+ All Categories
Home > Documents > Discrete-Time Markov Chains • Continuous-Time...

Discrete-Time Markov Chains • Continuous-Time...

Date post: 07-Oct-2018
Category:
Upload: buihanh
View: 228 times
Download: 0 times
Share this document with a friend
78
ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 1 Markov Processes and Applications • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications Queuing theory Performance analysis
Transcript
Page 1: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 1

Markov Processes and Applications

• Discrete-Time Markov Chains

• Continuous-Time Markov Chains

• Applications

– Queuing theory

– Performance analysis

Page 2: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 2

Discrete-Time Markov ChainsBooks

- Introduction to Stochastic Processes (Erhan Cinlar), Chap. 5, 6

- Introduction to Probability Models (Sheldon Ross), Chap. 4

- Performance Analysis of Communications Networks and Systems

(Piet Van Mieghem), Chap. 9, 11

- Elementary Probability for Applications (Rick Durrett), Chap. 5(http://www.math.cornell.edu/~durrett/ep4a/bch5.pdf)

- Introduction to Probability, D. Bertsekas & J. Tsitsiklis, Chap. 6

Page 3: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 3

1 2 1 1 1 2 3 1

2 1 1

th order pdf of some stoc. proc. { } is given by( , ,..., ) ( | , ,..., ) ( | , ,..., )

... ( | ) ( )

very difficult to have it in generalIf { } is

n n n n n n n

t

t t t t t t t t t t t

t t t

t

n Xf x x x f x x x x f x x x x

f x x f x

X

− − − −=

INTRODUCTION :

1 2 1 1

1 2 1 2 1 1

an indep. process:( , ,..., ) ( ) ( )... ( )

If { } is a process with indep. increments:( , ,..., ) ( ) ( )... ( )

: First order pdf's are sufficient for a

n n n

n n n

t t t t t t

t

t t t t t t t t

f x x x f x f x f x

Xf x x x f x f x x f x x

=

•= − −

Note

0 0

1 2 1 2

0

0

bove special cases

If { } is a process whose evolution beyond is (probabilistically)completely determined by and is indep. of , , given , then:

( , ,..., ) ( | )... (n n n

t

t t t

t t t t t t

X tx x t t x

f x x x f x x f x−

•<

=1 1

| ) ( )

This is a Markov process ( th order pdf simplified)t tx f x

n

Page 4: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 4

Definition of a Markov Process (MP)

known. is present"" that theprovided

},...,{ past"" theof indep. is state next"" The :

.0 all and ... all and allfor

e)uncountabl ()|(),...,|(or

countable) ()|(),...,|(:iff (MP) Process Markov a

called is set a from valuess that take};{ proc. stoch.A

21

111

111

21

−−

−−

><<<

=

=

nn

n

nnnn

nnnn

ttt

nt

ttttt

ttttt

t

xxx

ntttx

Exxfxxxf

ExxPxxxf

EItX

Notice

Page 5: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 5

Definition of a Markov Chain (MC)

dconstructe bemay MC a matrix) (stoch. given aFor

matrix) c(stochasti i, 1),( negative,-non is

...),(...)1,()0,(

...),1(...)1,1()0,1(

...),0(...)1,0()0,0(

MC) theof space-(state ,...}2,1,0{ Assume MC). shomogeneou- timeafor of (indep.,}|{),(

:iesprobabilitn transitioby the described is and MC a called is MP a then countable is and countable is If

MP) value-discrete & time-(Discrete

1

P

jiPP

nnPnPnP

nPPPnPPP

P

EnEjiiXjXPjip

EI

j

nn

∑ ∀=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=

=∈=== +

MMM

MMM

:matrix Transition

Page 6: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 6

44444 344444 21

444 3444 21

),(

),(

22113

10

1100221100

0

3

1

12

2

),(),(),(}|{)iterations through (general 3For :Proof

.matrix n transitio theofpowerth theofentry ),( theis ),(;,,

),(}|{,

,...,,,),()...,()(},...,,,{

then,,}{)( s.t. on PMF a is If

jiP

El

jlP

Elnn

k

knkn

n

nnnn

jlPllPliPiXjXPnk

PkjijiPkEji

jiPiXjXPk

EiiiNniiPiiPiiXiXiXiXP

EiiXPiE

∑ ∑∈ ∈

+

+

===

=

∈∀∈∀

===

∈∀

∈∈∀=====∈==

N

N:stransition step-k

:rule Chain

πππ

Page 7: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 7

From previous,

( , ) ( , ) ( , ) ,

In order for { } to be in after steps and starting from ,it will have to be in some after steps and move then t

+

= ∈

+

∑m n m n

k E

n

P i j P i k P k j i j E

X j m n ik m

Chapman Kolmogorov Equations :

o in the remaining steps.

jn

Page 8: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 8

0

1 1

# of successes in Bernoulli process{ ; 0} , # of successes in trials

, 0 , indep. Bernoulli, { 1}

Notice: evolution of { } beyond

does not depe

=

+ +

≥ =

= ≥ = =

= + ⇒

∑n n

n

n i i ii

n n n n

N n N n

N Y n Y P Y p

N N Y N n

Example :

10

1 0 1 1 0 1

nd on { } (given ) and thus { } is a M.C.

{ | , ,..., } { | , ,..., }0 ...

if 10 0 ...

1 if and 0 0 0 ...

0 otherwise

Notice: { } is

−=

+ += = = −

⎡ ⎤= +⎧ ⎢ ⎥

⎪ ⎢ ⎥= = − = =⎨ ⎢ ⎥⎪ ⎢ ⎥⎩⎣ ⎦M

ni i n n

n n n n n

n

n

n

N N N

P N j N N N P Y j N N N Nq p

p j Nq p

q p j N Pq p

N a special M.C. whose increment is indep. both from present and past (process with indep. increments)

Page 9: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 9

1 2

1 1

1 0 1 0

1

0 1 2 3

: Sum of i.i.d. RV's with PMF { ; 0,1, 2,...} 0 0

... 1

{ | ,..., } { | ,..., }

Thus { } is a M.C. with ( , ) { | }n

k

nn

n n n

n n n n n j X

n n n j i

p kn

XY Y Y n

X X YP X j X X P Y j X X X p

X P i j P X j X i p

p p p p

P

+ +

+ + −

+ −

=

=⎧= ⎨ + + + ≥⎩

= +

= = = − =

= = = =

=

Example

0 1 2

0 1

0

...0 ...0 0 ...0 0 0 ...

p p pp p

p

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦M M M M O

Page 10: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 10

)i.i.d. are ,..., then identical rows all has If(1 and identical are rows that Notice

)1()0(

)1()0()1()0(

M.C. a is }{)(}{},...,|{

,...2,1,0,)( with i.i.d. ,...,t trialsIndependen :

10

101

10

XXPmPP

P

XjjXPXXjXP

kkXX

m

n

nnn

≥∀=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=

=====

++

OMM

L

MM

L

L

ππ

ππππ

ππ

Example

Page 11: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 11

matrix) stochastic-(double (here) 1columns

matrix) (stoch. 1rows

M.C. a is }{,5) (modulo },,,,{ with }4,3,2,1,0{ i.i.d. are }{ :

04321

10432

21043

32104

43210

11

43210

∑∑

==

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

=

+=∈

++

ppppppppppppppppppppppppp

P

XYXXpppppYY

nnnn

nnExample

Page 12: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 12

1

: Remaining lifetimeAn equipment is replaced by an identical as soon as it fails

Pr{a new equip. lasts for time units} 1,2,...

remaining lifetime of equip. at time ( ) 1 if (

( )

k

n

n nn

p k k

X nX X

ω+

= =

=

−=

Example

1

1

0 1

) 1( ) 1 if ( ) 0

( ) is the lifetime of equip. installed at time It is independent of , ,..., is a M.C.

n n

n

n

n

Z XZ n

X X XX

ωω ω

ω+

+

≥⎧⎨ − =⎩

Page 13: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 13

1

1 1

1 1

1 2 3 4

1:( , ) { | } { 1 | }

1 if 1{ 1| }

0 if 10 :(0, ) { | 0} { 1 | 0}

{ 1}

1 0 0 00 1 0 00 0 1 0

+

+ +

+ +

• ≥= = = = − = =

= −⎧= = + = = ⎨ ≠ −⎩

• == = = = − = == = + =

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥=⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

L

L

L

L

M M M M O

n n n n

n n

n n n n

n j

iP i j P X j X i P X j X i

j iP X j X i

j ii

P j P X j X P Z j XP Z j p

p p p p

P

Page 14: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 14

1

0 1

1 0 1 0

: (conditional indep. of future from past given present)Let be a bounded function of , ,... . Then

E{Y| , ,..., } E{Y| }

E{ ,... | } E{ ,... | }

n n

n n

n n n

Y X XX X X X

f(X ,X )X i f(X ,X )X i

+

+

=

= = =

Theorem

Proposition :

Corol

0 1 0

1 0 1

: a bounded function on ... Let E{ ,... | }.

Then E{ ,... | , ,..., }n n n n

f E Eg(i) f(X ,X )X i

n N f(X ,X )X X X g(X )+

× ×= =

∀ ∈ =

lary

Page 15: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 15

),...,,at lookingby determined becan }{event theif timestopping a is ( truehold above then time,stopping a is If

.at hold tosaid isproperty Markov strong then the,present given indep.lly conditiona are

};{ future theand };{past the, RV afor If

instead? RVan is timeifWhat timefixedfor derived results Previous

10 n

T

mm

XXXnTTT

TX

TmXTmXT

n

≤•

≥≤•

∈N:Times Stopping

Page 16: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 16

1 1

0 1 0

1

0 1

0

{ ( , ,...) | , } { ( , ,...) | }

For ( ) { ( , ,...) | } { ( , ,...) | ; } ( )

1 if e.g., if ( , ,...) ,

0 if

{ ( ,

T T n T T T

T T n T

m

m

TE f X X X n T E f X X X

g i E f X X X iE f X X X n T g X

a jf a a j E m N

a j

E f X X

+ +

+

• ≤ =• = =

≤ =

=⎧= ∈ ∈⎨ ≠⎩

For any stopping time :

1 0 0

1

,...) | } { | } ( , ){ ( , ,...) | , } { | ; }

Strong Markov property at T: { | ; } ( , )

mm

T T n T m n

mT m n T

X i P X j X i P i jE f X X X n T P X j X n T

P X j X n T P X j

+ +

+

= = = = =≤ = = ≤

= ≤ =

Page 17: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 17

Visits to a state

{ }= ; ∈nX X n N MC, State space E , Transition matrix P . Notation: 0{ } { }= | =iP A P A X i and 0[ ] [ ]= | =iE Y E Y X i Let ∈j E , ω∈Ω and Define:

( )ωjN = total number of times state j appears in 0 1( ) ( )ω ω, ,X X …. ♣ ( )ω < ∞jN , X eventually leaves state j never to return. ♣ ( )ω = ∞jN , X visits j again and again. Let 1 2( ) ( )ω ω, ,T T … the successive indices 1≥n for which ( )ω =nX j . ♣ If ∃/ n then 1 2 1( ) ( ) ( )ω ω ω= − = = ∞LT T T ♣ If j appears a finite number of times m , then 1 2( ) ( ) ( ) ( )ω ω ω ω+ +− = − = = ∞Lm m m mT T T T ∀ ∈n N , { ( ) }ω ≤mT n is equivalent to j appears in 1{ ( ) ( )}ω ω, ,L nX X at least m times.

mT is a stopping time.

Page 18: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 18

E

j

Example

1 2 3 4( ) 4 ( ) 6 ( ) 7 ( ) 9ω ω ω ω= , = , = , = ,T T T T …

Page 19: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 19

Proposition: 1∀ ∈ , , ≥i E k m

{ }1 11

0 { }{ } { }+

= ∞⎧− = , , = ⎨ = < ∞⎩

mi m m m

j m

TP T T k T … T

P T k T

Computation of 1{ }=jP T k . Let 1( ) { }, = =k iF i j P T k 1 ( )= ⇒ , =kk F i j 1 1{ 1} { } ( )= = = = ,i iP T P X j P i j

2 ( )≥ ⇒ , =kk F i j 1 1{ }−≠ , , ≠ , =Li k kP X j X j X j

= 1 2 1 1{ }{ } { }−∈ −

= ≠ , , ≠ , = | =∑ Li i k kb E jP X b P X j X j X j X b

= 1 1 2 1{ }{ } { }− −∈ −

= ≠ , , ≠ , =∑ Li b k kb E jP X b P X j X j X j

Thus,

1

{ }

( ) 1( ) ( ) ( ) 2−

∈ −

, =⎧⎪, = ⎨ , , ≥⎪⎩∑k k

b E j

P i j kF i j P i b F b j k

Page 20: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 20

Example: Let 3=j an the transition matrix 1 0 0

1/ 2 1/6 1/31/3 3/5 1/15

=

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

P

Find ( ) ( ) 1 2 3= , , = , ,k kf i F i j i • 1=k . In this case 1f is the 3rd column of matrix P. Hence, 1 1(1) (1 ) 0= , =f F j , 1 1(2) (2 ) 1 3= , = /f F j , 1 1(3) (3 ) 1 15= , = /f F j

• 2≥k . In this case

1

{ }

1

{ }

1

{ }

1

(1 ) ( )(1, )

(2, ) (2 ) ( )

(3, )(3 ) ( )

∈ −

∈ −

∈ −

, ,

= , ,

, ,

⎛ ⎞⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟= = ⋅⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎝ ⎠

k

b E jk

k k

b E j

k

k

b E j

k k

P b F b jF j

F j P b F b j

F jP b F b j

f Q f where 1 0 0

1/ 2 1/ 6 01/3 3/5 0

⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠

Q

After some algebra 1 2 3 4

0 0 0 01/ 3 1/18 1/108 1/ 6481/15 1/ 5 1/ 30 1/180

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

Lf f f f

and in general

1

2

1 1151 1(1 3) 0 (2 3) (3 3)

3 6 3 1 1 25 6 3

⎧ =⎪⎪⎛ ⎞, = , , = , , = ⎨⎜ ⎟⎛ ⎞⎝ ⎠ ⎪ ≥⎜ ⎟⎪ ⎝ ⎠⎩

k

kk k k

kF F F

k

Page 21: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 21

1

2

1 1151 1(1 3) 0 (2 3) (3 3)

3 6 3 1 1 25 6 3

⎧ =⎪⎪⎛ ⎞, = , , = , , = ⎨⎜ ⎟⎛ ⎞⎝ ⎠ ⎪ ≥⎜ ⎟⎪ ⎝ ⎠⎩

k

kk k k

kF F F

k

Now we can state:

• Starting at state 1, X never visits 3 with probability: 1 1{ } 1= +∞ =P T • Starting at state 2 , X first visits 3 at k with probability: 11 1

3 6( ) −k • Starting at state 2 , X never visits 3 with probability:

1 31 12 1 2 1 3 6 51{ } 1 { } 1 ( )∞ −

== +∞ = − < +∞ = − =∑ k

kP T P T

• Starting at state 3 , X never visits 3 again with probability:52

3 1 3 1 75{ } 1 { }= +∞ = − < +∞ =P T P T

Page 22: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 22

Now, for every ,i j we define

11

( ) { } ( )∞

=

, = < +∞ = ,∑i kk

F i j P T F i j

♣ ( ),F i j expresses the probability: starting at i the MC will ever visit state j .

{ }( ) ( ) ( ) ( )

∈ −

, = , + , , , ∈∑b E j

F i j P i j P i b F b j i E

If by jN we denote the total number of visits to state j , then

{ }= =j jP N m ( )1( ) 1 ( )−, − ,mF j j F j j

and for ≠i j , { }= =i jP N m ( )1

1 ( ) 0( ) ( ) 1 ( ) 1 2−

− , =⎧⎨ , , − , = , ,⎩

m

F i j mF i j F j j F j j m …

>From the previous we obtain the Corollary:

1 ( ) 1

{ }0 ( ) 1

, <⎧< +∞ = ⎨ , =⎩

j j

F j jP N

F j j

Page 23: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 23

Now, for every ,i j we define

11

( ) { } ( )∞

=

, = < +∞ = ,∑i kk

F i j P T F i j

♣ ( ),F i j expresses the probability: starting at i the MC will ever visit state j .

{ }

( ) ( ) ( ) ( )∈ −

, = , + , , , ∈∑b E j

F i j P i j P i b F b j i E

If by jN we denote the total number of visits to state j , then

{ }= =j jP N m ( )1( ) 1 ( )−, − ,mF j j F j j

and for ≠i j , { }= =i jP N m ( )1

1 ( ) 0( ) ( ) 1 ( ) 1 2−

− , =⎧⎨ , , − , = , ,⎩

m

F i j mF i j F j j F j j m …

>From the previous we obtain the Corollary:

1 ( ) 1

{ }0 ( ) 1

, <⎧< +∞ = ⎨ , =⎩

j j

F j jP N

F j j

Page 24: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 24

Now, for every ,i j we define

11

( ) { } ( )∞

=

, = < +∞ = ,∑i kk

F i j P T F i j

♣ ( ),F i j expresses the probability: starting at i the MC will ever visit state j .

{ }( ) ( ) ( ) ( )

∈ −

, = , + , , , ∈∑b E j

F i j P i j P i b F b j i E

If by jN we denote the total number of visits to state j , then

{ }= =j jP N m ( )1( ) 1 ( )−, − ,mF j j F j j

and for ≠i j , { }= =i jP N m ( )1

1 ( ) 0( ) ( ) 1 ( ) 1 2−

− , =⎧⎨ , , − , = , ,⎩

m

F i j mF i j F j j F j j m …

>From the previous we obtain the Corollary:

1 ( ) 1

{ }0 ( ) 1

, <⎧< +∞ = ⎨ , =⎩

j j

F j jP N

F j j

Page 25: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 25

Let ( ) [ ], = i jR i j E N ( R is called the potential matrix of X ) Then, ( ), =R j j 1

1 ( )− ,F j j

( ), =R i j ( , ) ( )F i j R j j, , (i≠j) Computation of ( ),R i j first and then ( ),F i j Define:

1 ( )1

1 ( ) 1 ( ( ))0 ( )0

ωω

ω, =, = ⎧⎧

= ⇒ =⎨ ⎨ , ≠, ≠⎩ ⎩n

j j nn

X jk jk X

X jk j

Then,

( )ω =jN01 ( ( ))ω∞

=∑ j nnX

( ), =R i j0 0 0 01 ( ) 1 ( ) { } ( )∞ ∞ ∞ ∞

= = = =⎡ ⎤ ⎡ ⎤= = = = ,⎣ ⎦⎣ ⎦∑ ∑ ∑ ∑ n

i j n i j n i nn n n nE X E X P X j P i j

In matrix notation: 2 2= + + + ⇒ = = + + = −L LR I P P RP PR P P R I from which we obtain ( ) ( )− = − =R I P I P R I

( , ) ( , ) ( , ) (1 ( , )) 0R i j F i j R j j F i j= + −

Page 26: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 26

Classification of states X: MC, with state space E , transition matrix P T : The time of first visit to state j

jN : The total number of visits to state j Definition ♣ State j is called recurrent if { } 1< ∞ =jP T ♣ State j is called transient if { } 0= ∞ >jP T ♣ A recurrent state j is called null if [ ] = ∞jE T ♣ A recurrent state j is called non-null if [ ] < ∞jE T ♣ A recurrent state j is called periodic with period δ , if 2δ ≥ is the greatest integer for which

{ for some 1} 1δ= ≥ =jP T n n

Page 27: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 27

• If j is recurrent then starting at j the probability of returning to j is 1.

( ) 1 ( ) [ ] { } 1j j j jF j j R j j E N P N, = ⇒ , = = +∞⇐⇒ = +∞ =

• If j is transient then there exists a positive probability 1 ( )− ,F j j of never

returning to j .

( ) 1 ( ) [ ] { } 1, < ⇒ , = < ∞⇐⇒ < ∞ =j j j jF j j R j j E N P N

In this case ( ) ( ) ( ) ( ), = , , < , < ∞R i j F i j R j j R j j and since ( ) ( ), = ,∑ n

nR i j P i j

we conclude that

lim ( ) 0→∞

, →n

nP i j

Page 28: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 28

Theorem: ♣ If j transient or recurrent null then

lim ( ) 0→∞

∀ ∈ , , →n

ni E P i j

♣ If j recurrent non-null then

( ) lim ( ) 0 and lim ( ) ( ) ( )π π→∞ →∞

= , > ∀ ∈ , , = ,n n

n nj P j j i E P i j F i j j

♣ If j periodic with period δ , then a retutrn to j is possible only at steps numberedδ , 2δ , 3δ , ...

( ) { } 0 only if {0 2 }δ δ, = = > ∈ , , ,nj nP j j P X j n …

Page 29: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 29

♣ A recurrent state j is called periodic with periodδ , if 2δ ≥ is the greatest integer for which

{ for some 1} 1δ= ≥ =jP T n n ♣ If j periodic with period δ , then a return to j is possible only at steps numbered

δ , 2δ , 3δ , ...

( ) { } 0 only if {0 2 }δ δ, = = > ∈ , , ,nj nP j j P X j n …

Recurrent non-null Recurrent null Transient { } 1< ∞ =jP T { } 0= ∞ >jP T

[ ] < ∞jE T [ ] = ∞jE T

( ) 1 ( ) [ ] { } 1j j j jF j j R j j E N P N, = ⇒ , = = +∞ ⇐⇒ = +∞ = ( ) 1 ( ) [ ]

{ } 1j j

j j

F j j R j j E N

P N

, < ⇒ , = < ∞

⇐⇒ < ∞ =

( ) lim ( ) 0 and

lim ( ) ( ) ( )

n

n

n

n

j P j j i E

P i j F i j j

π

π→∞

→∞

= , > ∀ ∈ ,

, = ,lim ( ) 0n

ni E P i j

→∞∀ ∈ , , →

Page 30: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 30

We say that state j can be reached from state i → ,i j if 0 ( ) 0nn P i j∃ ≥ : , >

→ ,i j iff ( ) 0F i j, >

Definition: • A set of states is closed if no state outside it can be reached from any state in it. • A state forming a closed set by itself is called an absorbing state • A closed set is called irreducible if no proper subset of it is closed. • A MC is called irreducible if its only closed set is the set of all states

Comments: ♣ If j is absorbing then ( ) 1, =P j j . ♣ If MC is irreducible then all states can be reached from each other. ♣ If 1 2{ }= , , ∈LC c c E is a closed set and ( ) ( ), = ,i jQ i j P c c , , ∈i jc c C , then Q is a Markov matrix. ♣ If →i j and →j k then →i k . To find the closed set C that contains i we work as follows:

• Starting with i we include in C all states j that can be reached from i : ( ) 0, >P i j . • We next include in C all states k that can be reached from j : ( ) 0, >P j k . • We repeat the previous step

Page 31: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 31

Example: MC with state space { }= , , , ,E a b c d e and transition matrix

1 10 0 02 2

1 30 0 04 4

1 20 0 03 3

1 1 10 04 2 41 1 10 03 3 3

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

P

Comments: • Closed sets: { }, ,a c e and { }, , , ,a b c d e • There are two closed sets. Thus, the MC is not irreducible.

c

e

Page 32: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 32

Example: MC with state space { }= , , , ,E a b c d e and transition matrix

1 10 0 02 2

1 30 0 04 4

1 20 0 03 3

1 1 10 04 2 41 1 10 03 3 3

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

P

Comments: • Closed sets: { }, ,a c e and { }, , , ,a b c d e • There are two closed sets. Thus, the MC is not irreducible. • If we delete the 2nd and 4th rows we obtain the Markov matrix:

1 1 02 2

1 203 3

1 1 13 3 3

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Q

elabel the states 1

If we r = a , 2 = c , 3 = e , 4 = b and

d we get 5 =

1 1 0 0 02 2

1 20 03 3

1 1 1 0 03 3 3

1 30 0 04 4

1 10 04 2

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

P

0

14

Page 33: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 33

Lemma If j recurrent and → ⇒ →j k k j . Thus, ( ) 1, =F k j . Proof: If →j k then k is reached without returning to j with probability a. Once kis reached, the probability that j is never visited again is 1 ( )− ,F k j . Hence, 1 ( ) a(1 ( )) 0− , ≥ − , ≥F j j F k j But j is recurrent, so that ( ) 1 ( ) 1, = ⇒ , =F j j F k j ♠ As a result: If →j k but →/k j , then j must be transient. Theorem: From recurrent states only recurrent states can be reached. Theorem: In a Marcov chain the recurrent states can be divided in a unique manner,into irreducible closed sets 1C , 2C , …, and after an appropriate arrangement:

1

2

3

1 2 3

0 0 00 0 00 0 0

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L L L O M

L

PP

PP

Q Q Q Q

Page 34: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 34

Theorem: Let X an irreducible MC. Then, one of the following holds: • All states are transient. • All states are recurrent null • All states are recurrent non-null • Either all aperiodic or if one is periodic with period δ , all are periodic

with the same period. Proof: Since X is irreducible then →j k and →k j , which means that ∃ , :r s

( ) 0, >rP j k and ( ) 0, >sP k j . Pick the smallest ,r s and let ( ) ( )β = , ,r sP j k P k j . • If k recurrent ⇒ j recurrent. • If k transient ⇒ j transient. (If it was recurrent then k would be recurrent) • If k recurrent null then ( ) 0, →mP k k as →∞m . But

( ) ( ) ( ) 0β+ + , ≥ , ⇒ , →n r s n nP k k P j j P j j

Page 35: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 35

Corollary: If C irreducible closed set of finitely many states, then ∃/ recurrent nullstates. Proof: If one is recurrent null then all states are recurrent null. Thus, lim ( ) 0→∞ , = , ∀ , ∈n

n P i j i j C . But, 0 ( ) 1 lim ( ) 1

→∞∈ ∈

∀ ∈ , ≥ , , = ⇒ , =∑ ∑n n

nj C j Ci C n P i j P i j

Because, we have finite number of states lim ( ) lim ( ) 0

→∞ →∞∈ ∈

, = , =∑ ∑n n

n nj C j CP i j P i j

Corollary: If C is an irreducible closed set with finitely many states then there are notransient states

Page 36: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 36

Algorithm - Finite number of states

• Identify irreducible closed sets. • All states belonging to an irreducible closed set are recurrent positive • The rest of the states are transient • Periodicity is checked to each irreducible set

Page 37: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 37

Example: The irreducible closed sets are {1 3}, , {2 7 9}, , and {6}. The states {4 5 8 10}, , , aretransient. If we relabel the states we obtain

11 12 21 0

1 2 03 3

1 304 4

1 0 00 0 0 0 0 0 0 1 0 0

1 1 10 0 0 0 0 0 03 3 3

1 1 1 10 0 0 0 0 04 4 4 4

1 1 10 0 0 0 0 0 03 3 3

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

P

Page 38: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 38

Example: Let nN the number of successes in the first n Bernoulli trials. As we have seen

1

1( ) { }

0 otherwise+

= +⎧⎪, = = | = = =⎨⎪⎩

n n

p j iP i j P N j N i q j i

Thus,

000 0

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

M M M O

q pq p

Pq

∀j we have 1→ +j j but 1+ →/j j . This means that j is not recurrent. Since the MC is irreducible all states are transient.

Page 39: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 39

Example: Remaining lifetime

Remember: 11

( ) 1 ( ) 1( )

( ) 1 ( ) 0ω ω

ωω ω+

+

− ≥⎧= ⎨ − =⎩

n nn

n n

X XX

Z X

from which we obtain:

1≥i 1

1 1( ) { } { 1 }

0 1n n n n

j iP i j P X j X j P X j X j

j i+

= −⎧, = = | = = − = | = = ⎨ ≠ −⎩

0=i 1 1(0 ) { 0} { 1 0}+ +, = = | = = − = | =n n n nP j P X j X P Z j X

1 1{ 1}+ += = + =n jP Z j p

1 2 3

1 0 00 1 00 0 1

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L

M M M O

p p p

P

Page 40: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 40

1 2 3

1 0 00 1 00 0 1

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L

M M M O

p p p

P

>From state 0 we reach state j in one step. From j we can reach 1−j , 2−j , ..., 1,0 . Thus, all states can be reached from each other, which means that the MC isirreducible. Since, (0 0) 0, >P the MC is aperiodic. Return to state 0 occurs if thelifetime is finite: 1 (0 0) 1= ⇒ , = =∑ ∑j j

j j

p F p

Since state 0 is recurrent, all states are recurrent. If the expected lifetime: = +∞∑ j

jjp

then state 0 is null and all states are recurrent null. If the expected lifetime: < ∞∑ j

jjp

then state 0 is non-null and all states are recurrent non-null.

Page 41: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 41

Algorithm - Infinite number of states Theorem: Let X an irreducible MC, and consider the system of linear equations: ( ) ( ) ( )ν ν

= , , ∈∑i E

j i P i j j E

Then all states are recurrent non-null iff there exists a solution ν with ( ) 1ν

=∑j E

j

Theorem: Let X an irreducible MC with transition matrix P , and let Q be thematrix obtained from P by deleting the k -row and k -column for some ∈k E . Thenall states are recurrent if and only if the only solution of

0

0( ) ( ) ( ) 0 ( ) 1∈

= , , ≤ ≤ , ∈∑j E

h i Q i j h j h i i E

is ( ) 0=h i for all 0∈i E . 0 { }= −E E k . • Use first theorem to determine whether all states are recurrent non-null or not. • In the latter case, use the second theorem to determine whether the states are

transient or not.

Page 42: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 42

Example: Random walks.

0 10

0 0

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

M M M M O

q pP

q p

• All states can be reached from each other, and thus the chain is irreducible. • A return to state 0 can occur only at steps numbered 2,4,6,... Therefore, state 0 isperiodic with period 2δ = . • Since X is irreducible all states are periodic with period 2. • Either all states are recurrent null, or all are recurrent non-null, or all the states aretransient. Check for a solution of ν ν= P . 0ν = 1νq

1ν = 0 2ν ν+ q

2ν = 1 3ν ν+p q

3ν = 2 4ν ν+p q

Page 43: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 43

Hence, 1ν = 1

0νq

2ν = 21 1

0 0 0ν ν ν⎛ ⎞⎜ ⎟⎝ ⎠

− = pq q q

3ν = ( ) 2

2 31

0 0ν ν− =p p pq qq q

Any solution is of the form

1

01 1 2ν ν

−⎛ ⎞

= , = , ,⎜ ⎟⎝ ⎠

j

jp j …

q q

If <p q , then 1/ <p q and

1

0 00 1

1 21ν ν ν−∞ ∞

= =

⎛ ⎞⎛ ⎞⎜ ⎟= + =⎜ ⎟⎜ ⎟ −⎝ ⎠⎝ ⎠

∑ ∑j

jj j

p qq q q p

If we choose 0 2ν −= q pq then 1ν =∑ j and

1

1 1 02

( )1 1 1

2

ν −

⎧ ⎛ ⎞− , =⎪ ⎜ ⎟

⎝ ⎠⎪= ⎨⎛ ⎞⎛ ⎞⎪ − , ≥⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎝ ⎠⎩

j

p jq

jp p j

q q q

In this case all states are recurrent non null

Page 44: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 44

If >p q either all states are recurrent null or all states are transient. Consider thematrix

00

0 0

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

M M M M O

pq p

Qq p

The equation =h Qh gives ( ( )=ih h i )

1

1 11−

+

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

L

i i

iq q qh hp p p

• If =p q then 1=ih ih for all 1≥i and the only way to have 0 1≤ ≤ih for all i is bychoosing 1 0=h which implies 0=ih that is all states are recurrent null. • If >p q , then choosing 1 1 ( )= − /h q p , we get

1⎛ ⎞

= − ⎜ ⎟⎝ ⎠

i

iqhp

which also satisfies 0 1≤ ≤ih . In this case all states are transient.

Page 45: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 45

Calculation of R and F ♣ ( ) [ ]i jR i j E N, = Expected number of visits to state j . ♣ ( )F i j, = The probability of ever reaching state j starting at i . j Recurrent state: ( ) 1 ( )F j j R j j, = ⇒ , = ∞

( )R i j, = ( ) ( )F i j R j j, , ( )R i j, =0 ( ) 0

( ) 0F i jF i j

, =⎧⎨+∞ , >⎩

j Transient / i Recurrent state: ( ) 0 ( ) 0F i j R i j, = ⇒ , =

i j, Transient Let { the transient states }D = , ( ) ( )Q i j P i j, = , , ( ) ( )S i j R i j, = , , i j D, ∈ .

Then 0 0m

m

mm

K KP P

L Q L Q

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

⎛ ⎞= ⇒ =⎜ ⎟⎝ ⎠

Hence, 2

0 0

0mm m

mm mm

KR P S Q I Q Q

L Q

⎛ ⎞∞ ∞⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟= =⎜ ⎟⎝ ⎠

= = ⇒ = = + + +∑

∑ ∑∑ ∑L

Page 46: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 46

Computation of S S = 2I Q Q+ + + ⇒L

SQ QS= = 2Q Q S I+ + = − ⇒L ( )I Q S I− = , ( )S I Q I− = Proposition: If there are finitely many transient states 1( )S I Q −= − ♣ When the set D of transient states is infinite, it is possible to have more than one solution to the system. Theorem: S is the minimal solution of ( )I Q Y I− = , 0Y ≥ Theorem: S is the unique solution of ( )I Q Y I− = if and only if the only bounded solution of h Qh= is 0h = , or equivalently 0 1 0h Qh h h= , ≤ ≤ ⇐⇒ =

Page 47: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 47

Example: Let X a MC with state space {1 2 3 4 5 6 7 8}E = , , , , , , ,

0 4 0 3 0 30 0 6 0 4

0 5 0 5 0

0 10 8 0 2

0 0 0 0 4 0 6 00 4 0 4 0 0 0 0 20 1 0 0 3 0 6 0 0

P

. . . | |⎛ ⎞⎜ ⎟. . . | |⎜ ⎟⎜ ⎟. . . | |⎜ ⎟− − − | − − | − − −⎜ ⎟

⎜ ⎟| . . |= ⎜ ⎟

| . . |⎜ ⎟⎜ ⎟− − − | − − | − − −⎜ ⎟

. . . | | . . .⎜ ⎟⎜ ⎟. . . | | . . .⎜ ⎟⎜ ⎟. . . | | . . .⎝ ⎠

{1 2 3}, , are recurrent positive

aperiodic.

{4 5}, are recurrent positive aperiodic.

{6 7 8}, , are transient

1

1

0 4 0 6 0 0 6 0 6 00 0 0 2 ( ) 0 1 0 2

0 6 0 0 0 6 0 1Q S I Q

. . . . − . .⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= . . . ⇒ = − = . . − .⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟. . . − . . .⎝ ⎠ ⎝ ⎠

Page 48: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 48

0 0 0 0 00 0 0 0 00 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0

125 75 150 066 66 6615 75 150 066 66 6675 45 750 066 66 66

R

∞ ∞ ∞ | |⎛ ⎞⎜ ⎟∞ ∞ ∞ | |⎜ ⎟⎜ ⎟∞ ∞ ∞ | |⎜ ⎟− − − | − − | − − −⎜ ⎟

⎜ ⎟| ∞ ∞ |⎜ ⎟

| ∞ ∞ |⎜ ⎟= ⎜ ⎟− − − | − − | − − −⎜ ⎟⎜ ⎟∞ ∞ ∞ | |⎜ ⎟⎜ ⎟⎜ ⎟∞ ∞ ∞ | |⎜ ⎟⎜ ⎟⎜ ⎟∞ ∞ ∞ | |⎜ ⎟⎝ ⎠

S transienti

recurrent, can be reached from j i transient, recurrentj i

recurrenti

transientjrecurrentj

recurrent, cannot be reached from j i , transientj i

Page 49: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 49

Computation of ( )F i j, ♣ i j, recurrent belonging to the same irreducible closed set ( ) 1F i j, = ♣ i j, recurrent belonging to different irreducible closed sets ( ) 0F i j, = ♣ i j, transient Then ( )R i j, < ∞ and

1 ( )( ) 1 ( )

( ) ( )R i jF j j F i j

R j j R j j,

, = − , , =, ,

♣ i transient, j recurrent ???? Lemma: If C is irreducible closed set of recurrent states, then for any transient state i : ( ) ( )F i j F i k, = , for all j , k C∈ . Proof: For ( ) ( ) 1j k C F j k F k j, ∈ ⇒ , = , = . Thus, once the chain reaches any one of thestates of C , it also visits all the other states. Hence, ( ) ( )F i j F i k, = , is the probability of entering the set C from i .

Page 50: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 50

Let

1

2

3

1 2 3

PP

PP

Q Q Q Q

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

O

Lump all states of jC together to make one absorbing state:

1 2 3

11

1ˆ ( ) ( )

1j

jk C

m

P b i P i k i D

b b b b Q

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟

= , = , , ∈⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

∑O

L

The probability of ever reaching the absorbing state j from the transient state i by the chain with the transition matrix P̂ is the same as that of ever reaching jC from i .

1

0ˆ ( ) ( )j

mk C

IP B b b B i j P i k ı D

B Q⎡ ⎤⎢ ⎥⎣ ⎦

⎛ ⎞= , = , , = , , ∈⎜ ⎟⎝ ⎠

∑L

2 10ˆ ( )n n

nnn

IB I Q Q Q BP B Q

⎛ ⎞⎜ ⎟ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= , = + + + +L

( )nB i j, is the probability that starting from i , the chain enters the recurrent class jC

Page 51: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 51

Define:

0

lim knn k

G B Q B SB∞⎛ ⎞

⎜ ⎟⎜ ⎟⎜ ⎟→∞

=⎝ ⎠

= = =∑

♣ ( )G i j, is the probability of ever reaching the set jC from the transient state i : ( ( )F i j, ) Proposition: Let Q the matrix obtained from P by deleting all the rows and columnscorresponding to the recurrent states, and let B be defined as previously, for eachtransient i and recurrent class jC .

• Compute S • Compute G SB= • ( ) ( )G i j F i k, = , , jk C∀ ∈ .

• If there is only one recurrent class and finitely many transient states, then things are different. In this case, it can be proved that: 1 ( ) 1G F i j j C= ⇒ , = , ∀ ∈

Page 52: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 52

Example: Let X a MC with state space {1 2 3 4 5 6 7 8}E = , , , , , , ,

0 4 0 3 0 3

0 0 6 0 4

0 5 0 5 0

0 1

0 8 0 2

0 0 0 0 4 0 6 0

0 4 0 4 0 0 0 0 2

0 1 0 0 3 0 6 0 0

P

. . . | |

. . . | |

. . . | |

− − − | − − | − − −

| . . |=

| . . |

− − − | − − | − − −

. . . | | . . .

. . . | | . . .

. . . | | . . .

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Page 53: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 53

1 1 1 0 0 0 0 01 1 1 0 0 0 0 01 1 1 0 0 0 0 0

0 0 0 1 1 0 0 00 0 0 1 1 0 0 0

1 1 1 0 0 0 472 1 0 201 1 1 0 0 0 12 0 12 0 201 1 1 0 0 0 60 0 60 0 12

F

| |⎛ ⎞⎜ ⎟| |⎜ ⎟⎜ ⎟| |⎜ ⎟− − − | − − | − − −⎜ ⎟⎜ ⎟| |

= ⎜ ⎟| |⎜ ⎟

⎜ ⎟− − − | − − | − − −⎜ ⎟

| | . . .⎜ ⎟⎜ ⎟| | . . .⎜ ⎟⎜ ⎟| | . . .⎝ ⎠

transienti

, recurrent belonging to the same irreducible closed set i j

transient, recurrentj i

recurrenti

transientjrecurrentj

, recurrent belonging to different irreducible closed sets i j

1( ) 1

( )

( )( )

( )

, transient

F j jR j j

R i jF i j

R j j

j i

, = − ,,

,, =

,

one (reachable) recurrent class and finitely many transient states

Page 54: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 54

Example:

0 5 0 50 8 0 2

1 0 0 00 0 4 0 6

0 1 0 0ˆ1 0 00 1 0 5 0 3 0 1

1 0 00 2 0 2 0 2 0 4

0 1 0 0 2 0 2 0 1 0 3 0 10 1 0 1 0 1 0 0 1 0 2 0 4

P P

. .⎛ ⎞⎜ ⎟. .⎜ ⎟ ⎛ ⎞⎜ ⎟. . . ⎜ ⎟⎜ ⎟ ⎜ ⎟= ⇒ =. . .⎜ ⎟ ⎜ ⎟. . . .⎜ ⎟. . ⎜ ⎟⎜ ⎟ . . . .⎝ ⎠. . . . . . .⎜ ⎟⎜ ⎟. . . . . . .⎝ ⎠

Thus,

11 0 7 0 1 1 50 0 25

( )0 2 0 6 0 50 1 75

S I Q−

− . − . . .⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟− . . . .⎝ ⎠ ⎝ ⎠

1 50 0 25 0 1 0 5 0.2 0 80 50 1 75 0 2 0 2 0 4 0.6

G S B. . . . .⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⋅ = =⎜ ⎟⎜ ⎟ ⎜ ⎟. . . . .⎝ ⎠⎝ ⎠ ⎝ ⎠

and

1 11 1

1 1 11 1 11 1 1

1 10 2 0 2 0 8 0 8 0 83 71 30 4 0 4 0 6 0 6 0 63 7

F

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

= ⎜ ⎟⎜ ⎟⎜ ⎟. . . . .⎜ ⎟⎜ ⎟⎜ ⎟. . . . .⎜ ⎟⎝ ⎠

Page 55: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 55

Recurrent states and Limiting probabilities ♣ Consider only an irreducible set of states. Theorem: Suppose X is irreducible and aperiodic. Then all states are recurrent non-null if and only if

( ) ( ) ( ) ( ) 1i E j E

j i P i j j E jπ π π∈ ∈

= , , ∈ , =∑ ∑

has a solution π . If there exists a solution π , then it is strictly positive, there are noother solutions, and we have

( ) lim ( )n

nj P i j i j Eπ

→∞= , ,∀ , ∈

Corollary: If X in an irreducible aperiodic MC with finitely many states (no-null states, no transient states), then

1 1Pπ π π⋅ = , ⋅ =

has a unique solution. The solution π is strictly positive, and ( ) lim ( )n

nj P i jπ →∞= , , i j∀ , .

Page 56: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 56

♣ A probability distribution π which satisfies Pπ π= ⋅ , is called an invariantdistribution for X . ♣ If π is the initial distribution of X , that is, 0{ } ( ),P X j j j Eπ= = ∈

then { }nP X j= = ( ) ( ) ( )ni

i P i j jπ π, =∑ , for any n E∈

Proof: 2 nP P Pπ π π π= ⋅ = ⋅ = = ⋅L Algorithm: for finding lim ( )n

n P i j→∞ , • Consider the irreducible closed set containing j • Solve for ( )jπ . Thus, we find lim ( )n

n P j j→∞ , • For every i (not necessarily in E)

lim ( ) ( ) lim ( )n n

n nP i j F i j P j j

→∞ →∞, = , ,

Compute ( )F i j, first. Then, find lim ( )nn P i j→∞ ,

Page 57: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 57

Example:

E={1, 2, 3}, 0 3 0 5 0 20 6 0 0 40 0 4 0

P. . .⎛ ⎞

⎜ ⎟= . . .⎜ ⎟⎜ ⎟. . .⎝ ⎠

(1) (1)0 3 (2)0 6(2) (1)0 5 (3)0 4(3) (1)0 2 (2)0 4 (3)0 6

Pπ π π

π π π π ππ π π π

= . + .= ⇒ = . + + .

= . + . + .

1 1π =

System’s Solution:

6 7 1023 23 23

6 7 10 6 7 10lim ( )23 23 23 23 23 23

6 7 1023 23 23

n

nP P i jπ ∞

→∞

⎛ ⎞⎜ ⎟⎜ ⎟

⎛ ⎞ ⎜ ⎟= ⇒ = , =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

Page 58: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 58

Example:

E={1, 2, 3, 4, 5, 6, 7},

0 2 0 80 7 0 3

0 3 0 5 0 20 6 0 0 40 0 4 0 6

0 0 1 0 1 0 2 0 2 0 3 0 10 1 0 1 0 1 0 0 1 0 2 0 4

P

. .⎛ ⎞⎜ ⎟. .⎜ ⎟⎜ ⎟. . .⎜ ⎟

= . . .⎜ ⎟⎜ ⎟. . .⎜ ⎟

. . . . . . .⎜ ⎟⎜ ⎟. . . . . . .⎝ ⎠

1 1 2 2

0 3 0 5 0 20 2 0 8 7 8 6 7 100 6 0 0 40 7 0 3 15 15 23 23 23

0 0 4 0 6P Pπ π

. . .⎛ ⎞. .⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= ⇒ = , = . . . ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟. . ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟. . .⎝ ⎠

(6 1) (6 5) 0 2 0 2 0 8 0 8 0 8(7 1) (7 5) 0 4 0 4 0 6 0 6 0 6

F FF F

, , . . . . .⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥, , . . . . .⎣ ⎦ ⎣ ⎦

L

L

Page 59: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 59

Thus,

7 815 157 8

15 156 7 1023 23 236 7 10lim23 23 236 7 1023 23 23

1 4 1 6 4 8 5 6 8 0 015 15 23 23 232 8 3 2 3 6 4 2 6 0 015 15 23 23 23

n

nP P∞

→∞

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟. . . .

. .⎜ ⎟⎜ ⎟

. . . .⎜ ⎟. .⎜ ⎟⎝ ⎠

Page 60: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 60

Example:

Random walks: 0

0 0

q pq p

Pq p

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

M M M M O

( X irreducible aperiodic (since state 0 is aperiodic))

0 0

1

20 0 121 1

2 21 0 22

2 1 3 2 2 3

3 2 3

1

pq

q qp pp qp q p pq q

p q q qp p pqq q q

π π

π

π π πππ π π

ππ π π

π

= =

⎫= ⎪⎪= + ⎫ ⎪⎛ ⎞⎪ = − / == + ⎪ ⎛ ⎞⎜ ⎟⎪ =⎝ ⎠⎬ ⎬ ⎜ ⎟= + ⎝ ⎠⎪ ⎪⎛ ⎞⎪ ⎪= − / =⎭ ⎜ ⎟ ⎪⎝ ⎠⎪⎭

⇒ ⇒ L

M M

M M

♣ If p q≥ : no solution of Pπ π= ⋅ , 1 1π ⋅ =

♣ If p q< : ( )( )lim ( ) 1jp pn

n q qP i j→∞ , = −

Page 61: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 61

Example: Remaining lifetime

1 2 3

1 0 00 1 0

p p p

P

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

M M M O

0

0 0 1 1 01

0 2 2 1 11

0 3 3 1 22 2

11

1

pp pp p p

π

π π π νπ π π νπ π π ν

=

= + =⎫⎪= + + = −⎪⎬= + + = − −⎪⎪⎭

⇒M M M M

Thus,

0

jj

ν∞

=

=∑ 1 2 3 2 3 3( ) ( ) ( )p p p p p p+ + + + + + + + +L L L L

= 1 2 32 3p p p m+ + + =L ♣ [ ]nm E Z= is the expected lifetime. ♣ If m = ∞ then all states are recurrent null and lim ( ) 0n

n P i j→∞ , =

Page 62: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 62

Interpretation of Limiting Probabilities Proposition: Let j be an aperiodic recurrent non-null state, and let ( )m j be the expected time between two returns to j . Then,

1( ) lim ( )( )

n

nj P j j

m jπ

→∞= , =

The limiting probability ( )jπ of being in state j is equal to the rate at which j is visited. Proposition: Let j be an aperiodic recurrent non-null and let ( )jπ defined as previously. Then, for almost all ω∈Ω

0

1lim 1 ( ( )) ( )1

n

j mn mX j

nω π

→∞=

=+ ∑

♣ . If f is a bounded function on E , then

0 0

( ) ( ) 1 ( )n n

m j mm j E m

f X f j X= ∈ =

=∑ ∑ ∑

Corollary: X irreducible recurrent MC, with limiting probability π . Then, for any bounded function f on E :

0

1lim ( ) ( ) ( )1

n

mn m j Ef X f f j f j

nπ π π

→∞= ∈

= ⋅ , ⋅ =+ ∑ ∑

Page 63: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 63

Similar results hold for expectations Corollary: Suppose X is an irreducible recurrent MC with limiting distribution π . Then for any bounded function f on E

0

1lim [ ( )]1

n

i mn m

E f X fn

π→∞

=

= ⋅+ ∑

independent of i . • If ( )f j is the reward received whenever X is in j , then both the expected average reward in the long run and the actual average reward in the long run converge to theconstant fπ ⋅ . The ratio of the total reward received during the steps 0 1 … n, , , by using function f to the corresponding amount by using function g is

0

0

( )lim

( )

nmm

nnmm

f X fgg X

ππ

=

→∞=

⋅=

⋅∑∑

♣ The same holds even in the case that X is only recurrent (can be null or periodic or both)

Page 64: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 64

Theorem: Let X be an irreducible recurrent chain with transition matrix P . Then, the system Pν ν= ⋅ has a strictly positive solution; any other solution is a constant multiple of that one. Theorem: Suppose X is irreducible recurrent, and let ν be a solution of Pν ν= ⋅ . Then for any two functions f and g on E for which the two sums ( ) ( ) ( ) ( )

i E i Ef i f i g i g iν ν ν ν

∈ ∈

⋅ = , ⋅ =∑ ∑

converge absolutely and at least one is not zero we have

0

0

[ ( )]lim

[ ( )]

ni mm

nni mm

E f X fgE g X

νν

=

→∞=

⋅=

⋅∑∑

independently of i j E, ∈ . Moreover we also have

0

0

( ( ))lim

( ( ))

nmm

nnmm

f X fgg X

ω ννω

=

→∞=

⋅=

⋅∑∑

for almost all ω∈Ω

Page 65: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 65

Any non-negative solution of Pν ν= ⋅ is called an invariant measure of X . Comments:

Any irreducible recurrent chain X has an invariant measure, and this is unique upto a multiplication by a constant.

Furthermore, if X is also non-null, then 1 ( )j

jν ν⋅ = ∑ is finite, and ν is a

constant multiple of the limiting distribution π satisfying Pπ π= , 1 1π ⋅ = The existence of an invariant measure ν for X does not imply that X is

recurrent. For 1kf = , 1 jg = and i j=

0

0

1 ( ) ( )lim( )1 ( )

nj k mm

nnj j mm

E X kjE X

νν

=

→∞=

⎡ ⎤⎣ ⎦ =⎡ ⎤⎣ ⎦

∑∑

( )( )kj

νν is the ratio of the expected number of visits to k during the first n steps to

the expected number of returns to j during the same period as n →∞ ( )

( )kj

νν is the expected number of visits to k between two visits to state j

Page 66: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 66

Periodic States It is sufficient to consider only an irreducible MC with periodic recurrent states. Lemma: Let X be an irreducible MC with recurrent periodic states with period δ . Then, the states can be divided into δ disjoint sets 1B , 2B …, , Bδ such that ( ) 0P i j, =unless 1 2 2 3 1or or .i B j B i B j B i B j Bδ∈ , ∈ , ∈ , ∈ , ∈ , ∈L

Page 67: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 67

Example: X MC with {1 2 3 4 5 6 7}E = , , , , , ,

1 1 12 4 41 203 3

1 23 31 12 23 14 4

1 12 21 34 4

P

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

All states are periodic with period 3 . The sets are 1 {1 2}B = , , 2 {3 4 5}B = , , and

3 {6 7}B = , . >From 1B in one step the MC reaches 2B , in two steps 3B and in three steps 1B .

Page 68: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 68

2 3

23 25 71 12148 48 192 19211 7 29 4318 18 72 72

1 2 14 3 193 3 36 36 363 5 19 3 498 8 48 32 967 9 13 7 31

16 16 32 64 645 1 11 157 131

12 8 24 288 2883 1 9 111 818 16 16 192 192

P P

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟= , =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

⎟⎟⎟⎟⎟⎟⎟⎟

Note: 1

32

3

PP P P P

P

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= , =

• Chain corresponding to P has three closed sets 1B , 2B , 3B and each one of these is irreducible, recurrent and aperiodic. • The previous limiting theory applies to compute 1lim m

m P , 2lim mm P , 3lim m

m P separately.

Page 69: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 69

Theorem: Let P the transition matrix of an irreducible MC with recurrent periodicstates of period δ , and let 1B , 2B …, Bδ be as previously. Then, in the MC withtransition matrix P Pδ= , the classes 1B , 2B …, Bδ are irreducible closed sets of aperiodic states.

1

2 ( ) ( )a a

PP

P P i j P i j i j B

P

δ

δ

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

= , , = , , , ∈O

Comments:

If ai B∈ , then { } 1 (mod )i m bP X B b a m δ∈ = , = + ( )nP i j, does not have a limit as n →∞ except when all the states are null

(in which case ( ) 0nP i j i j n, → , ∀ , , → ∞ ) The limits ( )n mP i jδ + , exist as n →∞ , but are dependent on the initial

state i .

Page 70: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 70

Theorem: Let P and aB as previously and suppose that the chain is non-null. Then, for any {0 1 1}m … δ∈ , , , −

( ) (mod )

lim ( )0 otherwise

a bn m

n

j i B j B b a mP i jδ π δ+

→∞

∈ , ∈ , = +⎧, = ⎨

The probabilities ( )jπ , j E∈ form the unique solution of ( ) ( ) ( ) ( )

i E i Ej i P i j iπ π π δ

∈ ∈

= , , =∑ ∑

Page 71: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 71

Example: Let X be a MC with state space {1 2 3 4 5}E = , , , , ,

0 5 0 50 4 0 60 1

0 8 0 0 20 1 0

P

. .⎛ ⎞⎜ ⎟. .⎜ ⎟⎜ ⎟= . .⎜ ⎟. . .⎜ ⎟

⎜ ⎟. . .⎝ ⎠

The chain is irreducible, recurrent non-null periodic with period 2δ = .

2

0 4 0 5 0 10 32 0 6 0 08

0 1 00 4 0 60 4 0 6

P P

. . .⎛ ⎞⎜ ⎟. . .⎜ ⎟⎜ ⎟= = . . .⎜ ⎟

. .⎜ ⎟⎜ ⎟. .⎝ ⎠

( ) ( )1 20 32 0 60 0 08 0 4 0 6π π= . . . , = . .

2

0 32 0 60 0 080 32 0 60 0 08

lim 0 32 0 60 0 080 4 0 60 4 0 6

n

nP

→∞

. . .⎛ ⎞⎜ ⎟. . .⎜ ⎟⎜ ⎟= . . .⎜ ⎟

. .⎜ ⎟⎜ ⎟. .⎝ ⎠

2 1

0 4 0 60 4 0 6

lim 0 4 0 60 32 0 60 0 080 32 0 60 0 08

n

nP +

→∞

. .⎛ ⎞⎜ ⎟. .⎜ ⎟⎜ ⎟= . .⎜ ⎟. . .⎜ ⎟

⎜ ⎟. . .⎝ ⎠

Page 72: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 72

Example: Random Walks ( p q< )

0 10

0q p

Pq p

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠O O

• Cyclic Classes 1 {0 2 4 }B …= , , , , 2 {1 3 5 }B …= , , , • Invariant solution Pν ν= ⋅

0 2 42 2

2 4

1 3 53 5

1

1

p p …q qp p …

q q q

ν ν ν

ν ν ν

= , = , = ,

= , = , = ,

Normalize: 2

2

1 1 1 21 1 11 1i p p

q q

p pq q q q

ν⎡ ⎤

= + + + + = + =⎢ ⎥ − −⎣ ⎦∑ L

Multiply each term by 1 pq− . ( 2iν =∑ )

( )0 2 4 …π π π, , , = ( )( )3

2 41 1p p pq q q

…− , , ,

( )1 3 5 …π π π, , , = ( )( )2 4

3 511 p p p

q q q q…− , , ,

Page 73: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 73

Hence,

3

2 4

2

3

2 3

2 4

2

3

1 0 0

10 0 0

lim 11 0 0

10 0 0

n

n

p pq q

pq q

pP p pqq q

pq q

→∞

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L

M M M M M O

2

3

3

2 4

2 1 2

3

3

2 4

10 0 0

1 0 0

lim 1 10 0 0

1 0 0

n

n

pq q

p pq q

pP pqq q

p pq q

+

→∞

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L

M M M M M O

Page 74: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 74

Transient States If a MC has only finitely many transient states, then it will eventually leave the

set of transient states never to return. If there are infinitely many transient states, it is possible for the chain to remain

in the set of transient states forever. Example:

0 1 2 3

0 1 2

0 1

0

00 00 0 0

p p p pp p p

P p pp

⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠

L

L

L

L

M M M M O

All states are transient If initial state is i , then the chain stays forever in the set { 1 2 }i i i …, + , + , .

As n →∞ , ( )nX ω →∞

Page 75: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 75

Let A E⊂ , Q the matrix obtained from P by deleting all the rows and columnscorresponding to states which are not in A . Then, for i j A, ∈

( )nQ i j, =1 1

1 1 2 1( ) ( ) ( )n

ni A i AQ i i Q i i Q i j

−−∈ ∈

, , ,∑ ∑L L = { }1 1i n nP X A X A X j−∈ , , ∈ , =L

( )n

j A

Q i j∈

, =∑ { }1 1i n nP X A X A X A−∈ , , ∈ , ∈L

The event 1 1{ }nX A … X A+∈ , , ∈ is a subset of 1{ }nX A … X A∈ , , ∈ , therefore 1( ) ( )n n

j A j AQ i j Q i j+

∈ ∈

, ≥ ,∑ ∑

Let ( ) lim ( )n

n j Af i Q i j i A

→∞∈

= , , ∈∑

♣ ( )f i is the probability that starting at i A∈ , the chain stays in the set A forever.

Page 76: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 76

Proposition: The function f is the maximal solution of the system 0 1h Qh h= , ≤ ≤

Either 0f = or sup ( ) 1i A f i∈ = ♣ An application of the previous proposition was given in a theorem on theclassification of states: Theorem: Let X an irreducible MC with transition matrix P , and let Q be the matrix obtained from P by deleting the k -row and k -column for some k E∈ . Then all states are recurrent if and only if the only solution of

0

0( ) ( ) ( ) 0 ( ) 1j E

h i Q i j h j h i i E∈

= , , ≤ ≤ , ∈∑

is ( ) 0h i = for all 0i E∈ . 0 { }E E k= − . Proof:

Fix a perticular state and name it 0 . Since X is irreducible it is possible to go from 0 to some {0}i A E∈ = − . If the probability ( )f i of remaining in A forever is ( ) 0f i = for all i A∈ ,

then with probability 1, the chain will leave A and enter 0 again. Hence, if the only solution of the system is 0h = , then state 0 is recurrent

, and that in turn implies that all states are recurrent. Conversely, if all states are recurrent, then the probability of remaining in

the set A forever must be zero, since 0 will be reached with probability onefrom any state i A∈

Page 77: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 77

Example: (Random Walk)

00

0

pq p

Qq p

⎛ ⎞⎜ ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎝ ⎠O

• If p q> all states are transient.

( ) 1 1 2 3i

qf i i …p

⎛ ⎞= − , = , , ,⎜ ⎟

⎝ ⎠

This is the maximal solution since sup ( ) 1i f i = . Interpretation:

Starting at a state k (e.g. 7k = ) the probability of staying forever within the set

{1 2 3 }…, , , is equal to ( )71 q

p− .

If k k′ > , the probability of remaining in {1 2 3 }…, , , is greater. From the shape of P : the restriction of P to the set { 1 }k k …, + , is the same as the

matrix Q . Hence, for all {1 2 3 }k …∈ , , ,

{ }1

1 2 1i

k iqP X k X k …p

+

+

⎛ ⎞≥ , ≥ , = − ⎜ ⎟

⎝ ⎠

Page 78: Discrete-Time Markov Chains • Continuous-Time …cgi.di.uoa.gr/~istavrak/courses/06_pms524_DTMC.pdf · • Discrete-Time Markov Chains • Continuous-Time Markov Chains • Applications

ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) 78

For any subset A of E , let ( )Af i the probability of remaining forever in A given the initial state i A∈ . Then,

If A is an irreducible recurrent class, 1Af = . If A is a proper subset of an irreducible recurrent class, 0Af = . If A is a finite set of transient states, 0Af = . If A is an infinite set of transient states, then either 0Af = or 0Af ≠ .

In the latter case the chain travels through a sequence of sets ( 1 2 3A A A⊃ ⊃ L ) to “infinite”.


Recommended