+ All Categories
Home > Documents > Distribution trends of European dragonflies under climate ...€¦ · complete picture of...

Distribution trends of European dragonflies under climate ...€¦ · complete picture of...

Date post: 29-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
15
Diversity and Distributions. 2019;1–15. | 1 wileyonlinelibrary.com/journal/ddi Received: 29 October 2018 | Revised: 19 January 2019 | Accepted: 15 February 2019 DOI: 10.1111/ddi.12913 BIODIVERSITY RESEARCH Distribution trends of European dragonflies under climate change Tim Termaat 1,2 | Arco J. van Strien 3 | Roy H. A. van Grunsven 1 | Geert De Knijf 4 | Ulf Bjelke 5 | Klaus Burbach 6 | Klaus‐Jürgen Conze 7 | Philippe Goffart 8 | David Hepper 9 | Vincent J. Kalkman 10 | Grégory Motte 8 | Marijn D. Prins 1,11 | Florent Prunier 12 | David Sparrow 13 | Gregory G. van den Top 1 | Cédric Vanappelghem 14,15 | Michael Winterholler 16 | Michiel F. WallisDeVries 1,17 1 De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands 2 Bosgroep Midden Nederland, Ede, The Netherlands 3 Statistics Netherlands, The Hague, The Netherlands 4 Research Institute for Nature and Forest, Brussels, Belgium 5 Swedish Biodiversity Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden 6 AG Libellen Bayern, Marzling, Germany 7 AK Libellen NRW, Essen, Germany 8 Direction générale opérationnelle Agriculture, Ressources naturelles et Environnement (DGARNE), Département de l'Etude du Milieu Naturel et Agricole, Direction de la Nature et de l'Eau, Service public de Wallonie, Gembloux, Belgium 9 British Dragonfly Society, Peterborough, UK 10 European Invertebrate Survey—The Netherlands, Nationaal Natuurhistorisch Museum Naturalis, Leiden, The Netherlands 11 Naturalis Biodiversity Centre, Leiden, The Netherlands 12 AEA El Bosque Animado, Valle del Genal, Spain 13 Cyprus Dragonfly Study Group, Pafos, Cyprus 14 Société française d'odonatologie, Bois d'Arcy, France 15 Unité “Evolution, Ecologie, Paléontologie”, UMR CNRS 8198, Bat. SN2 Université de Lille, Villeneuve d'Ascq, France 16 Bavarian Environment Agency, Augsburg, Germany 17 Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Diversity and Distributions Published by John Wiley & Sons Ltd Correspondence Tim Termaat, De Vlinderstichting/Dutch Butterfly Conservation, Wageningen, The Netherlands. Email: [email protected] Editor: Alan Andersen Abstract Aim: Poleward range shifts of species are among the most obvious effects of climate change on biodiversity. As a consequence of these range shifts, species communities are predicted to become increasingly composed of warm‐dwelling species, but this has only been studied for a limited number of taxa, mainly birds, butterflies and plants. As species groups may vary considerably in their adaptation to climate change, it is desirable to expand these studies to other groups, from different ecosystems. Freshwater macroinvertebrates, such as dragonflies (Odonata), have been ranked among the species groups with highest priority. In this paper, we investigate how the
Transcript
Page 1: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

Diversity and Distributions. 2019;1–15.  | 1wileyonlinelibrary.com/journal/ddi

Received:29October2018  |  Revised:19January2019  |  Accepted:15February2019DOI: 10.1111/ddi.12913

B I O D I V E R S I T Y R E S E A R C H

Distribution trends of European dragonflies under climate change

Tim Termaat1,2  | Arco J. van Strien3  | Roy H. A. van Grunsven1  | Geert De Knijf4  | Ulf Bjelke5 | Klaus Burbach6 | Klaus‐Jürgen Conze7 | Philippe Goffart8 | David Hepper9 | Vincent J. Kalkman10 | Grégory Motte8 | Marijn D. Prins1,11 | Florent Prunier12 | David Sparrow13 | Gregory G. van den Top1 | Cédric Vanappelghem14,15 | Michael Winterholler16 | Michiel F. WallisDeVries1,17

1DeVlinderstichting/DutchButterflyConservation,Wageningen,TheNetherlands2BosgroepMiddenNederland,Ede,TheNetherlands3StatisticsNetherlands,TheHague,TheNetherlands4ResearchInstituteforNatureandForest,Brussels,Belgium5SwedishBiodiversityCentre,SwedishUniversityofAgriculturalSciences,Uppsala,Sweden6AGLibellenBayern,Marzling,Germany7AKLibellenNRW,Essen,Germany8DirectiongénéraleopérationnelleAgriculture,RessourcesnaturellesetEnvironnement(DGARNE),Départementdel'EtudeduMilieuNatureletAgricole,DirectiondelaNatureetdel'Eau,ServicepublicdeWallonie,Gembloux,Belgium9BritishDragonflySociety,Peterborough,UK10EuropeanInvertebrateSurvey—TheNetherlands,NationaalNatuurhistorischMuseumNaturalis,Leiden,TheNetherlands11NaturalisBiodiversityCentre,Leiden,TheNetherlands12AEAElBosqueAnimado,ValledelGenal,Spain13CyprusDragonflyStudyGroup,Pafos,Cyprus14Sociétéfrançaised'odonatologie,Boisd'Arcy,France15Unité“Evolution,Ecologie,Paléontologie”,UMRCNRS8198,Bat.SN2UniversitédeLille,Villeneuved'Ascq,France16BavarianEnvironmentAgency,Augsburg,Germany17PlantEcologyandNatureConservationGroup,WageningenUniversity,Wageningen,TheNetherlands

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2019TheAuthors.Diversity and DistributionsPublishedbyJohnWiley&SonsLtd

CorrespondenceTimTermaat,DeVlinderstichting/DutchButterflyConservation,Wageningen,TheNetherlands.Email:[email protected]

Editor:AlanAndersen

AbstractAim: Polewardrangeshiftsofspeciesareamongthemostobviouseffectsofclimatechangeonbiodiversity.Asaconsequenceoftheserangeshifts,speciescommunitiesarepredictedtobecomeincreasinglycomposedofwarm‐dwellingspecies,butthishas only been studied for a limited number of taxa,mainly birds, butterflies andplants.Asspeciesgroupsmayvaryconsiderablyintheiradaptationtoclimatechange,it isdesirabletoexpandthesestudiestoothergroups,fromdifferentecosystems.Freshwater macroinvertebrates, such as dragonflies (Odonata), have been rankedamongthespeciesgroupswithhighestpriority.Inthispaper,weinvestigatehowthe

Page 2: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

2  |     TERMAAT ET Al.

1  | INTRODUC TION

Climatechangehasaprofound impactontheoccurrenceofmanyspecies of plants and animals (Parmesan & Yohe, 2003; Root etal., 2003;Walther et al., 2002).One of themost distinctive con‐sequencesisthepolewardshiftofspeciesdistributionrangesasaresultof increasingtemperatures,resulting inchanges inthecom‐position of species communities (Chen, Hill, Ohlemüller, Roy, &Thomas,2011;Hickling,Roy,Hill,Fox,&Thomas,2006;Kampichler,VanTurnhout,Devictor,&VanderJeugd,2012;Lindström,Green,Paulson,Smith,&Devictor,2013;Masonetal.,2015).Speciesvaryintheirresponsetoclimatewarming,duetodifferenttemperaturerequirementsanddifferentdispersalandcolonizationcapacities.Ingeneral,warm‐dwellingspeciesandspecieswithgooddispersalca‐pacityaremorelikelytobe“winners”thancold‐dwellingspeciesandspecieswithpoordispersalcapacity(Francoetal.,2006;Rosset&Oertli,2011;Virkkala&Lehikoinen,2014).Asaconsequence,com‐munitiesarepredictedtobecomeincreasinglycomposedofwarm‐dwelling,mobilespecies.

Thismayseemstraightforward,buttheeffectsofclimatechangeon species’ trends and community compositions have only beenstudiedfora limitednumberoftaxa(butseeHicklingetal.,2006;Masonetal.,2015),mainlybirds,butterfliesandplants(Bertrandetal.,2011;Britton,Beale,Towers,&Hewison,2009;Clavero,Villero,&Brotons,2011;Davey,Devictor,Jonzén,Lindström,&Smith,2013;

Devictoretal.,2012a;Jiguetetal.,2010;Roth,Plattner,&Amrhein,2014;Virkkala&Lehikoinen,2014).Togainabetterunderstandingofhowclimatechangeaffectstotaldiversity,moretaxaneedtobecovered,includingtaxafromdifferenthabitats.Freshwatermacroin‐vertebratesshouldberankedamongthefaunalgroupswithhighestpriority,astheyhaveverydifferentlifehistoriesfrombirdsandbut‐terfliesandoccupyverydifferentecosystems.Theyareknowntoreactquicklytoawiderangeofchangesintheirhabitats(Rosenberg&Resh, 1993). Furthermore, freshwater covers only 0.8% of theEarth's surface, while supporting almost 6% of all described spe‐cies,mostofwhichareinsects(Dijkstra,Monaghan,&Pauls,2014;Dudgeonetal.,2006).Atthesametime,theyareamongthemostseverelythreatenedecosystemsintheworld,withaquaticspeciesbeingmorethreatenedthanterrestrialspecies(Collenetal.,2014;Darwalletal.,2018;Dudgeonetal.,2006).Forthesereasons,fresh‐water invertebrateshavebeenindicatedasanessentialfuturead‐ditiontoEurope'sbiodiversitymonitoringprogramme(Feest,2013;Thomas,2005).

Unfortunately, monitoring freshwater invertebrates comeswithdrawbacks.Mostgroupsaresospecies‐rich thatcollecting,sortingandidentifyingsamplestospecies levelrequiremuchef‐fortandexperience.Therefore,thenumberofspecialistsstudyingthesegroupsis,inmostcountries,limited,whichresultsinanin‐completepictureofspecies’distributions.Dragonflies (Odonata)present an exception to this rule. Adult dragonflies are large,

occurrence of dragonflies in Europe has changed in recent decades, and if thesechangesareinparallelwithclimatechange.Location: Europe.Methods: Weuse data from10 European geographical regions to calculate occu‐pancy indicesandtrendsfor99 (69%)of theEuropeanspecies.Next,wecombinetheseregionalindicestocalculateEuropeanindices.Todetermineifchangesinre‐gionaldragonflycommunitiesinEuropereflectclimaticwarming,wecalculateSpeciesTemperatureIndices(STI),Multi‐speciesIndicators(MSI)andCommunityTemperatureIndices(CTI).Results: 55of99consideredspecies increased inoccupancyatEuropean level,32speciesremainedstable,andnonedeclined.Trendsfor12speciesareuncertain.MSIof cold‐dwelling andwarm‐dwelling species differ in some of the regions, but in‐creasedatasimilarrateatEuropeanlevel.CTIincreasedinallregions,exceptCyprus.TheEuropeanCTIincreasedslightly.Main conclusions: Europeandragonflies,ingeneral,haveexpandedtheirdistributioninresponsetoclimatechange,eventhoughtheirCTIlagsbehindtheincreaseintem‐perature.Furthermore,dragonfliesprovedtobeasuitablespeciesgroupformonitor‐ingchangesincommunities,bothatregionalandcontinentallevel.

K E Y W O R D S

citizensciencedata,climatechange,CommunityTemperatureIndex,Multi‐speciesIndicator,Odonata,SpeciesTemperatureIndex

Page 3: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  3TERMAAT ET Al.

colourful insects, which are easy to spot and relatively easy toidentify at species level,making them attractive to a large pub‐lic.Withamanageable143speciesrecordedinEurope(Kalkmanet al., 2018), they constitute a suitablegroup for citizen scienceprojects.Furthermore,dragonfliesarewellestablishedasusefulorganismstoassessandmonitoraquaticandwetlandecosystemquality(Oertli,2008),andtheyareknowntoreactquicklytocli‐mate change (Bush, Theischinger, Nipperess, Turak, & Hughes,2013;Hassall,2015).

InmostEuropeancountries,dragonfly recordinghas increasedinrecentdecades,mediatedbythepublicationofseveralgoodfieldguidesandnationaldistributionatlases.ThishasresultedinasteepincreaseinavailabledistributiondatafromcitizenscienceprojectsandthepublicationofaEuropeandistributionatlasin2015(Boudot&Kalkman,2015).Themajorityofthesedistributiondatarefertorecordscollectedwithoutstandardization,whichareunsuitableforstraightforwardcalculationofdistributionstrends.However,previ‐ous studieshave shown that these “opportunistic” recordscanbeusedtoderivereliabletrendestimatesofdragonfliesonanationalscale,ifoccupancymodelsareapplied.Thesemodelstaketheimper‐fectdetectionofspeciesintoaccount,andthereby,theymaysimul‐taneouslycorrectforobservationandreportingbiasaswell(Isaac,

Van Strien,August,DeZeeuw,&Roy, 2014;Van Strien, Termaat,Groenendijk, Mensing, & Kéry, 2010; Van Strien, Van Swaay, &Termaat,2013).Moreover,VanStrien,Termaatetal.(2013)showedinapilotstudy,usingrecordsofasinglespeciesfromfivewesternEuropeanregions,thatoccupancyindicesfrommultipleregionscanbecombinedtocalculatesupraregionalindicesandtrends.

Inthispaper,weinvestigatehowtheoccurrenceofdragonfliesinEuropehaschangedinrecentdecades,andifthesechangesareinparallelwithclimatechange.Weusedistributiondatafrom10Europeangeographicalregions—rangingfromSwedentoCyprus—tocalculateoccupancy indicesandtrends forasmanydragonflyspecies as possible.Next,we combine these regional indices tocalculate European indices. To determine if changes in regionaldragonflycommunitiesinEuropereflectclimaticwarming,wecal‐culateSpeciesTemperatureIndices(STI),Multi‐speciesIndicators(MSI)andCommunityTemperatureIndices(CTI).Wehypothesizethat (a) warm‐dwelling species have more positive trends thancold‐dwellingspecies, that,asaconsequence, (b)warm‐dwellingspecies have increased their share in regional communities and(c)thattheseeffectsincreaseonasouth–northgradientthroughEurope,astheratioofwarm‐andcold‐dwellingspeciesdecreaseswithincreasinglatitude.

F I G U R E 1  ParticipatingEuropeangeographicalregions,hereconsideredascountriesorloweradministrativedivisions

Page 4: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

4  |     TERMAAT ET Al.

2  | METHODS

2.1 | Species records

We gathered dragonfly distribution records, from 1990 onwards,from the following European geographical regions (countries orlower administrative divisions, hereafter referred to as “regions”):Sweden,Britain (UnitedKingdomexcludingNorthern Ireland), theNetherlands,NorthRhine‐Westphalia (aGerman state),Bavaria (aGerman state), Flanders (a Belgian region, including Brussels re‐gion),Wallonia (aBelgian region),France,Andalusia (aSpanishau‐tonomouscommunity)andCyprus(Figure1).Theresultingdatasetincluded recordsof99 species,whichequals69%of all dragonflyspeciesrecordedinEurope(Kalkmanetal.,2018).

Allrecordsusedinthisstudycoveradultdragonfliesonly.Themajority of these records are “opportunistic,” that is, collectedwithout a standardized field protocol and without a design en‐suringthegeographical representativenessofsampledsites.Theperiodofdatacoverageandthenumberofrecordsperunitareavary considerably among regions, depending on data availability(Supporting Information Table S1). All data in each region werevalidated by experts to prevent false‐positive records. To stan‐dardizethegeographicalreferencesystem,allobservationsweremapped in the ETRS89/ETRS‐LAEA (EPSG:3035) reference sys‐tem.Becauseweused1×1kmgridsquaresasthedefinitionofasiteinouranalyses,allobservationswerereferencedto1×1kmETRS‐LAEAsquares.

2.2 | Generating non‐detection data

Occupancy models require detection/non‐detection data col‐lectedduringreplicatedvisits.Validreplicatedvisitsareonlythosevisitsmadeinaperiodofclosurewithintheyear;thisistheperiodduringwhichasiteisconsideredeithertobeoccupiedorunoccu‐piedbythespeciesandnotabandonedorcolonized(MacKenzieetal.,2006).Fordragonflies,weconsideredtheperiodofclosureasthemainflightperiodofaspecies.Closureperiodsweredefinedfor each combination of species and region. For each combina‐tion,approximately5%ofboththeearliestandthelatestrecordswereexcluded,resultinginthespecies’mainflightperiod.Thesemain flightperiodswereexpressed in Juliandates.Forexample,weusedJuliandates125–210astheclosureperiodofPyrrhosoma nymphula(anearlyflyingspecies)inFranceandJuliandates200–240astheclosureperiodofAeshna viridis(alateflyingspecies)inSweden.

Almostalldataobtainedwererecordsofspeciespresence.Thenon‐detectionrecordsofagivenspeciesweregeneratedfromtheinformation of sightings of other dragonfly species, followingVanStrienetal.(2010)andVanStrien,VanSwaayetal.(2013).Anyob‐servationofagivenspecieswastakenas1(detection),whereaswerated0(non‐detection) ifanyspeciesotherthanthegivenspecieshadbeenreportedbyanobserverataparticular1×1kmsiteandonaparticulardatewithinthespecies'closureperiod.

2.3 | Species trend analysis

2.3.1 | Annual occupancy estimates and trends: regional level

First,wecalculatedannualoccupancyperspecies,foreachregionseparately.WeappliedthesamedynamicoccupancymodelasVanStrienet al. (2010) andVanStrien,VanSwaayet al. (2013) toes‐timate annual occupancy ψ, adjusted for detection probability p. Because all parameters in themodelmay differ between regions,theanalyseswereperformedseparatelyforeachregionandthere‐gionalresultswerecombinedinasecondstep.ThedescriptionofthemodelisderivedfromRoyleandKéry(2007)andRoyleandDorazio(2008).Here,ψ istheproportionofsuitable1×1kmsquaresthatisoccupied.Asquareisdefinedassuitableifthespecieshadbeenrecordedthereat leastonce in1990–2008.Theoccupancymodelconsistsoftwohierarchicallycoupledsubmodels,oneforoccupancyandonefordetection,thelatterbeingconditionalontheoccupancysubmodel.Theoccupancysubmodelestimatesannualprobabilityofpersistenceφt andofcolonizationγt andcomputes theannualoc‐cupancyprobabilitypersiterecursivelythrough:

Thus,whethersiteioccupiedinyeart−1isstilloccupiedinyeartisdeterminedbythepersistenceprobability,andwhethersitei un‐occupiedinyeart−1isoccupiedinyeartdependsonthecoloniza‐tionprobability.Alloccupancyprobabilitiespersite togetheryieldtheestimatedannualnumberofoccupied1×1kmsitesperregion.Thesamesiteswereincludedintheanalysisforallyears;estimatesfor sites not surveyedduring someyearswerederived from sitesthatweresurveyedinthoseyears.

Thedetectionsubmodelestimatestheyearlydetectionp,butinaddition,pismadeasafunctionofcovariates.WeusedtheJuliandate as a covariate forp because thedetectionof the species isexpectedtovaryovertheseason,duetochangingpopulationsizeduringthecourseoftheflightperiod.Detectionisalsoreducedifobserversdonotreportalltheirsightings.Hence,weincludetheincompletenessofrecordingasacovariatefordetection.Wedis‐tinguished: (a) single recordsofany speciesonone siteanddatewithoutrecordsofotherspecies,(b)shortday‐lists,thatis,recordsoftwoorthreespeciesmadebyasingleobserverononesiteanddateand(c)comprehensiveday‐lists,thatis,recordsofmorethanthreespeciesperobserver,siteanddate.These listsmayormaynotincludethespeciesinquestion.Thesecategorythresholdsaresufficientlylownottobeconfoundedbyrealdifferencesinspeciesnumberbetweensites.Inmost1×1kmsitesintheregions,therearemore than three species to be found and oftenmanymore.Effectsofbothcovariateswereincludedinthedetectionsubmodelviaalogitlink:

�it=�i,t−1�t−1+ (1−�i,t−1)�t−1

logit(pijt)=�t+�1 ∗dateijt +�2 ∗date2ijt

+�∗1(short day - list)ijt+�∗

2(comprehensive day - list)ijt,

Page 5: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  5TERMAAT ET Al.

wherepijtistheprobabilitytodetectthespeciesatsiteiduringvisitj in year t,αtistheannualinterceptimplementedasarandomeffect,β1 and β2are the linearandquadraticeffectsof thedateofvisit j and δ1 and δ2aretheeffectsofshortday‐listsandcomprehensiveday‐lists,relativetosinglerecords.

We fitted themodels in aBayesianmodeof inference usingJAGS(Plummer,2017)onthecomputerclusterLISA(https://sub‐trac.sara.nl). We chose uninformative priors for all parameters,using uniform distributionswith values between 0 and 1 for allparametersexceptδ1 and δ2 (valuesbetween−10and10),β1,β2 (valuesbetween−10and10)andαt(valuesbetween0and5)forthestandarddeviationofthenormaldistributionusedaspriorfortherandomyeareffect.

Foreachanalysis,weranthreeMarkovchainswithsufficientit‐erations toensureconvergenceas judged from theGelman‐RubinRhatstatisticandsavedthelast93iterationsforuseatsupraregionallevel.Thisnumberof iterations isanempiricallyobtainedcompro‐mise between the reliability of the estimates and data handlingcapacity.Themodelproducedannualestimatesofoccupancyperre‐gion,whichwereconvertedintoannualindiceswithfirstyear=100.Thetrendinoccupancywasconsideredsignificantifitsconfidenceintervaldidnotincludezero.

2.3.2 | Annual occupancy estimates and trends: European level

In thenext step, theannualoccupancyestimatesper regionwereaggregatedtoobtainEuropeanoccupancyindicesandtrendsfortheperiod 1990–2015.Missing yearly values from a particular regionwereestimated (“imputed”) fromaveragedyear‐to‐yearoccupancyratios in all other regions. For example, 1990 was missing in theSwedishdataset.To imputeoccupancyestimatesofSwedishspe‐cies,we applied the1991/1990 ratios fromall other regionswithdatafrombothyears.Asaconsequenceoftheseimputations,con‐fidenceintervalsincreasedforyearswithlackingdatafromoneormoreregions,especiallywhenthesewerelargeregions(e.g.,France).

Regionsdifferinthenumberofsitessurveyed,soanaiveaggre‐gationhastheriskofbiasedEuropeantrends.Hence,wedevelopedaproceduretoweighregionsaccordingtothesamplingintensityinrelationtotherangeofspeciesineachregion.ThisprocedureisanadaptationofproceduresappliedbyVanSwaay,Plate,andVanStrien(2002)andGregoryetal.(2005).Weightswerecalculatedasthequo‐tientofrelativerangeandrelativesamplingintensitytocompensateforoversamplingandundersampling.Relativerangewasdefinedastherangeofaspeciesinaregion,asapercentageofitstotalrangeinallregionsforwhichanoccupancyindexcouldbeobtained.Relativesampling intensitywasdefinedas thenumberof1×1kmsquaressurveyedatleastonceinthisperiodwithintheregionalrangeofthespecies, relative to the totalnumberof surveyedsquares inall re‐gionswithindices.Weightsperregionweresimilarforeachyearbe‐causethesamesiteswereintheanalysisforallyears.TheweightednumbersofoccupiedsiteswereaddedacrossregionsandconvertedintoEuropeanannualindiceswith1990=100.Wetookintoaccount

theuncertaintyoftheestimatednumberofoccupiedsitesperregionbyaddingthenumberofsitesestimatedperregionforeachofthesaved93iterationsandthencombiningtheresultsofalliterations.

2.4 | Species Temperature Indices

WecalculatedtheSTIforeachdragonflyspeciesoccurringinEurope(Boudot&Kalkman,2015) (Supporting InformationTableS2).TheSTIofagivenspeciesistheaveragetemperature(expressedinde‐greesCelsius)oftheEuropeanpart(excludingRussia)ofthespecies’rangeandistakenasaproxyforspecies’dependenceontempera‐ture.Thesecalculationswerebasedon2,736siteswithspeciesre‐cordsunderlyingtherangemapsof theEuropeanatlasbyBoudotandKalkman(2015;availablethroughKalkmanetal.,2018)andcli‐matedataofWorldClim(http://www.worldclim.org;accessedMarch2017;averagemonthlytemperaturesfor1960–1990).Theanalyseswerecarriedoutata50×50kmgridscale.Foreachgridsquare,wecalculatedtheannualmeantemperaturetoestimatetheSTIasthemean temperature of occupied squares.Although the distributiondatacoveredEuropetoagreatextent,wefounditnecessarytocor‐rectfordifferencesinsamplingintensitybetweenregions.Thiswasachievedbybootstrapping,whichconsistedof100 replicationsofasubsetofrandomlychosen50x50gridsquareswithinanareaof250×250km.STIswereestimatedasthemeantemperatureofalloccupiedsquaresoverallreplications.

The period covered by the temperature data fromWorldClim(1960–1990) differed from the period covered by the atlas’ rangemaps (>1990).However, relative differences in STI among speciesarerobusttothetimewindowconsidered(Devictoretal.,2012b).

2.5 | Multi‐species Indicators

To determinewhether warm‐dwelling species havemore positivetrends than cold‐dwelling species, we calculated Multi‐speciesIndicators (MSI), by combining the trends in occupancy indices ofcold‐dwelling and of warm‐dwelling species, respectively.We didthis for each region separately and for Europe as a whole. Cold‐dwellingspeciesweredefinedasspecieswithSTIlowerthan9.8°C,whichisthemedianSTIofallspeciesincludedinourstudy.Warm‐dwellingspeciesweredefinedasspecieswithSTI>9.8°C.StandarddeviationsofSTIdidnotdifferbetweenthetwogroups (one‐wayANOVA,F(1,97)=0.554,p=0.458).

MSIwerecalculated including theirconfidence intervals,usingtheRscript“MSItool”(Soldaat,Pannekoek,Verweij,VanTurnhout,&VanStrien,2017).Thismethodisdevelopedtoaccountforsam‐pling error of species indices in the calculation of Multi‐speciesIndicators, by calculating confidence intervals using Monte Carlosimulationsofannualspeciesindices.

2.6 | Community Temperature Indices

Ultimately, we calculated a CTI for each region, as the averageSTI of all species in the region, weighted by species occupancies

Page 6: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

6  |     TERMAAT ET Al.

(probabilities of occurrence). CTI is thus expressed in degreesCelsius.Similarly,wecalculatedEuropeanCTI.AtemporalincreaseinCTIdirectly reflects that the speciesassemblage is increasinglycomposedofspeciesthatoccurathighertemperatures(thatiswithhigh STI). With this approach, we follow Devictor et al. (2012a),withtheprincipaldifferencethatwefocusonregionalcommunitiesbasedonoccupancydatafromkmsquares,insteadoflocalcommu‐nitiesbasedonabundancedatafromtransects(althoughDevictoretal.,2012aalsoincludedananalysisonpresence–absencedatawhichcompareswithourapproach).

3  | RESULTS

3.1 | Occupancy indices and trends

Thenumberofspeciesforwhicharegionaltrendcouldbecalculatedwithsufficientlylowstandarderrors,thatis,standarderrorslowenoughtodetecta5%orhigherannual increaseordecline,rangedfromfiveforCyprusto79forFrance(Table1).Intotal,wewereabletocalculate

trendswithsufficientlylowstandarderrorsfor90of99speciesinourdataset,foratleastoneoftheregions(SupportingInformationDataS1).

In7outof10 regions,morespecies increased thandecreasedtheiroccupiedrange(Table1).TheseregionswereSweden,Britain,theNetherlands,North Rhine‐Westphalia, Flanders,Wallonia andFrance.NosignificantdifferencebetweenincreasinganddecliningspecieswasfoundforBavaria,becausethisregionhadahighnum‐berofstablespecies(36of59speciestrendswithsufficientlylowstandarderrors).ForAndalusiaandCyprus,thenumberofspeciestrendswith sufficiently low standard errorswas too small to findsignificantdifferencesbetweentrendclasses.

For all regions combined, 55 species moderately increased inoccupancy, indicating that they expanded their distribution at aEuropean level,32species remainedstableandnonedeclined.Asan example, indices of Sympecma fusca (a moderately increasingspecies) and Gomphus vulgatissimus (a stable species) are showninFigure2.Trendestimatesof12 specieshad too large standarderrors. European indices and trends of all species are provided inSupportingInformationDataS2.

TA B L E 1  Numberofspeciespertrendclasspergeographicalregion(fromnorthtosouth)andforEurope

Region Trend period N species Increase Stable Decline Uncertain % Increase χ2 p

Sweden 1991–2014 64 47 1 0 16 73.4 47.0 <0.001

Britain 1980–2012 50 26 12 2 10 52.0 20.6 <0.001

Netherlands 1991–2015 68 39 10 7 12 57.4 22.3 <0.001

NorthRhine‐Westphalia 1990–2010 67 21 15 0 31 31.3 21.0 <0.001

Flanders 1990–2015 62 27 17 7 11 43.5 11.8 <0.001

Wallonia 1990–2015 65 26 25 0 14 40.0 26.0 <0.001

Bavaria 1990–2013 73 8 36 15 14 11.0 2.1 0.144

France 1990–2012 87 30 45 4 8 34.5 19.9 <0.001

Andalusia 2006–2015 57 1 5 0 51 1.8 NA NA

Cyprus 2006–2015 35 3 2 0 30 8.6 NA NA

Europe 1990–2015 99 55 32 0 12 55.6 55.0 <0.001

Note. χ2:valueofchi‐squaredtest;p:probabilityvalue. Increase=significantincrease(p<0.05);Stable=nosignificantchange;Decline=significantdecline(p<0.05);Uncertain=nosignificantchangeandstandarderrorstoolargetodetecta5%trendifithadoccurred.

F I G U R E 2  Europeanindex(1990–2015)ofSympecma fusca and Gomphus vulgatissimus.Linearregressionlines(dashedlines)werealignedthroughtheyeareffectstosummarizeoverallchange

80

90

100

110

120

130

140

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

)001 = 0991( xednI

Sympecma fusca

Gomphus vulgatissimus

Page 7: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  7TERMAAT ET Al.

3.2 | Species Temperature Indices

STIrangedfrom2.0°Cfortheboreo‐alpinespeciesAeshna caerulea to18.3°CfortheMediterranean(andAfrican)speciesTrithemis arte-riosa. (Mean=9.8°C;SD=3.3°C)(SupportingInformationTableS2).

3.3 | Multi‐species Indicators

MSIofwarm‐dwellingspecieswereincreasinginallregions(Figure3).Surprisingly,MSIofcold‐dwellingspeciesalsoincreasedinSweden,Britain, the Netherlands and North Rhine‐Westphalia. In Flanders,

F I G U R E 3  Multi‐speciesIndicators(MSI)ofwarm‐dwellingspecies(SpeciesTemperatureIndex>9.8°C)andcold‐dwellingspecies(SpeciesTemperatureIndex<9.8°C)pergeographicalregion(fromnorthtosouth)andforEurope.Thefirstyearwithdatawassetto100.Smoothedtrendlineswereplottedthroughtheyeareffectstosummarizeoverallchange.Shadedareasrepresentconfidenceintervals.Pleasenotethaty‐axesdiffer

0

20

40

60

80

100

120

140

16019

90

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Britain

MSI_warm (n = 13) MSI_cold (n = 27)

0

50

100

150

200

250

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

Sweden

MSI_warm (n = 12) MSI_cold (n = 42)

050

100150200250300350400450

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

Netherlands

MSI_cold (n = 36) MSI_warm (n = 21)

Page 8: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

8  |     TERMAAT ET Al.

Wallonia and France, MSI of cold‐dwelling species was stable, inBavariaitdeclined,andinAndalusia,itwasuncertain(Table2).Cyprushas only one cold‐dwelling species (Enallagma cyathigerum), whichincreased.

ComparingMSItrendsofwarm‐dwellingandcold‐dwellingspe‐cies (Table2) shows the formerwas significantlymorepositive inBritain, the Netherlands, Flanders, Wallonia, Bavaria and France.

AtaEuropeanlevel,however,theMSIofwarm‐dwellingandcold‐dwellingspeciesbothincreasedatasimilarrate.

3.4 | Community Temperature Indices

CTI increased in all regions, except Cyprus (Table 3; SupportingInformation Figure S1). Themost significantly increasing CTI was

020406080

100120140160180

North Rhine-Westphalia

MSI_warm (n = 19) MSI_cold (n = 29)

0

50

100

150

200

250

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Flanders

MSI_warm (n = 23) MSI_cold (n = 34)

0

50

100

150

200

250

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Wallonia

MSI_warm (n = 22) MSI_cold (n = 33)

F I G U R E 3 (Continued)

Page 9: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  9TERMAAT ET Al.

found for the Netherlands. The Dutch dragonfly fauna “warmed”at 9.5×10−3°Cyear−1 over the period 1991–2015 (0.23°C overthewholeperiod).Theweakest increasewas found forBritain, at1.2×10−3°Cy−1overtheperiod1990–2015(0.03°Coverthewholeperiod).TheEuropeanCTIincreasedjustasslowly,at1.2×10−3°Cy−1 overtheperiod1990–2015(0.03°Coverthewholeperiod).

4  | DISCUSSION

We found clear effects of climate changeon severalwarm‐dwell‐ingspecies,consistentwithobservedchangesinEuropeandistribu‐tionsinthelastfewdecades(Boudot&Kalkman,2015).Inaddition,thedifferencesinMSIofwarm‐dwellingandcold‐dwellingspecies

0

20

40

60

80

100

120

140

160

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

Bavaria

MSI_warm (n = 23) MSI_cold (n = 40)

80859095

100105110115120125130

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

France

MSI_cold (n = 41) MSI_warm (n = 41)

0

50

100

150

200

250

300

350

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Andalusia

MSI_warm (n = 22) MSI_cold (n = 4)

F I G U R E 3 (Continued)

Page 10: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

10  |     TERMAAT ET Al.

indicate that climate changehas changeddragonfly occurrence atthecommunitylevelaswell.

4.1 | Testing of hypotheses

4.1.1 | Regional level

Wehypothesizedthat(a)warm‐dwellingspeciesshowmoreposi‐tive trends than cold‐dwelling species and this was confirmedfor 6 of 10 studied regions (Bavaria, Britain, Flanders, France,Netherlands,Wallonia). In Sweden—the most northern region inour study—bothMSI of cold‐dwelling species andMSI ofwarm‐dwelling species were stable between 1990 and 2001 and bothincreasedinacomparablepacefrom2002onward.Thissuggeststhat climatic conditions in the 1990s were probably limiting formostspeciesinSweden,includingcold‐dwellingspecies.Withtheexceptionofsomeextremecold‐tolerantspecies,suchasA. caeru-lea and Somatochlora sahlbergii, all Swedish species reach theirnorthernrangelimit inthisregion.Recenttemperaturerisesthusappeartohaveresultedinimprovedconditionsfornearlyallspe‐cies.Furthermore,weexpectedthat(b)warm‐dwellingspecieshadincreasedtheirshareinregionalcommunities.Thiswasconfirmed

for all regions exceptCyprus,whereonlyone cold‐dwelling spe‐ciesoccurs.However,withanincreasingCTIof1.2×10−3°Cyear−1 onaverage,upto9.5×10−3°Cyear−1fortheNetherlands(Table3),this“warming”ofregionalcommunitiesevolvesmoreslowlythanthe increase in temperature itself (1.1×10−2°Cyear−1, after cor‐rectingforthedifferencein latitudinalgradientbetweenCTIandactualtemperature;Devictoretal.,2012a),butthedifferencefortheNetherlands isminimal.Thus,dragonflies inEuropeareaccu‐mulating a substantial “climatic debt,” that is, the difference be‐tweenshiftsintemperatureandshiftsindistribution(Devictoretal.,2012a;Menéndezetal.,2006),whichvariesbetweenregions.Ultimately,ourhypothesis that (c) trends inregionalCTI increaseon a south–north gradient through Europe is rejected. HighestCTI increaseswerefoundforregionsonamoderate latitude(theNetherlands, Flanders, Wallonia) and for Andalusia (althoughmeasured over a shorter time span), while lowest CTI increaseswere foundforBritain,FranceandBavaria.Regionsdiffer insizeand subsequently in latitudinal gradient. This may, in theory, af‐fect regional occupancy trends (and thus regional CTI trends) tosomeextent,possibly limiting thevalidityofacomparisonat theregionallevel.CalculatingCTIacrossequallysizedlatitudinalbandswouldbeapreferableapproach,butrequiresahigherdatadensity

020406080

100120140160180200

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Cyprus

MSI_warm (n = 15) MSI_cold (n = 1)

020406080

100120140160180

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

Europe

MSI_warm (n = 49) MSI_cold (n = 50)

F I G U R E 3 (Continued)

Page 11: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  11TERMAAT ET Al.

insomeofourregionsthaniscurrentlyavailable.TheMSItrendsofcold‐dwellingandwarm‐dwellingspecies(Table2)donotshowastructuraldifferencebetweenlargerandsmallerregionsindicat‐ingthatitisunlikelythatCTItrenddifferencesareconfoundedbydifferencesinregionsize.

4.1.2 | European level

AtEuropeanlevel,MSIofwarm‐dwellingandcold‐dwellingspecieswere similar, both having a slightly positive trend. At communitylevel though, the increase in European CTI of 1.2×10−3°Cyear−1

Region Trend period CTI slope SE p

Sweden 1991–2014 2.6×10−3 1.5×10−3 0.110

Britain 1990–2012 1.2×10−3 0.5×10−3 0.017

Netherlands 1991–2015 9.5×10−3 1.1×10−3 <0.001

NorthRhine‐Westphalia 1990–2010 2.0×10−3 0.8×10−3 0.025

Flanders 1990–2015 5.4×10−3 1.0×10−3 <0.001

Wallonia 1990–2015 4.3×10−3 0.8×10−3 <0.001

Bavaria 1990–2013 1.7×10−3 0.7×10−3 0.028

France 1990–2012 1.3×10−3 0.4×10−3 0.011

Andalusia 2006–2015 8.8×10−3 8.3×10−3 0.325

Cyprus 2006–2015 −26.7×10−3 9.5×10−3 0.023

Europe 1990–2015 1.2×10−3 0.5×10−3 0.019

Note. SE:standarderror;p:probabilityvalue.

TA B L E 3  SlopeofCommunityTemperatureindex(CTI)pergeographicalregion(fromnorthtosouth)andforEurope

TA B L E 2  Multi‐speciesIndicator(MSI)trendsofcold‐dwellingspecies(SpeciesTemperatureIndex<9.8°C)andwarm‐dwellingspecies(SpeciesTemperatureIndex>9.8°C)pergeographicalregion(fromnorthtosouth)andforEurope

Region Trend period N species MSI trend ± SE Classification p

Sweden cold 1991–2014 42 1.025 ± 0.002 Moderateincrease 0.177

Sweden warm 1991–2014 12 1.030 ± 0.005 Moderateincrease

Britaincold 1990–2012 27 1.005 ± 0.001 Moderateincrease 0.013

Britainwarm 1990–2012 13 1.012 ± 0.003 Moderateincrease

Netherlandscold 1991–2015 36 1.010 ± 0.003 Moderateincrease <0.001

Netherlandswarm 1991–2015 21 1.044 ± 0.006 Moderateincrease

NorthRhine‐Westphaliacold

1990–2010 29 1.012 ± 0.003 Moderateincrease 0.115

NorthRhine‐Westphaliawarm

1990–2010 19 1.019 ± 0.005 Moderateincrease

Flanderscold 1990–2015 34 1.003 ± 0.002 Stable <0.001

Flanderswarm 1990–2015 23 1.019 ± 0.004 Moderateincrease

Walloniacold 1990–2015 33 1.002 ± 0.002 Stable <0.001

Walloniawarm 1990–2015 22 1.024 ± 0.004 Moderateincrease

Bavariacold 1990–2013 40 0.998 ± 0.001 Moderatedecline <0.001

Bavariawarm 1990–2013 23 1.008 ± 0.003 Moderateincrease

Francecold 1990–2012 41 1.002 ± 0.001 Stable 0.017

Francewarm 1990–2012 41 1.005 ± 0.001 Moderateincrease

Andalusiacold 2006–2015 4 1.029 ± 0.034 Uncertain 0.489

Andalusiawarm 2006–2015 22 1.030 ± 0.011 Moderateincrease

Cypruscold 2006–2015 1 1.072 ± 0.030 Moderateincrease 0.694

Cypruswarm 2006–2015 15 1.055 ± 0.015 Moderateincrease

Europecold 1990–2015 50 1.011 ± 0.002 Moderateincrease 0.362

Europewarm 1990–2015 49 1.012 ± 0.002 Moderateincrease

Note. SE:standarderror;p:probabilityvalue.Moderateincrease=significantincrease≤5%(p<0.05);stable=nosignificantchange;moderatede‐cline=significantdecline≤5%(p<0.05);uncertain=nosignificantchangeandstandarderrorstoolargetodetecta5%trendifithadoccurred.

Page 12: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

12  |     TERMAAT ET Al.

shows that warm‐dwelling species have slightly increased theirshare.TocomparethisoutcomewiththetrendsinCTIofEuropeanbirdsandbutterflies (providedbyDevictoretal.,2012a,asbasedonpresence–absencedata),we re‐calculated theEuropeanCTIofdragonflies for the sameperiod1990–2008.Over these18years,CTI of European dragonflies increased with 2.4×10−3°Cyear−1,whichiscomparablewiththeincreaseinCTIofEuropeanbutterflies(2.5×10−3°Cyear−1) andconsiderablygreater than the increase inCTIofEuropeanbirds (1.9×10−3°Cyear−1).This is in linewith thewell‐known ability of dragonflies to quickly colonize newhabitats(Corbet,1999).Dragonfliesshouldprobablybeconsideredasmoredispersivethanbutterflies,which,fortheirpart,mayshowaquickercommunityresponseatalocalscale,duetotheirgenerallyshorterlifecycle.ThenetoutcomeoftheseopposingdifferencesmayhaveresultedinasimilarCTItrendbetweendragonfliesandbutterflies.The slower responseofbird communities to climaticwarminghasbeensuggestedbyDevictoretal. (2012a) tobeaconsequenceoftheirslowerpopulationturnover.

Inconclusion,climatechangehasaconsiderablepositive im‐pactontheoccurrenceofdragonfliesinseveralEuropeanregions.However, at a continental scale, CTI's are changing only slowlyso far, due to the relatively positive response of cold‐dwellingspecies.

4.2 | Limitations of CTI

SeveralauthorshavehighlightedtheCTIasausefultoolforassess‐ingtheeffectofclimatechangeonthecompositionofcommunities(Devictor, Julliard,Couvet,& Jiguet,2008; Lindströmet al., 2013;Rothetal.,2014).However,ourresultsshowthatastableCTIdoesnotnecessarilymeanthatclimatechangeisnotaffectingtheoccur‐renceofspecies.InSweden,manydragonflyspecieshavebenefitedfrom climate warming, including species of cool conditions. ThishasledtoincreasingMSItrendsforbothwarm‐dwellingandcold‐dwellingspecies,whileleavingCTIalmostunaffected.WethereforerecommendareviewingofCTIinrelationtoMSIofwarm‐dwellingandcold‐dwellingspecies,especiallyinhigh‐latituderegionswheretemperaturesmayhavelimitedspecieswithlowSTIaswellashighSTI.Inaddition,weknowthatmanydragonflyspecieshavesubstan‐tiallyexpanded their rangenorthwards (Boudot&Kalkman,2015;Hickling,Roy,Hill,&Thomas,2005;Ott,2010).Dragonflycommuni‐tieshavechangedasaresultoftheseexpansions,yetthisismaskedbyanincreaseinotherspeciesresultinginaquitestableCTI.Forex‐ample,itislikelythatthereductioninorganicpollutionandnutrientinput inthe lastquarterofthe20thcenturyhascompensatedtheeffectsof increasing temperature for species that are sensitive tolowoxygenlevels(Ketelaar,2010;Termaat,VanGrunsven,Plate,&VanStrien,2015).TheselimitationsofCTIasanindicatorofclimatechangearealsorelevantwhencalculationsarebasedonlocalabun‐dances instead of regional distributions, even though CTI trendsbasedonabundancesshowastrongerresponsetoclimatechangethanwhenbasedonoccupancy(Lindströmetal.,2013;Virkkala&Lehikoinen,2014).

4.3 | Threats of climate change

WewereabletocalculateEuropeantrendsinoccupancyfor87spe‐cies (88%of speciesoccurring inourdata set). Fifty‐fiveof thesespecieshaveincreasedfrom1990to2015,while32haveremainedstable and none have declined. This is a remarkably positive out‐come, given the fact that the conservation status ofmany fresh‐waterorganisms isknown tohavedeterioratedglobally (Collenetal.,2014;Dudgeonetal.,2006).Althoughwerecognizethatsomespecies with a stable trend in occupancy (distribution) may havedeclinedinabundance(populationsize),weconsideritunlikelythatthiswouldchangetheoverallpictureofrangeexpansion,giventhatoccupancyandpopulationtrendsshowbroadsimilarity(VanStrienetal.,2010).

Nexttothepositiveeffectsofclimatechangeforwarm‐dwellingspecies,recentimprovementsinwaterqualityandtheexecutionofwetland restoration projects are likely to have contributed to therecoveryofdragonflies inat leastsomeof the regions (Parkinson,Goffart,Kever,Motte,&Schott,2017;Termaatetal.,2015).

Jaeschke, Bittner, Reineking, and Beierkuhnlein (2013) com‐binedclimatescenarioswiththeassumeddispersalabilitiesofsixspecies,topredictchangesintheirEuropeandistributionsby2035.Theirmodelpredictedastrongdeclineforfivespecies(Coenagrion mercuriale, −50%;C. ornatum, −67%;Leucorrhinia albifrons, −39%;L. caudalis,−58%;Ophiogomphus cecilia,−24%)andanincreaseforone species (L. pectoralis, +21%). These predictions are in sharpcontrastwiththeresultsofourstudyovertheperiod1990–2015,aswefoundstable trends inEuropeanoccupancy forC. mercuri-ale,L. caudalis and O. cecilia,andincreasingtrendsforC. ornatum,L. albifrons and L. pectoralis (SupportingInformationDataS1).Weexplainthesedifferencesbytheestimationsofmaximumspeciesdispersal abilities applied by Jaeschke et al. They used the ob‐servedmaximumdispersaldistancesmentioned in the literature,whichrefertoobservationsfromcapture–mark–recapturestudies.Thesestudiesmaygiveanestimationofdistancescoveredbythemajorityofthestudiedpopulation,butundoubtedlymissdispersaleventsbyindividualsovermuchlongerdistances(seealsoSuhling,Martens, & Suhling, 2017), leading to a severe underestimationof maximum dispersal abilities. These extreme dispersal eventsmayberareandseldomnoticed,but theydeterminethepaceatwhichspeciesdistributionsmayexpand.Nexttoannualestimatesofoccupancy,occupancymodelsalsoprovideannualestimatesofpersistenceandcolonization.Theseparametersmaybemore in‐formativeforfutureresearchontheeffectofvariationinspecies’dispersalabilities.

ThenotionthatEuropeandragonfliesaregenerallydoingratherwellanddonotappeartobegreatlyharmedbyclimatechange,doesnot apply to all species, nor to all regions. Some species, such asthearcticSomatochlora sahlbergiandthealpineS. alpestris, are in a “deadendstreet,”astheycannotshifttheirrangefurthernorthortoahigheraltitude(DeKnijfetal.,2011).Othercold‐dwellingspe‐cies,suchasCoenagrion hastulatum,aredoingwellinSweden,whilebeing threatened inmore southern regions. Furthermore, indirect

Page 13: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  13TERMAAT ET Al.

effectsofclimatechangemayaffectdragonflies.Desiccationofhab‐itatssuchassmallstreamsandpondsisathreattoseveralspecies(Kalkmanetal.,2010,2018),especiallyinsouthernEurope,whichisanunderrepresentedregioninourstudy.Also,changesincommu‐nitiesincentralandnorthernEuropemayleadtomoreinterspecificcompetitionbetweendragonfly species, possibly threatening indi‐vidual species in the future.Ultimately, dragonflies across Europefacemultiplethreatsotherthanclimatechange,suchashabitatdeg‐radationanddestruction,eutrophication(Kalkmanetal.,2010)andexposure to pesticides (Jinguji, Thuyet,Uéda,&Watanabe, 2013;VanDijk,VanStaalduinen,&VanderSluijs,2013).Therelativecon‐tributionofthesedifferentenvironmentalchanges largelyremainstobeestablished.

4.4 | Trends from distribution data

WebasedourtrendcalculationsonreadilyavailabledistributiondatafromtenEuropeanregions,usingoccupancymodelstoaccountforimperfectdetection.Theserecordsallowedustoassessoccupancyindiceswithouttheneedforastandardizedfieldworkprogramme.Assuch,ourmethodimmediatelyinformsaboutdistributiontrendsandmayserveasan“earlywarningsystem”forspecieswithadete‐rioratingconservationstatusand,byproxy,thequalityoffreshwaterhabitats(Oertli,2008).However,ourstudylacksdatafromeasternEurope andwe have insufficient data from southern Europe ade‐quatelytorepresentthatarea.Unfortunately,18outof19dragonflyspeciesconsideredtobethreatenedatEuropeanlevelareconfinedto southernoreasternEurope (Kalkmanetal.,2018).Consideringthis, our European indices and trendsmay be biased to somede‐greeatpan‐Europeanlevel.However,dragonflydatasetsarerapidlygrowing inmanycountries, includingseveraleasternandsouthernEuropeancountries(Boudot&Kalkman,2015).Moreover,anetworkofEuropeanodonatologistshasexpandedoverthepastfewyearsand theusefulnessof aEuropeandragonflymonitoring scheme isgainingattention.WearethereforeconfidentthatEuropeanindiceswillbecomemorerobustwithfutureupdatesandwillhaveabettergeographicalcoverage.

4.5 | Future prospects

Overall, this studyhas shown thatdragonfliespresenta suitablespeciesgrouptogainbetterunderstandingofbiodiversitychangesandtheircauses, includingclimatechange,andthatsuitabledataneededfortheseanalysesarebecomingavailable.Dragonfliesmaytherefore satisfy the need for a biodiversity indicator based onfreshwaterinvertebrates(Feest,2013).Theyarelikelytorepresentothertaxawhichareprimarilywarm‐adapted.Usingopportunisticdataanalysedwithoccupancymodelsenablestheassessmentofspecies’distributiontrendsonbothregionalandEuropeanscale.Thesetrendsinformaboutthestateoffreshwaterhabitats,whichisurgentlyrequired(Darwalletal.,2018).Hence,wesuggestadd‐ingdragonfliesasanindicatorgrouptotheEuropeanbiodiversitymonitoring programme (European Environmental Agency, 2012),

toinvestintheextensionofaEuropeandragonflyrecordingnet‐work,andtoencouragethecentralizationofEuropeandragonflydistributiondata.

ACKNOWLEDG EMENTS

We thank all dragonfly observerswho contributed to this studybymakingtheirobservationsavailabletotheirregionaldataman‐aging organizations.Data from Swedenwere obtained from theSwedish SpeciesObservation System; this system ismaintainedbytheSwedishSpeciesInformationCentreatSwedishUniversityof Agricultural Sciences. Data from Britain were obtained fromtheBritishDragonfly Society Recording Scheme.Data from theNetherlands were obtained from the Dutch National DatabaseFlora and Fauna. Most records are currently collected throughthe online platforms Waarneming.nl and Telmee.nl. Data fromNorthRhine‐Westphaliawereobtained from thedatabaseman‐agedbytheWorkingGroupDragonfliesNorthRhine‐Westphalia(AK Libellen NRW). Data from Bavaria were obtained from the“DatenbankArtenschutzkartierung,”maintained by theBavarianStateMinistryoftheEnvironment.DatafromFlanderswereob‐tained from the Flemish Dragonfly Society. Data fromWalloniawere obtained from SPW/DGARNE/DEMNA‐Working GroupGomphusandNatagora‐observations.Mostdragonfly records inboth Flanders andWallonia are currently collected through theonline platformsWaarnemingen.be and Observations.be, whichare managed by Natuurpunt and Natagora. Data from FrancewereobtainedfromthedatabasemanagedbytheFrenchSocietyofOdonatology (SfO).Data fromAndalusiawere obtained fromthe databasemanaged by Red deObservadores de Libélulas deAndalucía(ROLA).DatafromCypruswereobtainedfromtheda‐tabasemanaged by theCyprusDragonfly StudyGroup; this da‐tabase includes records collected through the online platformObservation.org.VincentDevictorkindlyprovided thevaluesofCTItrendslopesforbirdsandbutterfliesfromhis2012paperasbasedonpresence–absencedata.EddieJohnisthankedforproof‐readingthetext.

DATA ACCE SSIBILIT Y

Aggregateddatausedforspecies’occupancymodellingareavailablefromDutchButterflyConservation(http://www.vlinderstichting.nl).ClimatedatausedforcalculationofSpeciesTemperatureIndicesareavailablefromhttp://www.worldclim.org.

ORCID

Tim Termaat https://orcid.org/0000‐0002‐5974‐7294

Arco J. van Strien https://orcid.org/0000‐0003‐0451‐073X

Roy H. A. van Grunsven https://orcid.org/0000‐0001‐8873‐1024

Geert De Knijf https://orcid.org/0000‐0002‐7958‐1420

Michiel F.WallisDeVries https://orcid.org/0000‐0003‐3808‐2999

Page 14: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

14  |     TERMAAT ET Al.

R E FE R E N C E S

Bertrand, R., Lenoir, J., Piedallu, C., Riofrío‐Dillon, G., de Ruffray, P.,Vidal,C.,…Gégout,J.‐C.(2011).Changesinplantcommunitycom‐positionlagbehindclimatewarminginlowlandforests.Nature,479,517–520.https://doi.org/10.1038/nature10548

Boudot,J.P.,&V.J.Kalkman(Eds.)(2015).Atlas of the European dragon-flies and damselflies.Zeist,TheNetherlands:KNNVPublishing.

Britton, A. J., Beale, C. M., Towers, W., & Hewison, R. L. (2009).Biodiversity gains and losses: Evidence for homogenisation ofScottishalpinevegetation.Biological Conservation,142,1728–1739.https://doi.org/10.1016/j.biocon.2009.03.010

Bush,A.,Theischinger,G.,Nipperess,D.,Turak,E.,&Hughes,L.(2013).Dragonflies: Climate canaries for river management.Diversity and Distributions,19,86–97.https://doi.org/10.1111/ddi.12007

Chen,I.C.,Hill,J.K.,Ohlemüller,R.,Roy,D.B.,&Thomas,C.D.(2011).Rapid range shifts of species associated with high levels of cli‐mate warming. Science, 333, 1024–1026. https://doi.org/10.1126/science.1206432

Clavero,M.,Villero,D.,&Brotons,L.(2011).Climatechangeorlandusedynamics: Do we know what climate change indicators indicate?PLoS ONE,6,e18581.

Collen, B., Whitton, F., Dyer, E. E., Baillie, J. E. M., Cumberlidge, N.,Darwall, W. R. T., … Böhm, M. (2014). Global patterns of fresh‐water species diversity, threat and endemism. Global Ecology and Biogeography,23,40–51.https://doi.org/10.1111/geb.12096

Corbet, P. S. (1999). Dragonflies: Behaviour and ecology of Odonata. Colchester,UK:HarleyBooks.

Darwall,W.,Bremerich,V.,DeWever,A.,Dell,A.I.,Freyhof,J.,Gessner,M.O.,…Weyl,O.(2018).TheAllianceforFreshwaterLife:Aglobalcalltouniteeffortsforfreshwaterbiodiversityscienceandconser‐vation. Aquatic Conservation: Marine and Freshwater Ecosystems,28,1015–1022.

Davey, C. M., Devictor, V., Jonzén, N., Lindström, Å., & Smith, H. G.(2013). Impact of climate change on communities: Revealing spe‐cies'contribution.Journal of Animal Ecology,82,551–561.https://doi.org/10.1111/1365‐2656.12035

DeKnijf,G., Flenker,U.,Vanappelghem,C.,Manci,C.O., Kalkman,V.J.,&Demolder,H. (2011).The statusof twoboreo‐alpine species,Somatochlora alpestris and S. arctica, in Romania and their vulner‐ability to the impact of climate change (Odonata: Corduliidae).International Journal of Odonatology,14,111–126.

Devictor,V.,Julliard,R.,Couvet,D.,&Jiguet,F.(2008).Birdsaretrackingclimatewarming,butnotfastenough.Proceedings of the Royal Society of London B: Biological Sciences,275,2743–2748.

Devictor, V., Van Swaay, C., Brereton, T., Chamberlain, D., Heliölä, J.,Herrando,S.,…Jiguet,F.(2012a).Differencesintheclimaticdebtsofbirdsandbutterfliesatacontinentalscale.NatureClimate Change,2,121–124.

Devictor, V., Van Swaay, C., Brereton, T., Chamberlain, D., Heliölä, J.,Herrando,S.,…Jiguet,F.(2012b).ReplytoRodriguez‐Sanchezetal.Nature Climate Change,2,638–639.

Dijkstra, K.D. B.,Monaghan,M. T., & Pauls, S. U. (2014). Freshwaterbiodiversity and aquatic insect diversification. Annual Review of Entomology,59,143–163.

Dudgeon,D.,Arthington,A.H.,Gessner,M.O.,Kawabata,Z.‐I.,Knowler,D.J.,Lévêque,C.,…Sullivan,C.A.(2006).Freshwaterbiodiversity:Importance, threats, status and conservation challenges.Biological Reviews,81,163–182.https://doi.org/10.1017/S1464793105006950

EuropeanEnvironmentalAgency(2012).Streamlining European biodiver-sity indicators 2020: Building a future on lessons learnt from the SEBI 2010 process.EEATechnicalreportNo.11/2012,Copenhagen.

Feest,A. (2013).Theutilityof theStreamliningEuropeanBiodiversityIndicators2010(SEBI2010).Ecological Indicators,28,16–21.https://doi.org/10.1016/j.ecolind.2012.10.015

Franco, A. M. A., Hill, J. K., Kitschke, C., Collingham, Y. C., Roy, D.B., Fox, R., … Thomas, C. D. (2006). Impacts of climate warm‐ing and habitat loss on extinctions at species' low‐latitude rangeboundaries. Global Change Biology, 12, 1545–1553. https://doi.org/10.1111/j.1365‐2486.2006.01180.x

Gregory,R.D.,VanStrien,A.,Vorisek,P.,GmeligMeyling,A.W.,Noble,D.G.,Foppen,R.P.B.,&Gibbons,D.W.(2005).Developingindica‐torsforEuropeanbirds.Philosophical Transactions of the Royal Society B,360,269–288.https://doi.org/10.1098/rstb.2004.1602

Hassall,C.(2015).Odonataascandidatemacroecologicalbarometersforglobal climate change.Freshwater Science,34, 1040–1049. https://doi.org/10.1086/682210

Hickling,R.,Roy,D.B.,Hill,J.K.,Fox,R.,&Thomas,C.D. (2006).Thedistributions of a wide range of taxonomic groups are expand‐ing polewards. Global Change Biology, 12, 450–455. https://doi.org/10.1111/j.1365‐2486.2006.01116.x

Hickling,R.,Roy,D.B.,Hill,J.K.,&Thomas,C.D.(2005).AnorthwardshiftofrangemarginsinBritishOdonata.Global Change Biology,11,502–506.https://doi.org/10.1111/j.1365‐2486.2005.00904.x

Isaac,N.J.B.,VanStrien,A.J.,August,T.A.,DeZeeuw,M.P.,&Roy,D.B.(2014).Statisticsforcitizenscience:Extractingsignalsofchangefromnoisyecologicaldata.Methods in Ecology and Evolution,5,1052–1060.https://doi.org/10.1111/2041‐210X.12254

Jaeschke,A.,Bittner,T.,Reineking,B.,&Beierkuhnlein,C. (2013).Canthey keep up with climate change? – Integrating specific disper‐sal abilities of protected Odonata in species distribution mod‐elling. Insect Conservation and Diversity, 6, 93–103. https://doi.org/10.1111/j.1752‐4598.2012.00194.x

Jiguet,F.,Devictor,V.,Ottvall,R.,VanTurnhout,C.,VanderJeugd,H.,&Lindström,Å.(2010).Birdpopulationtrendsarelinearlyaffectedbyclimatechangealongspeciesthermalranges.Proceedings of the Royal Society of London B: Biological Sciences,277,3601–3608.

Jinguji,H.,Thuyet,D.Q.,Uéda,T.,&Watanabe,H.(2013).Effectofimi‐daclopridandfipronilpesticideapplicationonSympetrum infuscatum (Libellulidae:Odonata)larvaeandadults.Paddy and Water Environment,11,277–284.https://doi.org/10.1007/s10333‐012‐0317‐3

Kalkman, V. J., Boudot, J.‐P., Bernard, R., Conze, K.‐J., De Knijf, G.,Dyatlova, E., … Sahlén, G. (2010). European Red List of dragonflies. LuxembourgCity,Luxembourg:PublicationsOfficeoftheEuropeanUnion.

Kalkman, V. J., Boudot, J. P., Bernard, R., De Knijf, G., Suhling, F., &Termaat,T.(2018).DiversityandconservationofEuropeandragon‐fliesanddamselflies(Odonata).Hydrobiologia,811,269–282.https://doi.org/10.1007/s10750‐017‐3495‐6

Kampichler,C.,VanTurnhout,C.A.M.,Devictor,V.,&VanderJeugd,H.P.(2012).Large‐scalechangesincommunitycomposition:Determininglanduseandclimatechangesignals.PLoS ONE,7,e35272.https://doi.org/10.1371/journal.pone.0035272

Ketelaar, R. (2010). Recovery and further protection of rheoph‐ilic Odonata in the Netherlands and North Rhine‐Westphalia.Brachytron,12,38–49.

Lindström,A.,Green,M.,Paulson,G.,Smith,H.G.,&Devictor,V.(2013).Rapidchangesinbirdcommunitycompositionatmultipletemporalandspatial scales in response to recentclimatechange.Ecography,36,313–322.https://doi.org/10.1111/j.1600‐0587.2012.07799.x

MacKenzie,D. I.,Nichols,J.D.,Royle,J.A.,Pollock,K.H.,Hines,J.E.,&Bailey, L. L. (2006).Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence.SanDiego,CA:Elsevier.

Mason,S.C.,Palmer,G.,Fox,R.,Gillings,S.,Hill,J.K.,Thomas,C.D.,&Oliver,T.H.(2015).Geographicalrangemarginsofmanytaxonomicgroupscontinuetoshiftpolewards.Biological Journal of the Linnean Society,115,586–597.https://doi.org/10.1111/bij.12574

Menéndez, R., Megías, A. G., Hill, J. K., Braschler, B., Willis, S. G.,Collingham,Y.,&Thomas,C.D.(2006).Speciesrichnesschangeslag

Page 15: Distribution trends of European dragonflies under climate ...€¦ · complete picture of species’ distributions. Dragonflies (Odonata) present an exception to this rule. Adult

     |  15TERMAAT ET Al.

behindclimatechange.Proceedings of the Royal Society of London B: Biological Sciences,273,1465–1470.

Oertli,B.(2008).Theuseofdragonfliesintheassessmentandmonitor‐ingofaquatichabitats. InA.Córdoba‐Aquilar (Ed.),Dragonflies and damselflies: Model organisms for ecological and evolutionary research (pp.79–95).Oxford,UK:OxfordUniversityPress.

Ott,J.(2010).Thebigtreknorthwards:RecentchangesintheEuropeandragonflyfauna.InJ.Settele,L.D.Penrev,T.A.Geogiev,R.Grabaum,V.Grobelink,S.Klotz,M.Kotarac,&I.Kühn(Eds.),Atlas of biodiversity risk(pp.82–83).Sofia,Bulgaria:PensoftPublishers.

Parkinson, D., Goffart, P., Kever, D., Motte, G., & Schott, O. (2017).Réponsedesodonatesàlarestaurationdestourbièresardennaises.Forêt Nature,142,47–55.

Parmesan,C.,&Yohe,G.A.(2003).Globallycoherentfingerprintofcli‐matechangeimpactsacrossnaturalsystems.Nature,421,37–42.

Plummer, M. (2017). JAGS Version 4.3.0 user manual. Retrieved fromhttp://sourceforge.net/projects/mcmc‐jags/

Root, T. L., Price, J. T.,Hall, K. R., Schneider, S.H., Rosenzweig,C.,&Pounds,J.A.(2003).Fingerprintsofglobalwarmingonwildanimalsandplants.Nature,421,57.https://doi.org/10.1038/nature01333

Rosenberg,D.M.,&V.H.Resh(Eds.)(1993).Freshwater biomonitoring and benthic macroinvertebrates.NewYork,NY:Chapman&Hall.

Rosset, V., & Oertli, B. (2011). Freshwater biodiversity under climatewarming pressure: Identifying the winners and losers in temper‐ate standingwaterbodies.Biological Conservation,144, 2311–2319.https://doi.org/10.1016/j.biocon.2011.06.009

Roth,T.,Plattner,M.,&Amrhein,V.(2014).Plants,birdsandbutterflies:Short‐term responses of species communities to climate warmingvaryby taxon andwith altitude.PLoS ONE,9, e82490. https://doi.org/10.1371/journal.pone.0082490

Royle,J.A.,&Dorazio,R.M.(2008).Hierarchical modeling and inference in ecology.Amsterdam,TheNetherlands:AcademicPress.

Royle, J.A.,&Kéry,M. (2007).ABayesian state‐space formulationofdynamicoccupancymodelling.Ecology,88,813–1823.

Soldaat,L.L.,Pannekoek,J.,Verweij,R.J.T.,VanTurnhout,C.A.M.,&VanStrien,A.J.(2017).AMonteCarlomethodtoaccountforsam‐plingerrorinmultispeciesindicators.Ecological Indicators,81,340–347.https://doi.org/10.1016/j.ecolind.2017.05.033

Suhling,F.,Martens,A.,&Suhling, I. (2017).Long‐distancedispersal inOdonata:ExamplesfromaridNamibia.Austral Ecology,42,544–552.https://doi.org/10.1111/aec.12472

Termaat,T.,VanGrunsven,R.H.,Plate,C.L.,&VanStrien,A.J.(2015).StrongrecoveryofdragonfliesinrecentdecadesinTheNetherlands.Freshwater Science,34,1094–1104.https://doi.org/10.1086/682669

Thomas, J. A. (2005). Monitoring change in the abundance and dis‐tribution of insects using butterflies and other indicator groups.Philosophical Transactions of the Royal Society B: Biological Sciences,360,339–357.https://doi.org/10.1098/rstb.2004.1585

VanDijk, T. C., Van Staalduinen,M. A., & Van der Sluijs, J. P. (2013).Macro‐invertebratedeclineinsurfacewaterpollutedwithimidaclo‐prid.PLoS ONE,8,e62374.

VanStrien,A. J.,Termaat,T.,Groenendijk,D.,Mensing,V.,&Kéry,M.(2010). Site‐occupancy models may offer new opportunities fordragonflymonitoringbasedondailyspecies lists.Basic and Applied Ecology,11,495–503.https://doi.org/10.1016/j.baae.2010.05.003

Van Strien, A. J., Termaat, T., Kalkman, V., Prins, M., De Knijf, G.,Gourmand, A.‐L., … Vanreusel, W. (2013). Occupancy modelling

as a new approach to assess supranational trends using oppor‐tunistic data: A pilot study for the damselflyCalopteryx splendens. Biodiversity and Conservation,22,673–686.https://doi.org/10.1007/s10531‐013‐0436‐1

VanStrien,A.J.,VanSwaay,C.A.M.,&Termaat,T.(2013).Opportunisticcitizensciencedataofanimalspeciesproducereliableestimatesofdis‐tributiontrendsifanalysedwithoccupancymodels.Journal of Applied Ecology,50,1450–1458.https://doi.org/10.1111/1365‐2664.12158

VanSwaay,C.A.M.,Plate,C.L.,&VanStrien,A.(2002).Monitoringbut‐terfliesintheNetherlands:Howtogetunbiasedindices.Proceedings of the Section Experimental and Applied Entomology of the Netherlands Entomological Society, Amsterdam,13,21–27.

Virkkala,R.,&Lehikoinen,A. (2014).Patternsofclimate inducedden‐sityshiftsofspecies:Polewardshiftsfasterinnorthernborealbirdsthan in southern birds.Global Change Biology,20, 1–9. https://doi.org/10.1111/gcb.12573

Walther,G.‐R.,Post,E.,Convey,P.,Menzel,A.,Parmesan,C.,Beebee,T.J.C.,…Bairlein,F.(2002).Ecologicalresponsestorecentclimatechange.Nature,416,389.https://doi.org/10.1038/416389a

BIOSKE TCH

Tim Termaat is an ecologist at Bosgroep Midden Nederland(ForestryOwnersGroup): a cooperation for sustainable forestand nature management in Ede, the Netherlands. Previously,he worked at Dutch Butterfly Conservation (Wageningen, theNetherlands)onprojectsconcerningthemonitoringandconser‐vationofdragonflies(Odonata).Hismaininterestisunderstand‐ingtheoccurrenceofdragonfliesondifferentscales,fromlocaltoecozone,andthefactorsdrivingcurrentchanges.

Authorcontributions:T.T.,G.D.K.,U.B.,K.B.,K.‐J.C.,P.G.,D.H.,V.J.K.,G.M., F.P.,D.S.,C.V. andM.W. contributeddata for thismanuscript.M.P. helpedwith data handling.G.v.d.T. calculatedSpeciesTemperatureIndices.A.J.v.S.principallyconductedsta‐tisticalanalyses,withinputfromT.T.,R.H.A.v.G.andM.F.W.T.T.led the writing with significant input from R.H.A.v.G., M.F.W.,A.J.v.S.andG.D.K.Allauthorshavereviewedthemanuscript.

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:TermaatT,vanStrienAJ,vanGrunsvenRHA,etal.DistributiontrendsofEuropeandragonfliesunderclimatechange.Divers Distrib. 2019;00:1–15. https://doi.org/10.1111/ddi.12913


Recommended