+ All Categories
Home > Documents > Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1....

Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1....

Date post: 15-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
59
Discontinuous Galerkin finite element methods for Hamilton–Jacobi–Bellman equations with Cordes coefficients Iain Smears INRIA Paris LJLL Seminar, June 2017 joint work with Endre S¨ uli, University of Oxford
Transcript
Page 1: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Discontinuous Galerkin finite element methodsfor Hamilton–Jacobi–Bellman equations

with Cordes coefficients

Iain Smears

INRIA Paris

LJLL Seminar, June 2017

joint work with

Endre Suli, University of Oxford

Page 2: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Overview

Talk outline

1. Introduction: Hamilton–Jacobi–Bellman (HJB) equations.

2. Analysis: Analysis of HJB equations with Cordes coefficients.

3. Numerical methods: High-order discontinuous Galerkin methods for HJBequations with Cordes coefficients.

Page 3: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Overview

Talk outline

1. Introduction: Hamilton–Jacobi–Bellman (HJB) equations.

2. Analysis: Analysis of HJB equations with Cordes coefficients.

3. Numerical methods: High-order discontinuous Galerkin methods for HJBequations with Cordes coefficients.

Page 4: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Stochastic optimal control

Stochastic differential equation

dXt = b(Xt , αt)dt + σ(Xt , αt)dBt , X0 = x ,

Find a control α(·) : t 7→ αt ∈ Λ that minimises

J(x , α(·)) = E[∫ τexit

0

f (Xt , αt) e−∫ t

0c(Xs ,αs ) dsdt

]

• b(x , α) ∈ Rd drift, σ(x , α) ∈ Rd×m volatility

• scalar f and c : running cost and discount

• αt control variable

• Λ controls set (assumed to be a compact metric space).

• stopping time τexit: first exit from bounded domain Ω ⊂ Rd

Example applications: energy, engineering, finance . . .

1/37

Page 5: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Dynamic programming principle

The dynamic programming principle (DPP) is a solution process for astochastic control problem.

Overview: stages of DPP

1. Define the value function of theoptimal control problem.

2. DPP: the value function is thesolution of an HJB equation.

3. The optimal controls can becomputed once the value functionis available.

Richard Bellman (1920–1984)

Feedback control map αfeedback : Ω→ Λ =⇒ α(t) := αfeedback(Xt).

2/37

Page 6: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Dynamic programming principle

Details in Fleming & Soner 2006

• Define the value function V defined by

V (x) := infJ(x , α(·)) | α(·) : t ∈ [0,∞) 7→ αt ∈ Λ, α(·) ∈ A.A = set of admissible controls: progressively measurable w.r.t. filtration.

• The function u := −V solves the HJB equation

supα∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,(HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u, with

aα(x) := 12σ(x , α)σ>(x , α) ∈ Rd×d ,

Notation: aα : D2u =d∑

i,j=1

aαij (x)uxixj ,

3/37

Page 7: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Dynamic programming principle

Details in Fleming & Soner 2006

• Define the value function V defined by

V (x) := infJ(x , α(·)) | α(·) : t ∈ [0,∞) 7→ αt ∈ Λ, α(·) ∈ A.A = set of admissible controls: progressively measurable w.r.t. filtration.

• The function u := −V solves the HJB equation

supα∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,(HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u, with

aα(x) := 12σ(x , α)σ>(x , α) ∈ Rd×d ,

Notation: aα : D2u =d∑

i,j=1

aαij (x)uxixj ,

3/37

Page 8: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Hamilton–Jacobi–Bellman Equation

Elliptic Dirichlet problem:

supα∈Λ

[Lαu − f α] = 0 in Ω,

u = 0 on ∂Ω,(Elliptic HJB)

where Lαu := aα(x) : D2u + bα(x) · ∇u − cα(x) u.

Notation: aα(x) : D2u =d∑

i,j=1

aαij (x)uxixj , bα(x) · ∇u =d∑

i=1

bαi (x)uxi .

Assumptions in this talk:

• Ω ⊂ Rd is bounded and convex, Λ a compact metric space.

• a, b, c and f are continuous functions in x ∈ Ω, α ∈ Λ.

• aα are symmetric positive definite, uniformly on Ω× Λ, and cα ≥ 0.

• Cordes coefficients: the coefficient functions a, b, c satisfy the Cordescondition (coming soon!)

4/37

Page 9: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Examples

How do HJB equations relate to other PDEs?

supα∈Λ

[Lαu − f α] = 0

The HJB equation generalises many other equations:

• Linear nondivergence form elliptic equations

a : D2u + b · ∇u − cu = f , (assume that Λ is a singleton set).

• Hamilton–Jacobi: e.g. eikonal equation

supα∈Sd

[α · ∇u − 1] = |∇u| − 1 = 0.

• Monge–Ampere equation [Krylov 1987, Jensen & Feng 2017]detD2u − f = 0

u convex⇐⇒ inf

a∈Rd×dsym,+

Tr a=1

[a : D2u − d (f det a)1/d

]= 0.

5/37

Page 10: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Examples

How do HJB equations relate to other PDEs?

supα∈Λ

[Lαu − f α] = 0

The HJB equation generalises many other equations:

• Linear nondivergence form elliptic equations

a : D2u + b · ∇u − cu = f , (assume that Λ is a singleton set).

• Hamilton–Jacobi: e.g. eikonal equation

supα∈Sd

[α · ∇u − 1] = |∇u| − 1 = 0.

• Monge–Ampere equation [Krylov 1987, Jensen & Feng 2017]detD2u − f = 0

u convex⇐⇒ inf

a∈Rd×dsym,+

Tr a=1

[a : D2u − d (f det a)1/d

]= 0.

5/37

Page 11: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Examples

How do HJB equations relate to other PDEs?

supα∈Λ

[Lαu − f α] = 0

The HJB equation generalises many other equations:

• Linear nondivergence form elliptic equations

a : D2u + b · ∇u − cu = f , (assume that Λ is a singleton set).

• Hamilton–Jacobi: e.g. eikonal equation

supα∈Sd

[α · ∇u − 1] = |∇u| − 1 = 0.

• Monge–Ampere equation [Krylov 1987, Jensen & Feng 2017]detD2u − f = 0

u convex⇐⇒ inf

a∈Rd×dsym,+

Tr a=1

[a : D2u − d (f det a)1/d

]= 0.

5/37

Page 12: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Approaches

What are the available approachesto PDE theory and numerical discretization?

• Weak solutions in H1(Ω): not applicable!

→ most existing finite element techniques cannot be used!

• Viscosity solutions: generally applicable, even to degenerate ellipticproblems. Solution space u ∈ C (Ω).

This leads to monotone numerical schemes (c.f. next few slides). . .

• Strong solutions in H2(Ω): under the Cordes condition . . .

• Classical solutions in C 2(Ω): Evans–Krylov Theorem and itsdevelopments guarantee interior regularity estimates for the viscositysolution under uniform ellipticity and data regularity assumptions.

Some references:

• Weak, strong and classical solutions Gilbarg & Trudinger, 1998.

• Viscosity solutions for fully nonlinear PDE Crandall, Lions & Ishii, 1992.

• Regularity theory of viscosity solutions Caffarelli & Cabre, 1995.

6/37

Page 13: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Approaches

What are the available approachesto PDE theory and numerical discretization?

• Weak solutions in H1(Ω): not applicable!

→ most existing finite element techniques cannot be used!

• Viscosity solutions: generally applicable, even to degenerate ellipticproblems. Solution space u ∈ C (Ω).

This leads to monotone numerical schemes (c.f. next few slides). . .

• Strong solutions in H2(Ω): under the Cordes condition . . .

• Classical solutions in C 2(Ω): Evans–Krylov Theorem and itsdevelopments guarantee interior regularity estimates for the viscositysolution under uniform ellipticity and data regularity assumptions.

Some references:

• Weak, strong and classical solutions Gilbarg & Trudinger, 1998.

• Viscosity solutions for fully nonlinear PDE Crandall, Lions & Ishii, 1992.

• Regularity theory of viscosity solutions Caffarelli & Cabre, 1995.

6/37

Page 14: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Approaches

What are the available approachesto PDE theory and numerical discretization?

• Weak solutions in H1(Ω): not applicable!

→ most existing finite element techniques cannot be used!

• Viscosity solutions: generally applicable, even to degenerate ellipticproblems. Solution space u ∈ C (Ω).

This leads to monotone numerical schemes (c.f. next few slides). . .

• Strong solutions in H2(Ω): under the Cordes condition . . .

• Classical solutions in C 2(Ω): Evans–Krylov Theorem and itsdevelopments guarantee interior regularity estimates for the viscositysolution under uniform ellipticity and data regularity assumptions.

Some references:

• Weak, strong and classical solutions Gilbarg & Trudinger, 1998.

• Viscosity solutions for fully nonlinear PDE Crandall, Lions & Ishii, 1992.

• Regularity theory of viscosity solutions Caffarelli & Cabre, 1995.

6/37

Page 15: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Approaches

What are the available approachesto PDE theory and numerical discretization?

• Weak solutions in H1(Ω): not applicable!

→ most existing finite element techniques cannot be used!

• Viscosity solutions: generally applicable, even to degenerate ellipticproblems. Solution space u ∈ C (Ω).

This leads to monotone numerical schemes (c.f. next few slides). . .

• Strong solutions in H2(Ω): under the Cordes condition . . .

• Classical solutions in C 2(Ω): Evans–Krylov Theorem and itsdevelopments guarantee interior regularity estimates for the viscositysolution under uniform ellipticity and data regularity assumptions.

Some references:

• Weak, strong and classical solutions Gilbarg & Trudinger, 1998.

• Viscosity solutions for fully nonlinear PDE Crandall, Lions & Ishii, 1992.

• Regularity theory of viscosity solutions Caffarelli & Cabre, 1995.

6/37

Page 16: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Literature

Pre-existing numerical methods:

• Monotone methods: low-order methods with discrete maximumprinciples:

Convergence theory to the viscosity solution: Barles & Souganidis1991.

mostly finite difference methods: Motzkin & Wasow, Kuo &Trudinger, Kocan, Camilli & Falcone, Barles & Jakobsen, Jakobsen &Debrabant, Fleming & Soner, Bonnans & Zidani,. . .

a few on monotone FEM: Jensen & S., SINUM 2013 and Nochetto &Zhang FOCM 2016.

limitations for anisotropic problems: Motzkin & Wasow 1953, Kocan1995, Bonnans & Zidani 2003, Crandall & Lions 2012.

• Other pre-existing non-monotone methods without discrete maximumprinciples, without convergence theory: Feng, Neilan, Glowinski, Brenner,Lakkis, Pryer, . . . [Feng et al. SIAM Rev. 2013].

Is it possible to have stable, consistent and convergent methods for fullynonlinear PDEs without discrete maximum principles?

7/37

Page 17: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

1. Literature

Pre-existing numerical methods:

• Monotone methods: low-order methods with discrete maximumprinciples:

Convergence theory to the viscosity solution: Barles & Souganidis1991.

mostly finite difference methods: Motzkin & Wasow, Kuo &Trudinger, Kocan, Camilli & Falcone, Barles & Jakobsen, Jakobsen &Debrabant, Fleming & Soner, Bonnans & Zidani,. . .

a few on monotone FEM: Jensen & S., SINUM 2013 and Nochetto &Zhang FOCM 2016.

limitations for anisotropic problems: Motzkin & Wasow 1953, Kocan1995, Bonnans & Zidani 2003, Crandall & Lions 2012.

• Other pre-existing non-monotone methods without discrete maximumprinciples, without convergence theory: Feng, Neilan, Glowinski, Brenner,Lakkis, Pryer, . . . [Feng et al. SIAM Rev. 2013].

Is it possible to have stable, consistent and convergent methods for fullynonlinear PDEs without discrete maximum principles?

7/37

Page 18: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Overview

Talk outline

1. Introduction: Hamilton–Jacobi–Bellman (HJB) equations.

2. Analysis: Analysis of HJB equations with Cordes coefficients.

Motivation of Cordes coefficients Existence, Uniqueness, Well-posedness

3. Numerical methods: High-order discontinuous Galerkin methods for HJBequations with Cordes coefficients.

Page 19: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE Theory: motivation

Cordes introduced his condition in the context of nondivergence formequations with discontinuous coefficients.

There is a link between HJB equations and nondivergence form equationswith discontinuous coefficients:

Classical solution algorithm: policy iteration, due to Howard and Bellman:

1. Choose an initial guess u0.

2. For k ∈ N, given a current guess uk , choose αk : Ω→ Λ, aLebesgue-measurable selection

αk(x) ∈ argmaxα∈Λ (Lαuk − f α)(x), ∀ x ∈ Ω.

3. Then, find uk+1 as a solution of the PDE

Lαkuk+1 = f αk in Ω, with uk+1 = 0 on ∂Ω,

where f αk : x 7→ f αk (x)(x), etc.

Howard 1960, Puterman & Brumelle 1979, Bokanowski et al. 2009, . . .8/37

Page 20: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE Theory: motivation

Cordes introduced his condition in the context of nondivergence formequations with discontinuous coefficients.

There is a link between HJB equations and nondivergence form equationswith discontinuous coefficients:

Classical solution algorithm: policy iteration, due to Howard and Bellman:

1. Choose an initial guess u0.

2. For k ∈ N, given a current guess uk , choose αk : Ω→ Λ, aLebesgue-measurable selection

αk(x) ∈ argmaxα∈Λ (Lαuk − f α)(x), ∀ x ∈ Ω.

3. Then, find uk+1 as a solution of the PDE

Lαkuk+1 = f αk in Ω, with uk+1 = 0 on ∂Ω,

where f αk : x 7→ f αk (x)(x), etc.

Howard 1960, Puterman & Brumelle 1979, Bokanowski et al. 2009, . . .8/37

Page 21: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE Theory: motivation

Linearized equation:

Lαkuk+1 = f αk in Ω, with uk+1 = 0 on ∂Ω, (1)

Question: is Eq. (1) a well-posed PDE?

In general, the answer is no: the linearization process (esp. the argmax)leads to discontinuous diffusion coefficients: aαk ∈ L∞(Ω)d×d andaαk /∈ C (Ω)d×d .

• Calderon–Zygmund: If a ∈ C (Ω)d×d and ∂Ω ∈ C 1,1, then existence anduniqueness in W 2,p [Gilbarg & Trudinger, 1998]

• If a ∈ L∞(Ω)d×d , a /∈ C (Ω)d×d , then there are counter-examplesshowing non-uniqueness in general (Maugeri et al, 2000):

∆u+ρd∑

i,j=1

xixj|x |2 uxi xj = 0 in B unit ball, ρ = −1+

d − 1

1− θ , 0 < θ < 1,

If d ≥ 3 and d > 2(2− θ) > 2, two solutions in H2(B) ∩ H10 (B)

u1(x) = 0 and u2(x) = |x |θ − 1

9/37

Page 22: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE Theory: motivation

Linearized equation:

Lαkuk+1 = f αk in Ω, with uk+1 = 0 on ∂Ω, (1)

Question: is Eq. (1) a well-posed PDE?

In general, the answer is no: the linearization process (esp. the argmax)leads to discontinuous diffusion coefficients: aαk ∈ L∞(Ω)d×d andaαk /∈ C (Ω)d×d .

• Calderon–Zygmund: If a ∈ C (Ω)d×d and ∂Ω ∈ C 1,1, then existence anduniqueness in W 2,p [Gilbarg & Trudinger, 1998]

• If a ∈ L∞(Ω)d×d , a /∈ C (Ω)d×d , then there are counter-examplesshowing non-uniqueness in general (Maugeri et al, 2000):

∆u+ρd∑

i,j=1

xixj|x |2 uxi xj = 0 in B unit ball, ρ = −1+

d − 1

1− θ , 0 < θ < 1,

If d ≥ 3 and d > 2(2− θ) > 2, two solutions in H2(B) ∩ H10 (B)

u1(x) = 0 and u2(x) = |x |θ − 1

9/37

Page 23: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: Cordes condition

Cordes condition: Case 1: without advection and reaction

Assume that there exists ε ∈ (0, 1] s. t.

|a(x)|2(Tr a(x))2 ≤

1

d − 1 + εa.e. x ∈ Ω, (Cordes0)

Theorem (Cordes, 1956)If Ω is convex, and if a ∈ L∞(Ω)d×d unif. ellipt. satisfies (Cordes0), then forany f ∈ L2(Ω) there exists a unique u ∈ H2(Ω) ∩ H1

0 (Ω) solving

a : D2u = f in Ω, with u = 0 on ∂Ω,

ExampleIf dimension d = 2, (Cordes0) ⇐⇒ uniform ellipticity.

10/37

Page 24: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: Cordes condition

Cordes condition: Case 1: without advection and reaction

Assume that there exists ε ∈ (0, 1] s. t.

|aα(x)|2(Tr aα(x))2 ≤

1

d − 1 + εa.e. x ∈ Ω, α ∈ Λ (2)

Theorem (Cordes, 1956)If Ω is convex, and if aα ∈ L∞(Ω)d×d unif. ellipt. satisfies (Cordes0), thenfor any f ∈ L2(Ω) there exists a unique u ∈ H2(Ω) ∩ H1

0 (Ω) solving

aα : D2u = f in Ω, with u = 0 on ∂Ω,

ExampleIf dimension d = 2, (Cordes0) ⇐⇒ uniform ellipticity.

10/37

Page 25: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: Cordes condition

Cordes condition: Case 2: extension to bα 6= 0 and cα 6= 0

Assume that there exist λ > 0 and ε ∈ (0, 1] s. t.

|aα|2 + |bα|2/2λ+ (cα/λ)2

(Tr aα + cα/λ)2≤ 1

d + εin Ω, ∀α ∈ Λ. (Cordes1)

11/37

Page 26: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: well-posedness

Theorem (Strong solutions of HJB equations with Cordescoefficients)Let Ω be a bounded convex open subset of Rd , and let Λ be a compactmetric space.

Let the data be continuous on Ω× Λ, and satisfy (Cordes1) with uniformlyelliptic aα and cα ≥ 0 for all α ∈ Λ.

Then, there exists a unique u ∈ H2(Ω) ∩ H10 (Ω) that solves (Elliptic HJB)

pointwise a.e. in Ω.

I. S. & E. Suli, SIAM J. Numer. Anal. 2014:

Discontinuous Galerkin finite element approximation of

Hamilton–Jacobi–Bellman equations with Cordes coefficients.

12/37

Page 27: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

Define

γα :=Tr aα + cα/λ

|aα|2 + |bα|2/2λ+ (cα/λ)2

Fγ [u] := supα∈Λ

[γα(Lαu − f α)]

Because γα > 0, we can renormalize the operator:

Fγ [u] = supα∈Λ

[γα(Lαu − f α)] = 0 ⇐⇒ supα∈Λ

[Lαu − f α] = 0. (3)

The problem (Elliptic HJB) for u ∈ H2(Ω) ∩ H10 (Ω) is equivalent to

A(u; v) :=

∫Ω

Fγ [u] Lλv dx = 0 ∀ v ∈ H2(Ω) ∩ H10 (Ω), (4)

where Lλv := ∆v − λv .

13/37

Page 28: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

Let H := H2(Ω) ∩ H10 (Ω), ‖v‖2

H := ‖D2u‖2 + 2λ‖∇u‖2 + λ2‖u‖2

1. A : H × H → R is linear in its second argument (only).

2. A is Lipschitz continuous: there is C > 0 such that

|A(u; v)−A(w , v)| ≤ C‖u − w‖H‖v‖H ∀u, v , w ∈ H,

3. We now show that A is strongly monotone1 : there exists a positiveconstant c = c(ε) > 0 such that

1

c‖u − v‖2

H ≤ A(u; u − v)−A(v ; u − v) ∀ u, v ∈ H. (5)

On verifying these conditions, we conclude that there exists a unique u ∈ Hthat solves A(u; v) = 0 for all v ∈ H and thus solves (Elliptic HJB).

1Remark: must not confuse monotone schemes (i.e. discrete max principle)with strongly monotone operators in functional analytic sense.

14/37

Page 29: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

Notation: H := H2(Ω) ∩ H10 (Ω), ‖v‖2

H := ‖D2u‖2 + 2λ‖∇u‖2 + λ2‖u‖2

Key ingredients

1. The Cordes condition, which implies by direct calculation that

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤√

1− ε‖u − v‖H (6)

2. Miranda–Talenti: for convex Ω,

‖w‖H ≤ ‖Lλw‖L2 ∀w ∈ H2(Ω) ∩ H10 (Ω) (7)

where Lλv := ∆v − λv (recall λ > 0)

Maugeri, Palagachev & Softova, 2000, and Grisvard 1985

15/37

Page 30: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤√

1− ε‖u − v‖H , ‖v‖H ≤ ‖Lλv‖L2

Strong monotonicity:Recall A(u; v) =

∫ΩFγ [u]Lλvdx .

A(u; u − v)−A(v ; u − v) =

∫Ω

(Fγ [u]− Fγ [v ]) Lλ(u − v)dx .

Addition–subtraction of ‖Lλ(u − v)‖2L2 gives

A(u; u − v)−A(v ; u − v) = ‖Lλ(u − v)‖2L2

+

∫Ω

(Fγ [u]− Fγ [v ]− Lλ(u − v)) Lλ(u − v)dx︸ ︷︷ ︸≥−√1−ε‖u−v‖H‖Lλ(u−v)‖L2≥−

√1−ε‖Lλ(u−v)‖2

L2

Therefore

A(u; u−v)−A(v ; u−v) ≥ (1−√

1− ε)‖Lλ(u−v)‖2L2 ≥ (1−

√1− ε)‖u−v‖2

H

16/37

Page 31: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤√

1− ε‖u − v‖H , ‖v‖H ≤ ‖Lλv‖L2

Strong monotonicity:Recall A(u; v) =

∫ΩFγ [u]Lλvdx .

A(u; u − v)−A(v ; u − v) =

∫Ω

(Fγ [u]− Fγ [v ]) Lλ(u − v)dx .

Addition–subtraction of ‖Lλ(u − v)‖2L2 gives

A(u; u − v)−A(v ; u − v) = ‖Lλ(u − v)‖2L2

+

∫Ω

(Fγ [u]− Fγ [v ]− Lλ(u − v)) Lλ(u − v)dx︸ ︷︷ ︸≥−√1−ε‖u−v‖H‖Lλ(u−v)‖L2≥−

√1−ε‖Lλ(u−v)‖2

L2

Therefore

A(u; u−v)−A(v ; u−v) ≥ (1−√

1− ε)‖Lλ(u−v)‖2L2 ≥ (1−

√1− ε)‖u−v‖2

H

16/37

Page 32: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory: proof of well-posedness

‖Fγ [u]− Fγ [v ]− Lλ(u − v)‖L2 ≤√

1− ε‖u − v‖H , ‖v‖H ≤ ‖Lλv‖L2

Strong monotonicity:Recall A(u; v) =

∫ΩFγ [u]Lλvdx .

A(u; u − v)−A(v ; u − v) =

∫Ω

(Fγ [u]− Fγ [v ]) Lλ(u − v)dx .

Addition–subtraction of ‖Lλ(u − v)‖2L2 gives

A(u; u − v)−A(v ; u − v) = ‖Lλ(u − v)‖2L2

+

∫Ω

(Fγ [u]− Fγ [v ]− Lλ(u − v)) Lλ(u − v)dx︸ ︷︷ ︸≥−√1−ε‖u−v‖H‖Lλ(u−v)‖L2≥−

√1−ε‖Lλ(u−v)‖2

L2

Therefore

A(u; u−v)−A(v ; u−v) ≥ (1−√

1− ε)‖Lλ(u−v)‖2L2 ≥ (1−

√1− ε)‖u−v‖2

H

16/37

Page 33: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

2. PDE theory

Approach to numerical analysis:

Since the proof of well-posedness hinges on the strong monotonicity of

A(u; v) =

∫Ω

Fγ [u]Lλvdx ,

we will attempt to discretise the operator A and conserve its strongmonotonicity.

• The Cordes condition carries over straightforwardly to discrete setting

• The Miranda–Talenti inequality does not carry over if the approximationspace is not inside H2(Ω) ∩ H1

0 (Ω).

17/37

Page 34: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Overview

Talk outline

1. Introduction: Hamilton–Jacobi–Bellman (HJB) equations.

2. Analysis: Analysis of HJB equations with Cordes coefficients.

3. Numerical methods: High-order discontinuous Galerkin methods for HJBequations with Cordes coefficients.

Design of a consistent, stable and convergent method Error bounds Extension to parabolic problems Numerical experiments

18/37

Page 35: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Let Thh a shape-regular sequence of meshes on Ω.

• Elements composing the mesh can be parallelepipeds, simplices, or moregenerally any combination of standard elements.

• The mesh is not assumed to be quasi-uniform (very useful for hp-refinement).

• Hanging nodes allowed.

19/37

Page 36: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Construction of the discontinuous finite element space

Discontinuous finite element space:

Vh,p := vh ∈ L2(Ω): vh|K ∈ PpK (K ) ∀K ∈ Th.

Polynomial degrees p = (pK )K∈Th

Approximation in H2 requires pK ≥ 2 for all elements K .

20/37

Page 37: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

F nFKintKext

Distinguish interior and boundary faces

F ih interior faces of Th, Fb

h boundary faces of Th,

F i,bh := F i

h ∪ Fbh .

Jump operators over faces:

JφK := τF (φ|Kext)− τF (φ|Kint) , φ := 12τF (φ|Kext) + 1

2τF (φ|Kint) , if F ∈ F i

h,

JφK := τF (φ|Kext) , φ := τF (φ|Kext) , if F ∈ Fbh ,

21/37

Page 38: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Notation of discontinuous Galerkin methods:

F nFKintKext

Let tid−1i=1 ⊂ Rd be an orthonormal coordinate system on F . Define the

tangential gradient and divergence

∇T u :=d−1∑i=1

ti∂u

∂ti, divT v :=

d−1∑i=1

∂vi∂ti

. (8)

21/37

Page 39: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

The goal is to discretise

A(u; v) =

∫Ω

Fγ [u] Lλv dx ,

whilst conserving the strong monotonicity bound.

Recall main ingredients:

1. The Cordes condition → remains unchanged in discrete setting.

2. Miranda–Talenti inequality: not conserved when replacingH2(Ω) ∩ H1

0 (Ω) by Vh,p.

Our approach:

• Miranda–Talenti inequality was derived from an integration by partsidentity (Maugeri et al 2000, Grisvard 1984)

• We will include a discrete weak form of this identity in the scheme (nextslide)

22/37

Page 40: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

23/37

Page 41: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

〈Fγ [uh], Lλvh〉K :=

∫K

supα∈Λ

[γα(Lαuh − f α)] (∆vh − λvh) dx .

23/37

Page 42: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

Jump penalisation with µF ' p2K/hK and ηF ' p4

K/h3K for F ⊂ ∂K :

Jh(uh, vh) :=∑

F∈F i,bh

[µF 〈J∇T uhK, J∇T vhK〉F + ηF 〈JuhK, JvhK〉F

]+∑F∈F i

h

µF 〈J∇uh · nF K, J∇vh · nF K〉F .

23/37

Page 43: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

〈Lλuh, Lλvh〉K :=

∫K

(∆uh − λuh) (∆vh − λvh) dx .

23/37

Page 44: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

Bh(uh, vh) :=∑K∈Th

[〈D2uh,D

2vh〉K + 2λ〈∇uh,∇vh〉K + λ2〈uh, vh〉K]

+∑F∈F i

h

[〈divT∇Tuh, J∇vh · nF K〉F + 〈divT∇Tvh, J∇uh · nF K〉F

]−∑

F∈F i,bh

[〈∇T∇uh · nF, J∇T vhK〉F + 〈∇T∇vh · nF, J∇T uhK〉F

]−λ∑

F∈F i,bh

[〈∇uh·nF ,JvhK〉F +〈∇vh·nF ,JuhK〉F ]−λ∑F∈F i

h[〈uh,J∇vh·nF K〉F +〈vh,J∇uh·nF K〉F ]

23/37

Page 45: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: design of the method

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Ah(uh; vh) :=∑K∈Th

〈Fγ [uh], Lλvh〉K + Jh(uh, vh)

+1

2

(Bh(uh, vh)−

∑K∈Th

〈Lλuh, Lλvh〉K).

Key consistency result: If u ∈ H2(Ω) ∩ H10 (Ω) has well-defined second

derivative traces on faces F of the mesh, then

Bh(u, vh) =∑K

〈Lλu, Lλvh〉K , Jh(u, vh) = 0 ∀ vh ∈ Vh,p.

Technical point: a sufficient condition is that u ∈ Hs(K) with s > 5/2 for every

K ∈ Th.

23/37

Page 46: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: consistency, stability and error bounds

Numerical scheme: find uh ∈ Vh,p such that

Ah(uh; vh) = 0 ∀ vh ∈ Vh,p. (scheme)

Full theoretical justification given in [S. & Suli, SINUM 2014]:

• Consistency Theorem: sufficiently regular solution of (Elliptic HJB)solves:

Ah(u; vh) = 0 ∀ vh ∈ Vh,p.

• Discrete Stability Theorem: Existence & uniqueness of numerical solutionsince the nonlinear form Ah is strongly monotone: provided µF & p2/hand ηF & p2/h

‖uh − vh‖2h . Ah(uh; uh − vh)− Ah(vh; uh − vh) ∀ uh, vh ∈ Vh,p,

where

‖vh‖2h :=

∑K∈Th

[|vh|2H2(K) + 2λ|vh|2H1(K) + λ2‖vh‖2

L2(K)

]+ Jh(vh, vh)

• Consistency+Stability =⇒ error bounds and convergence.

24/37

Page 47: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: error bounds

‖vh‖2h :=

∑K∈Th

[|vh|2H2(K) + 2λ|vh|2H1(K) + λ2‖vh‖2

L2(K)

]+ Jh(vh, vh).

Theorem (High-order convergence rates)(Under previous assumptions & standard assumptions for DG meshes...)

Assume that u ∈ Hs(Ω; Th), with sK > 5/2 for all K ∈ Th.

‖u − uh‖2h .

∑K∈Th

[htK−2K

psK−5/2K

‖u‖HsK (K)

]2

,

where tK = min(pK + 1, sK ) for each K ∈ Th.

Simplified form:

‖u−uh‖h .hmin(s,p+1)−2

ps−5/2‖u‖Hs (Ω).

• Optimal in h, half-order subopt. in p

• High-order convergence rates.

• Higher efficiency on well-chosen meshesand hp-refinement.

25/37

Page 48: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: error bounds

If u has only minimal regularity, then we have the following quasi-optimalapproximation property with respect to the H2-conforming subspace:

Theorem (Minimal regularity error bound)Under previous assumptions. . .

Let u ∈ H2(Ω) ∩ H10 (Ω) be the solution of (Elliptic HJB). Then

‖u − uh‖h ≤ infzh∈Vh,p∩H2(Ω)∩H1

0 (Ω)‖u − zh‖h.

Note however that DG method requires only quadratic polynomials, whereasH2-conforming methods may require higher (e.g. Argyris elements requirequintic polynomials).

26/37

Page 49: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: extensions to parabolic problems

S. & Suli, Num. Math. 2016: extension to parabolic HJB equations

• Generalisation of the Cordes condition and the PDE theory: existenceand uniqueness of the strong solutionu ∈ L2(0,T ;H2(Ω) ∩ H1

0 (Ω)) ∩ H1(0,T ; L2(Ω)).

• Numerical scheme: hp-τq-version space-time DGFEM using tensorproduct of Vh,p with piecewise polynomials in time.

• Stability, consistency and convergence rates that are:

h-optimal,

p-suboptimal by p3/2,

τ -optimal,

q-optimal.

• Exponential convergence rates under hp-τq refinement verifiedexperimentally.

27/37

Page 50: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 1: h-refinement

Experiment 1 : Test of high order convergence rates under h-refinement,fixed p.

Example (Control of correlated diffusions)

aα :=1

2R>(

1 + sin2 θ sin θ cos θsin θ cos θ cos2 θ

)R

α := (θ,R) ∈ [0, π3 ]× SO(2) =: Λ.

Remark: aα becomes increasingly anisotropic as θ → π/3; rotation matricesR ∈ SO(2) prevent monotone schemes from aligning the grid with theanisotropy.

28/37

Page 51: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 1: h-refinement

Example (Control of correlated diffusions)Uniform h-refinement on smooth solution u(x , y) = exp(xy) sin(πx) sin(πy):

1/21/41/81/161/321/6410−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

h

h2

h3

h4

Mesh size

‖u−

uh‖ H

2(Ω

;Th

)

p = 2

p = 3

p = 4

p = 5

29/37

Page 52: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 2: hp-refinement

Experiment 2: test of exponential convergence rates under hp-refinement

Example (Strong anisotropy + boundary layer)Let Ω = (0, 1)2, bα ≡ (0, 1), cα ≡ 10 and define

aα := α>(

20 11 0.1

)α, α ∈ Λ := SO(2), λ =

1

2.

(Cordes1) holds with ε ≈ 0.0024 and λ = 1/2. Choose solution:

u(x , y) = (2x − 1)(e1−|2x−1| − 1

)(y +

1− ey/δ

e1/δ − 1

), δ := 0.005 = O(ε)

• Near-degenerate and anisotropic diffusion.

• Sharp boundary layer.

• Non-smooth solution.

30/37

Page 53: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 2: hp-refinement

Example (Strong anisotropy + boundary layer)We use boundary layer adapted meshes with p-refinement: 2 ≤ pK ≤ 10,from 100 to 1320 DoFs.

Boundary layer adaptedmesh. 5 6 7 8 9 10 11

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

3√

DoF

Rel

ativ

eer

ror

Broken H2 norm

Exponential rate: ‖u − uh‖h . exp(−c 3√DoF).

31/37

Page 54: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: Experiment 3: linearization and algebraic solvers

Solution of nonlinear equation by a superlinearly convergent semismoothNewton method. [S. & Suli, SINUM 2014, Sect. 8]

1 2 3 4 5 6 7Converged

10−12

10−8

10−4

1

Iteration number k

‖uh−uk h‖ H

2(Ω

;Th

)

h = 1/4

h = 1/8

h = 1/16

h = 1/32

h = 1/64

32/37

Page 55: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 3: linearization and algebraic solvers

Nonoverlapping domain decomposition preconditioners with GMRES: (alltolerances 10−6 in discrete H2-type norm)

Average GMRES iterations (Newton steps)

4 Subdomains 16 SubdomainsDoF h H = 2h H = 4h H = 8h H = 2h H = 4h H = 8h

144 1/4 14.3 (6)576 1/8 15.2 (5) 18.8 (5) 17.8 (5)

2304 1/16 15.4 (5) 20.0 (5) 26.8 (5) 18.0 (5) 25.0 (5)9216 1/32 16.3 (6) 19.7 (6) 29.5 (6) 17.3 (6) 24.0 (6) 36.5 (6)

36864 1/64 16.0 (6) 18.3 (6) 26.3 (6) 17.2 (6) 22.0 (6) 32.8 (6)147456 1/128 16.3 (6) 18.3 (6) 23.0 (6) 17.0 (6) 19.8 (6) 28.0 (6)

h p = 2 p = 3 p = 4 p = 5

1/4 18 21 21 221/8 19 20 19 20

1/16 19 19 19 191/32 18 19 17 181/64 17 19 16 17

33/37

Page 56: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 4: Parabolic

Example (Strongly anisotropic parabolic problem)Let Ω = (0, 1)2, I = (0, 1), Λ = SO(2),

aα := α

(1 1/40

1/40 1/800

)α>, α ∈ Λ.

For ω = 1, Cords condition holds with ε ≈ 1.25× 10−3.

Solution u = (1− e−t) exp(xy) sin(πx) sin(πy).

Uniform refinement with q = p − 1, h ' τ .

Remark (Monotone FDM)Consistency requires (at least) stencil width ≥ 20, with more than 1529stencil points.

34/37

Page 57: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

3. Numerics: experiment 4: Parabolic

1/21/41/81/161/32

10−6

10−5

10−4

10−3

10−2

10−1 h

h2

h3

Mesh size h ' τ

|||u−uh|||

h|||u|||

h

p = 2

p = 3

p = 4

1/21/41/81/161/3210−8

10−6

10−4

10−2 h2

h3

h4

Mesh size h ' τ

‖u(T

)−uh(T

)‖H

1(Ω

;Th)

‖u(T

)‖H

1(Ω

;Th)

p = 2

p = 3

p = 4

|||v |||2h :=N∑

n=1

∫In

∑K∈Th

[ω2‖∂tv‖2

L2(K) + ‖v‖2H2(K)

]dt.

35/37

Page 58: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

Summary and outlook

Is it possible to have stable, consistent and convergent methods for fullynonlinear PDEs without discrete maximum principles?

• For equations with Cordes coefficients as presented here

Consistency & Stability of non-conforming discretisations Convergence rates for sufficiently regular solutions Non-structured meshes, varying polynomial degrees, etc.

36/37

Page 59: Discontinuous Galerkin finite element methods for Hamilton … · 2017-06-20 · Talk outline 1. Introduction: Hamilton{Jacobi{Bellman (HJB) equations. 2. Analysis: Analysis of HJB

References

Linear nondivergence form PDE: Discontinuous Galerkin finite elementapproximation of nondivergence form elliptic equations with Cordescoefficients,

I. S. & E. Suli, SIAM J. Numer. Anal. 2013.

Elliptic HJB: Discontinuous Galerkin finite element approximation ofHamilton–Jacobi–Bellman equations with Cordes coefficients,

I. S. & E. Suli, SIAM J. Numer. Anal. 2014.

Parabolic HJB: Discontinuous Galerkin finite element methods for

time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients,

I. S. & E. Suli, Numerische Mathematik 2016.

Solvers: Nonoverlapping Domain Decomposition Preconditioners forDiscontinuous Galerkin Approximations of Hamilton–Jacobi–BellmanEquations,

I. S., Journal of Scientific Computing, 2017.

Thank you!

37/37


Recommended