Constructing Advective Schemes 382

    16.3.1 Positive Schemes 382

    16.3.2 Universal Lim iter 384

    16.4 The Characteristics-Based Scheme 384

    16.4.1 Introductory Rem arks and Basic Formulation 384

    16.4.2 Dimensional Sp litting 386

    16.4.3 Characteristics-Based Reconstruction in Three

    Dimensions 389

    16.4.4 Reconstructed Characteristics-Based Variables in Two

    Dimensions 392

    16.4.5 High-Order Interpolation 393

    16.4.6 Advective Flux Calculation 396

    16.4.7 Results 397

    16.5 Flux Limiting Version of the CB Scheme 404

    16.6 Implementation of the Characteristics-Based Method in Un-

    structu red Grids 404

    16.7 The Weight Average Flux Method 406

    16.7.1 Basic Form ulation 406

    16.7.2 TVD Version of the WAF Schemes 408

    16.8 Roe's Method 409

    16.9 Osher's Method 412

    16.10 Chakravarthy-Osher TVD Scheme 414

    16.11 Harten , Lax and van Leer (HLL) Scheme 416

    16.12 HLLC Scheme 419

    16.13 Estim ation of the W ave Speeds for the HLL and HLLC Rie-

    mann Solvers : 420

    16.14 HLLE Scheme 421

    16.15 Com parison of CB and HLLE Schemes 421

    16.16 Viscous TVD Limiters 424

    17. Beyond Second Order M ethod s

    429

    17.1 General Rem arks on High-Order Methods 430

    17.2 Essentially Nonoscillatory Schemes (ENO ) 433

    17.3 ENO Schemes Using Fluxes 436

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    8/9

    Contents XIX

    17.4 Weighted ENO Schemes 439

    17.4.1 Third-Order WENO Reconstruction 441

    17.4.2 Fourth-Order WENO Reconstruction 442

    17.5 A Flux-Based Version of the WENO Scheme 444

    17.6 Artificial Compression Method for ENO and WENO 447

    17.7 The ADER Approach 448

    17.7.1 Linear Scalar Case 449

    17.7.2 Multiple Dimensions: Scalar Case 451

    17.7.3 Extension to Nonlinear Hyperbolic Systems 453

    17.8 Extending and Relaxing Monotonicity in Godunov-Type Meth-

    ods 455

    17.8.1 Accuracy and Monotonicity Preserving Limiters 455

    17.8.2 Extrema and Monotonicity Preserving Methods 460

    17.8.3 Steepened Transport Methods 465

    17.9 Discontinuous Galerkin Methods 467

    17.10 Uniformly High-Order Scheme for Godunov-Type Fluxes .. . 469

    17.11 Flux-Corrected Transport 472

    17.12 MPDATA 475

    Part IV. Applications

    18. Variable Density Flows and Volume Tracking Methods . . . 479

    18.1 Multimaterial Mixing Flows 479

    18.1.1 Shear Flows 480

    18.1.2 Rising Bubbles 482

    18.1.3 Rayleigh-Taylor Instability 483

    18.2 Volume Tracking 490

    18.2.1 Fluid Volume Evolution Equations 492

    18.2.2 Basic Features of Volume Tracking Methods 493

    18.3 The History of Volume Tracking 495

    18.4 A Geometrically Based Method of Solution 499

    18.4.1 A Geometric Toolbox 500

    18.4.2 Reconstructing the Interface 502

    18.4.3 Material Volume Fluxes 510

    18.4.4 Time Integration 513

    18.4.5 Translation and Rotation Tests 515

    18.5 Results For Vortical Flows 519

    18.5.1 Single Vortex 521

    18.5.2 Deformation Field 525

  • 8/10/2019 Dimitris Drikakis - High-Resolution Methods

    9/9

    XX Contents

    19.

    High Resolution Methods and Turbulent

    Flow Computation

    529

    19.1 Physical Considerations 529

    19.2 Survey of Theory and Models 533

    19.3 Relation of High-Resolution Methods and Flow Physics 536

    19.3.1 Num erical Considerations 537

    19.3.2 Relation of High-Resolution Methods to Weak Solu-

    tions and Turbulence 538

    19.4 Large Eddy Simulation: Standard and Implicit 539

    19.5 Num erical Analysis of Subgrid Models 543

    19.6 ILES Analysis 544

    19.6.1 Explicit Modeling 544

    19.6.2 Implicit Modeling 546

    19.6.3 Lim iters 547

    19.6.4 Energy Analysis 549

    19.7 Computational Examples 552

    19.7.1 Burgers' Turbulence (Burgulence) 552

    19.7.2 Convective Planeta ry Boundary Layer 553

    A. M ATH EM ATIC A Com mands for Num erical Analysis

    557

    A.I Fourier Analysis for First-O rder Upwind Methods 557

    A.2 Fourier Analysis for Second-Order Upwind Methods 558

    A.3 Modified Equation Analysis for First-O rder Upwind 559

    B . Exam ple Com puter Imp lementations

    563

    B.I Appendix: Fortran Subroutine for the Characteristics-Based

    Flux 563

    B.2 Fifth-Order Weighted ENO Method 568

    B.2.1 Subroutine for Fifth-Order WENO 568

    B.2.2 Subroutine for Fifth-Order W EN O's Third-Order Based

    Fluxes 570

    B.2.3 Subroutine Fifth-Order WENO Smoothness Sensors . . 571

    B.2.4 Subroutine Fifth-Order WENO Weights 572

    C. Acknowledgements: Il lustrations Repro duced with Perm is

    sion

    575

    References

    577

    Index

    615


Recommended