+ All Categories
Home > Documents > Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental...

Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental...

Date post: 11-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
42
Disorder, Gain & Nonlinearity Disorder, Gain & Nonlinearity From mirrorless lasers to speckle instabilities From mirrorless lasers to speckle instabilities Patrick Sebbah Patrick Sebbah Laboratoire de Physique de la Matière Condensée Laboratoire de Physique de la Matière Condensée CNRS, Université de Nice, France CNRS, Université de Nice, France
Transcript
Page 1: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Disorder, Gain & NonlinearityDisorder, Gain & NonlinearityFrom mirrorless lasers to speckle instabilitiesFrom mirrorless lasers to speckle instabilities

Patrick SebbahPatrick SebbahLaboratoire de Physique de la Matière CondenséeLaboratoire de Physique de la Matière Condensée

CNRS, Université de Nice, FranceCNRS, Université de Nice, France

Page 2: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

OutlineOutline

• Light scattering in random media :An overview

• Multiple scattering in the presence of gain :Nature of the lasing mode in a random laser

• Nonlinear scattering in a Kerr disordered medium :Experimental evidence of speckle instabilities

Page 3: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

IntroductionIntroduction

Ballistic Regime

Free propagation

Single scattering approximation

Weak Scattering

Diffusion approximation

Strong Scattering

Strong Localization of Light ?

Page 4: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

2D Model 2D Model

Scatterers

• n1 = from 3 to 1.05• Ф = 40%• Ø = 120 nm

Matrix

• n0 = 1

L = 5.5 µm

Open boundary conditions (PML)

Maxwell Equations

µ0∂Hx/∂t = - ∂Ez/∂y

µ0∂Hy/∂t = ∂Ez/∂x

ε0 εi ∂Ez/∂t = ∂Hy/∂x - ∂Hx/∂y

Page 5: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Diffusive Regime: L>Diffusive Regime: L>ℓℓ>>λλ

• n0 = 1• n1 = 1.5

Page 6: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Localized Regime : Localized Regime : ℓℓ ~ ~ λλ

• n0 = 1• n1 = 3.0

Page 7: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Spectral signature in transmissionSpectral signature in transmission

Degree of Spectral Overlap : Degree of Spectral Overlap : δδ = < = <δνδν>/<>/<∆ν∆ν>>

0.000

0.001

0.002

10.20 10.25 10.30 10.35

δν

∆ν

Localized RegimeLocalized Regime

δδ <1<1

GHz17.2

17.0 17.1Diffusive RegimeDiffusive Regime

Δν

δν

δδ >1>1

GHz

Page 8: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Localized StatesLocalized States

a b

c d

e f

Page 9: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Wave Propagation in Random MediaWave Propagation in Random Media

• Some Fundamental questions:– Anderson Localization “Absence of diffusion in certain random lattices”,

P.W. Anderson, Phys. Rev 109(1958).

Topolancik & al., PRL 2007• Some applied problems

– Imaging in turbid media (seismology, medical imaging)– Focusing through random media– Quantum communication– Photonic crystals– …

–Transport in mesoscopic systems (weak localization, long range correlation, …)–Random lasing–Nonlinear scattering (NL optics in weakly disordered media / multiple scattering with small NL)–…

Roati & al. Nature 2008 Schwartz & al. Nature 2007 Laurent & al., PRL 2007Hu & al., Nature P 2008 Störzer & al., PRL 2006

Page 10: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

OutlineOutline

• Light scattering in random media :An overview

• Multiple scattering in the presence of gain :Nature of the lasing mode in a random laser

• Nonlinear scattering in a Kerr disordered medium :Experimental evidence of speckle instabilities

Page 11: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Random LasingRandom Lasing

Wiersma et al., Nature 2000

From Noginov, Nature (2008)

H. Cao, PRL82 (1999)

ZnO Powder

Page 12: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Fundamental questionsFundamental questions

• How scattering provides with the necessary feedback to observe sharp peaks in the emission spectrum ?

• How lasing modes are selected in random systems ?

• How is it possible to predict which mode will lase first ?

→ Simple answer in the regime of strong localizationVanneste et al. PRL01 , Sebbah et al. PRB02

Page 13: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Laser EquationsLaser Equations

yEtH zx ∂∂−=∂∂0µ

xEtH zy ∂∂=∂∂0µ

yHxHtPtE xyzi ∂∂−∂∂=∂∂+∂∂0εε

dN1 dt = N2 τ21 − WpN1

dN2 dt = N3 τ32 − N2 τ21 − Ez hωl( )dP dt

( ) dtdPENNdtdN lz ωττ �+−= 3234343

dN4 dt = − N4 τ43 + Wp N1

zll ENPdtdPdtPd ..²² 2 ∆=+∆+ κωω

Maxwell Equations Population Equations

Polarization Equation

Wp

Pump Laser Transition ωl

4

3

2

1

Vanneste et al. PRL01 , Sebbah et al. PRB02

Page 14: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

 

 

Laser Field Amplitude

Min

Max

Localized (∆n =1)

Threshold Lasing Mode: localized regimeThreshold Lasing Mode: localized regime

Vanneste et al., PRL, 183903 (2001)

The lasing mode is a mode of the passive system

Page 15: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Fundamental questionsFundamental questions

• How scattering provides with the necessary feedback to observe sharp peaks in the emission spectrum ?

• How lasing modes are selected in random systems ?

• How is it possible to predict which mode will lase first ?

→ Simple answer in the regime of strong localization

→ Not so simple in the diffusive regime

Page 16: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

430 440 450 460

1010

1015

1020

Spec

tral

 Inte

nsity

 (a.u

.)

Wavelength (nm)

Passive SpectrumPassive Spectrum

430 440 450 460

1010

1015

1020

Spec

tral

 Inte

nsity

 (a.u

.)

Wavelength (nm)

Localisé (∆n =1) Diffusif (∆n =0.25)

Page 17: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Origin of the lasing modes Origin of the lasing modes in the diffusive regime?in the diffusive regime?

• Donut Modes (Shapiro, PRL02)

• Long-lived modes (Chabanov, PRL03)

• Lucky photons (Wiersma, PRL04)

We showed that there is no need to search for exotic mechanisms

Lasing with resonant feedback is observed not only in strongly scattering RL, where localization provides with necessary feedback, but also in « badly » scattering systems.

Vanneste et al., PRL98, 143902 (2007)

Page 18: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Threshold Lasing Mode: diffusive regimeThreshold Lasing Mode: diffusive regime

 

 

Laser Field AmplitudeMin

Max

Diffusive (∆n =0.25)

Vanneste et al., PRL98, 143902 (2007)

The lasing mode is « similar » to a quasimode/resonance of the passive system

Page 19: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Threshold Lasing ModeThreshold Lasing Mode

Localized (∆n =1) Diffusive (∆n =0.25)

+ + + +++ + +

ReIm

+

++

+

++

++

+ +

++

+

ImRe

P

P

Page 20: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Quasimodes vs. Constant Flux ModesQuasimodes vs. Constant Flux Modes

Quasimodes CF Modes

Complex Real

H. Tureci et al., PRA 06

Page 21: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Lasing Mode vs Passive QuasimodeLasing Mode vs Passive Quasimode

n=1.75

passiveactive

A. Asatrian et al, « The nature of lasing modes in Random lasers: a Review », in progress

Page 22: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Lasing Mode vs Passive QuasimodeLasing Mode vs Passive Quasimode

n=1.5

passiveactive

A. Asatrian et al, « The nature of lasing modes in Random lasers: a Review », in progress

Page 23: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Lasing Mode vs Passive QuasimodeLasing Mode vs Passive Quasimode

n=1.25passiveactive

A. Asatrian et al, « The nature of lasing modes in Random lasers: a Review », in progress

Page 24: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

In SummaryIn Summary• Lasing with coherent feedback is possible, ,not only in the localized regime,

but even in open weakly-scattering media (no need of exotic mechanism)

• In contrast to conventional cavity laser, the threshold lasing mode of an open random active medium is not a quasimode of the passive system.

• Quasimodes, which diverge outside the system, must be replaced by Constant Flux Modes.

H.Cao et al, Phys.RevA 2006

H. Tureci et al., Science 320 (2008)

Page 25: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

OutlineOutline

• Light scattering in random media :An overview

• Multiple scattering in the presence of gain :Nature of the lasing mode in a random laser

• Nonlinear scattering in a Kerr disordered medium :Experimental evidence of speckle instabilities

Page 26: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Speckle Pattern SensitivitySpeckle Pattern Sensitivity

Re{E}

Im{E}

βφβ

ieA+

β

γ

γφγ

ieA+=E

c

ss νπλπφ αα

α22 ==

α

αφα

ieA )exp( ϕiA=+...

Page 27: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Nonlinear Scattering : PrincipleNonlinear Scattering : Principle

Fluctuation of  |ψ(r,t)|2  local change of refractive index,  ∆n = n2 |ψ(r,t)|2 

Alter Phases & interferences

Kerreffect

λπφ α

αs2=

Page 28: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Nonlinear Scattering & Optical LimitationNonlinear Scattering & Optical Limitation

Intensity I(r,t) Index n(r,t)

LASER

Sebbah et al., Nonlinear Optics, Vol. 27, p. 377 (2001)

NLNL

NLtNLL

ntrnnnn

ττ2),(

1 with =

+∂+=

Scatterers with nL=n0 & a non instantaneous Kerr NL : n2 , τNL

Page 29: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Speckle InstabilitySpeckle Instability

Positive feedback

Fluctuation of  |ψ(r,t)|2  local change of refractive index,  ∆n = n2 |ψ(r,t)|2 

Alter Phases & interferences

Kerreffect

λπφ α

αs2=

Page 30: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Earlier Theoretical PredictionsEarlier Theoretical Predictions

 Instability threshold  p=<n2I>2 (L/ℓ)3 > 1 (ℓ = the mean free path)

No experimental observation reported to date

B. Spivak and A. Zyuzin, Phys. Rev. Lett. 84, 1970 (2000).S. E. Skipetrov and R. Maynard, Phys. Rev. Lett. 85, 736 (2000)S. E. Skipetrov Phys. Rev. E (2001); Optics Lett. 28, 646 (2003); Phys. Rev. E67, 016601 (2003); J. Opt. Soc. Am. B21, 168 (2004).

 The fundamental timescale of the speckle pattern dynamics is set by the larger of τNL and TD=L2/D

 Slow NL :τNL > TD Fast NL : τNL < TD

Page 31: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Photorefractive Liquid-Crystal Light-ValvePhotorefractive Liquid-Crystal Light-Valve

Reorientational Kerr effectRelaxation time:

 τNL=γ/K d² ≈ 550 ms  > TD (~ 1µs)

BSO crystalPhotoconductive

Liquid crystalE48

 d=50 µm planar anchoring

∆n = 0.2306     L

 ≈ 20 mm

Page 32: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Disorder ProjectionDisorder Projection

Diameter 17 µm

Spatial light modulator

Spatial resolution down to 1 µm

Page 33: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Experimental SetupExperimental Setup

Page 34: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Experimental Observation Experimental Observation of Speckle Instabilityof Speckle Instability

Page 35: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Spectral AnalysisSpectral Analysis

1/τNL

Page 36: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Spectral AnalysisSpectral Analysis

Page 37: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Instability thresholdInstability threshold

Page 38: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Disorder dependenceDisorder dependence

0 50 100 1500

0.5

1

1.5

Averaged Intensity

Spec

tral P

eak 

Am

plitu

de

s12

 

 2.22Hz∅50 µm

ℓ~100µm

0 50 100 1500

0.5

1

1.5

Averaged Intensity

Spec

tral P

eak 

Am

plitu

de

s22

 

 2.33Hz∅20 µm

ℓ~40µm

Threshold depends on disorder mfp, not frequency

Page 39: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Kerr effect as a Gain MechanismKerr effect as a Gain Mechanism

Parametric process

Energy transfers from ωp to ωm when ωp≠ωm

Silberberg and Bar-Joseph, JOSA B (1984)

ωm

ωp

NonlinearKerr Medium

( ) 21

2

NL

NL

τδωτδω⋅+⋅

Gain ∝ with δω=ωp-ωm

Page 40: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

Frequency SelectionFrequency Selection

τNL < TD

Linear spectrum

τNL > TD

0 0.005 0.01 0.015 0.020

0.2

0.4

0.6

0.8

1

Frequency ω

Gai

n cu

rve

ωp -τ

NL-1

ωp

( ) 21

2

NL

NL

τδωτδω⋅+⋅

Frequency oscillation = δω= 1/τNL

δω depends only on τNL

Frequency oscillation = δω= ωP - ωm

δω depends on τNL & disorder

Page 41: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

In SummaryIn Summary

• Speckle instability demonstrated in 2D random scattering medium in a transverse geometry for a slow Kerr effect τNL>τD

• Similar to self phase modulation of the speckle pattern, However, the nonlinear phase φNL is not deterministic (kn2I0L) but randomly fluctuating

• Threshold occurs when fluctuations of φNL ~1– Depends on disorder (?)– Does not depend on the sign of the NL (??)

• Oscillation Frequency : beating between the pump ωP and – ωm = 1/τNL if τNL>τD

– ωm=eigenmode of the passive system if τNL<τD

Page 42: Disorder, Gain & Nonlinearitymesoimage.grenoble.cnrs.fr/IMG/pdf/sebbah.pdf · The fundamental timescale of the speckle pattern dynamics is set by the larger of τ NL and T D =L2/D

AcknowledgementsAcknowledgements

Nice LPMC : C. Vanneste, L. Labonté

Nice INLN : S. Résidori, U. Bortolozzo, F. Haudin

Yale University : H. Cao, D. Stone, L. Ge, J. Andreasen

ETH Zurich : H. Tureci

UT Sydney : A. Asatryan


Recommended