+ All Categories
Home > Documents > DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept...

DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept...

Date post: 08-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
72
DMIMO: UCSB update Upamanyu Madhow ECE Dept University of California, Santa Barbara DMIMO Summit, August 18, 2014
Transcript
Page 1: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

DMIMO:  UCSB  update  

Upamanyu  Madhow  

ECE  Dept  

University  of  California,  Santa  Barbara  

DMIMO  Summit,  August  18,  2014  

Page 2: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

What  we  promised  NSF  

•  Fundamentals  –  Phase/freq  tracking,  extension  to  dispersive  channels  – Distributed  TX,  distributed  RX,  many-­‐to-­‐many  DMIMO  – Distributed  communicaTon  schemes:  aggregate  U,  retrodirecTve,  nullforming  

•  Concept  System  Designs  – Distributed  base  staTon,  distributed  911  

•  Testbed  – Aggregate  feedback,  robust  phase/freq  tracking,  OFDM,  long-­‐range  

•  DMIMO  community  building  

Page 3: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

UCSB:  recent  work  •  Fundamentals  – Nonlinear  phase/freq  tracking    – Distributed  RX:  scalable  amplify/forward  approach  Understanding  one-­‐bit  feedback  with  phase  noise  –  StarTng  on  DMIMO  for  frequency  selecTve  channels  

•  Concept  Systems  –  (added  one)  SpaTally  mulTplexed  LoS  DMIMO    Fundamentals  on  DoF  with  matrices  of  random  phasors  

•  Testbed  – D-­‐TX,  D-­‐RX,  starTng  on  OFDM  

Page 4: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Today’s  talk  

•  Nonlinear  phase/frequency  state  space  tracking  – How  well  can  we  maintain  sync  with  intermi\ent  measurements?  

•  Scalable  distributed  RX  –  Review  –  Recent  analyTcal  characterizaTon  of  1-­‐bit  feedback  with  phase  noise  

•  SpaTally  mulTplexed  LoS  DMIMO  –  Review  –  Recent  analyTcal  characterizaTon  

•  Future  direcTons    

Page 5: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Phase/frequency  tracking  

Maryam  Eslami  Rasekh,  Raghu  Mudumbai  (to  appear,  Asilomar  2014)  

Page 6: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Model  •  Want  to  track  phase  and  frequency  of  a  carrier  when  we  get  intermi\ent,  windowed  measurements  – Carrier  could  be  emi\ed  locally  by  master  node  or  could  come  from  desTnaTon  node  

•  Overhead  reducTon  requires:  Small  measurement  windows   Large  2mes  between  measurements  

Note:  Dithering  helps  

Page 7: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Standard  State  Space  Model  

φtω t

⎝ ⎜

⎠ ⎟ =

1 Ts0 1⎛

⎝ ⎜

⎠ ⎟ φt−1ω t−1

⎝ ⎜

⎠ ⎟ +ν t Process  noise  

Q =ω c2q12 Ts 00 0⎛

⎝ ⎜

⎠ ⎟ +ω c

2q22 Ts

3 /3 Ts2 /2

Ts2 /2 Ts

⎝ ⎜

⎠ ⎟

Process  Noise  Covariance  

Phase  dri_  term   Frequency  dri_  term  

Standard  Kalman  filter  model?    Not  quite…  

Page 8: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Measurement  model  is  nonlinear  

8  

I  and  Q  readings  obtained  by  integraTng  over  measurement  interval  

Worst-­‐case  model  Measurement  interval  too  small  for  accurate  frequency  es2ma2on    

We  only  have  access  to  the  wrapped  phase  

Page 9: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Phase  wrapping  headaches  Problem  1:  Phase  wrapping  ambiguity    linear  state  space  model  does      not  apply  

Problem  2:  Frequency  aliasing  with  intermi\ent  measurements  Measurements  spaced  by  Ts  incur  periodic  freq  ambiguity  of  1/Ts  

Could  design  the  system  to  avoid  phase  wrapping  ambiguity  and  use    linear  model,  at  the  cost  of  addi<onal  overhead.  

Could  avoid  with  “accurate  enough”  frequency  measurements,  but    this  requires  “large  enough”  measurement  intervals.  

σφ2 ~ 1/SNR

σ f2 ~ 1/(Measurement interval × SNR)

Performance  of  one-­‐shot    phase-­‐freq  es2ma2on  

Page 10: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

A  customized  parTcle  filter  

•  MulTple  parTcles  to  deal  with  frequency  aliasing  – Dither  inter-­‐measurement  Tmes  to  eliminate  ambiguiTes  quickly    fewer  parTcles  

•  For  each  parTcle,  take  advantage  of  linear  process  model  (Rao-­‐BlackwellizaTon)  – Deal  with  mild  nonlinearity  using  EKF  

Page 11: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Recall  basic  parTcle  filter  

(from  notes  by  Schon)  

Page 12: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

•  State  space  model  with  nonlinear  measurement  of  unwrapped  phase  

•  ParTcle  evoluTon:  sampling  based  on  measurement  

Rao-­‐Blackwellized  PF  

12  

Page 13: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

•  Linear  state  Tme/measurement  update  

Details  (1)  

13  

Page 14: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Details  (2)  

•     

•  Update  and  normalize  parTcle  weights  

14  

Page 15: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

•  When  Tmes  between  measurements  are  constant,  all  parTcles  can  latch  on  to  a  frequency  aliased  esTmate  – Dithering  can  remove  this  ambiguity  

Frequency  aliasing  

15  

Frequency offset of 2πiTs

from true value

⇒ Phase offset from true value after time (1+ Δ)Ts equals 2πiΔ (mod 2π)Δ =1/2 sends phase offset for all odd i to ± π

⇒ Can distinguish them from true frequency offsetΔ =1/4 sends phase for all odd i /2 to ± π

How  dither  works  

Page 16: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

DeterminisTc  Dither  

Iter=1   0   1   2   3   4   5   6   7   8   9   10   11  

Iter=2   0   2   4   6   8   10  

Iter=3   0   4.   8  

Iter=4   0   8   16  

Values of i rejected at each iteration

Δ = 2−n , n =1,2,...,M covers offsets as high as ± 2M 2πTs

⇒ Can set M based on maximum frequency uncertaintyand then repeat the cycle

Page 17: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

AdapTng  the  number  of  parTcles  

•  IniTal  ambiguity  greater  than  steady  state  •  Can  reduce  number  of  parTcles  a_er  convergence  – Based  on  residual  frequency  uncertainty  

•  Can  adapt  frequency  jumps  by  detecTng  loss  of  convergence  – Re-­‐iniTate  around  last  esTmate  with  a  larger  number  of  parTcles  

17  

Page 18: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

DetecTng  loss  of  convergence    (unmodeled  jumps)  

•  Keep  track  of  mean  of  error  for  past  N  steps  for  each  parTcle  (could  even  be  one  parTcle)  

•  If  no  parTcle  has  mean  error  lower  than  threshold    

 no  parTcle  has  the  correct  hypothesis     reiniTate  M  parTcles  around  last  frequency  esTmate  spanning  (-­‐Fspan,  Fspan)  

18  

Page 19: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Response  to  unmodeled  jumps  

•  Error  detecTon  triggers  frequency  spreading  of  width  2Fspan  

•  If  abs(Fjump)  is  smaller  than  Fspan  esTmate  will  recover  quickly  

19  

Page 20: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Response  to  unmodeled  jumps  

•  When  jump  is  too  large  for  frequency  spread:  random  walk  starts,  convergence  could  be  quick  or  it  could  never  happen  (i.e.  take  thousands  of  iteraTons)  – Probability  distribuTon  of  convergence  Tme  depends  on  distance  of  jump  from  pull-­‐in  range  

– Worse  with  determinisTc  dither  

20  

Page 21: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Two  instances  for  Fspan=100Hz,  Fjump=197  Hz  

21  

Page 22: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Design  rules  of  thumb  

Wrapped phase measurement can only detect phase changes in (−π,π)⇒ Process + measurement noise must be much smaller than π

Effec2ve  phase  error/measurement  Depends  on  measurement  interval    and  SNR  

Phase  driG  across  measurements  Depends  on  oscillator  quality  and    2me  between  measurements  

Follow  from  a  single  simple  observa2on  

Page 23: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Performance  

•  When  it  works,  performance  is  as  good  as  EKF  with  genie  (selecTng  right  parTcle)  

•  As  long  as  EKF  output  error  is  low  enough  (significantly  lower  than  π)  convergence  is  maintained  – Error  tracking/reiniTaTon  around  last  esTmate  handles  convergence  loss  if  it  happens  

23  

Page 24: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=20ms,  datasets  1  

24  

Page 25: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=20ms,  datasets  2  

25  

Page 26: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=20ms,  datasets  3  

26  

Page 27: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=50ms,  datasets  3  

27  

Page 28: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=80ms,  datasets  3  

28  

Page 29: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Ts=100ms:  Internal  oscillator  breaks  down  completely  while  (be\er)  external  oscillator  maintains  performance  

29  

Page 30: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

External  oscillator  limit  

30  

Page 31: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

External  oscillator  limit  

31  

Page 32: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

External  oscillator  limit  

32  

Page 33: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Take-­‐aways  •  Rao-­‐Blackwellized  parTcle  filter  is  an  effecTve  means  of  uTlizing  phase  

wrapped  measurements  –  EKF  handles  local  effect  of  nonlinearity  –  EssenTally  the  same  performance  as  for  unwrapped  measurements  when  

it  is  working  –  Global  effect  of  nonlinearity  handled  via  dithering  and  parTcle  filtering  –  Error  monitoring  detects  loss  of  lock  and  reiniTalizes  

•  Solid  building  block  to  plug  into  synchronizaTon-­‐enabled  protocols  –  Minimal  overhead  –  Locks  even  with  large  frequency  offsets  –  Robust  to  unmodeled  jumps  –  Simple  design  rules  of  thumb  

Page 34: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

A  scalable  approach  to  D-­‐RX  beamforming    

 Francois  QuiTn,  Andrew  Irish  

Page 35: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

The  need  for  scalability  

 important  to  avoid  drowning  the  network  with  control  messages.    

N=2  nodes:    3  channels  

35  

N=5  nodes:    15  channels  

Page 36: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Review  of  D-­‐Tx  beamforming:  testbed  

 SynchronizaTon  achieved  using  feedback  from  the  receiver  

 Tx  nodes  perform  the  3  synchronizaTons  independently,  based  on  the  feedback  

Feedback  -­‐-­‐>   -­‐-­‐>  BF  signal  

36  

Page 37: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Scalable  D-­‐RX  via  amplify-­‐forward  

37  

Use  cooperaTng  nodes  as  amplify-­‐forward  relays  Signals  are  summed  over  the  air  Feedback  from  RX  used  to  adapt  relays  

Turns  long-­‐distance  D-­‐RX  into  local  D-­‐TX  

Page 38: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Review  of  prior  results  

Page 39: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Phase  synchronizaTon  

 again  achieved  with  one-­‐bit  feedback  algorithm  

39  

Page 40: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Time  synchronizaTon  

 Relay  nodes  use  message  from  Tx  as  a  common  Tmestamp  

 Forward  message  with  fixed  delay  a_er  receiving  it  from  Tx    

40  

Page 41: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Frequency  synchronizaTon  

…achieved  implicitly  with  forwarding  architecture  !  

41  

7  kHz  

6  kHz  

10  kHz  

4  kHz  

Page 42: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

D-­‐Rx  beamforming  architecture  

Tx  node  

Rx  node  

42  

Relay  node  

Page 43: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

D-­‐Rx  beamforming  architecture  

Relay  node  

43  

Page 44: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

D-­‐Rx  beamforming  implementaTon  

 when  transmipng  pilot  tone  packets  

44  

Page 45: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

D-­‐Rx  beamforming  implementaTon  

 Rx  packet  amplitude  over  long  Tme  intervals  

45  

Page 46: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Relaxing  system  parameters  Td  and  Tc  

 with  our  experimental  prototype  

46  

Page 47: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Relaxing  system  parameters  Td  and  Tc  

 Once  phase  noise  std  gets  close  to  phase  perturbaTon  size,  convergence  and  stability  of  1-­‐bit  feedback  becomes  difficult  

47  

Page 48: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

New  results:  quanTtaTve  understanding  of  phase  noise  effects  

(journal  paper  in  preparaTon)  

Page 49: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Phase  error  due  to  relaying  delay  

 LO  driB  between  moment  where  relay  node  receives  message  and  forwards  it    =>  results  in  phase  error  

   =>  can  be  modelled  analyTcally  

49  

q1  -­‐-­‐>  white  frequency  noise  q2  -­‐-­‐>  random  walk  frequency  noise  Td  -­‐-­‐>  relay  delay  Tme  Tc  -­‐-­‐>  cycle  Tme  

Intra-­‐cycle  driB   Inter-­‐cycle  driB  

Page 50: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

One-­‐bit  feedback  with  phase  noise  

Approximate  analysis  framework  1)  Joint  distribuTon  of  change  in  received  complex  amplitudes  with  and    without  phase  error  modeled  as  complex  Gaussian  2)  StaTsTcal  mechanics  approach  from  original  one-­‐bit  paper  used  to      approximate  joint  distribuTon  3)  Markov  model  for  system  state  (RSS  compared  to  that  of  K    prior  iteraTons)  4)  EsTmate  RSS  dri_:  at  what  value  of  RSS  does  it  become  negaTve?  

BoTomline:  It  works  as  long  as  phase  noise  is  “smaller  than”  random    phase  perturba2ons  in  one-­‐bit  algorithm  

Page 51: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Joint  Gaussian  distribuTon  

X-­‐axis:  RSS  increment  with  phase  noise  Y-­‐axis:  ideal  RSS  increment  

Increased  phase  noise    less  correla2on  

Page 52: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Markov  model  for  feedback  generaTon  

Page 53: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Accurate  predicTons  of  state  probs  

Page 54: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Results  from  dri_  analysis  

Predicts  RSS  satura2on  short  of  ideal  value  as  phase  noise  increases  

Page 55: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Scalable  D-­‐RX  beamforming:  take-­‐aways  

 Scalable  relaying  architecture  

Frequency  synchronizaTon  not  an  issue  But  excessive  phase  noise  hurts  phase  sync  

55  

Page 56: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

DMIMO  for  creaTng  spaTal  degrees  of  freedom  

Andrew  Irish,  Francois  Qui2n,  Mark  Rodwell  

ITA  2013,  Asilomar  2013  

Page 57: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

MoTvaTon:  100  Gbps  wireless  over  50  km  

Must  throw  everything  we  know  at  it  Bandwidth    mm  wave  band  or  higher  Power    not  THz  or  opTcs  DirecTvity    mm  wave  band  or  higher  SpaTal  mulTplexing    geometry  must  

support  full  rank  MIMO  matrix  Polarimetric  mulTplexing    no  conceptual  

hurdles,  modulo  hardware/signal  processing  design  

Page 58: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

LoS  MIMO  review  

Page 59: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

LoS  MIMO  does  not  work  at  long  ranges  

Example  75  GHz  carrier  frequency,  50  km  range  

Two-­‐fold  spaTal  mulTplexing  

dTdR =100 m2

Subarrays  1  m  apart  on  aircra_    Subarrays  100  m  apart  on  the  ground!  

This  picture  does  not  work!  

Page 60: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Enter  LoS  DMIMO  

Synthesize  full  rank  channel  by  spreading  the  receiver  out  

Page 61: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Anatomy  of  full  rank  DMIMO  

H1  full-­‐rank  with  enough  spaTal  spread  of  relays  

H2  diagonal  =>  full-­‐rank  

Composite  channel  full-­‐rank  

Very  narrow  beam    covers  all  relays  

Moderately  narrow  beam    between  each    relay  and  receiver   Can  ignore  in  DoF  analysis  

How  much  should  the  relays  be  spread  out?  

Page 62: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Modeling  relay  geometry  

dmax

TX1   TX2  

Randomly  dispersed  relays  €

h1 = (e jθ11 ,e jθ12 ,e jθ13 ,e jθ14 )T

h2 = (e jθ 21 ,e jθ 22 ,e jθ 23 ,e jθ 24 )T

Model  for  response  of  transmiTers  at  relays  

θ ij i.i.d.,Unif [0,2π ](for  “large  enough”  dispersal  area)  

Page 63: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Rule  of  thumb  for  spacing  

Page 64: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Verifying  the  rule  of  thumb  

Page 65: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Performance  predicTon  via  random  matrices  

Page 66: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Chebyshev  Bound  on  ZF  SNR  

Page 67: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Chebyshev  bound:  details  

Page 68: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Beta  approximaTon  for  ZF  SNR  

Key  ideas:  Interference  subspace  randomly  oriented  wrt  desired  signal  (CLT  for  large    number  of  streams)   Desired  vector  randomly  oriented  wrt  interference  subspace     Can  replace  desired  vector  with  iid  complex  Gaussian  entries   ZF  SNR  =  raTo  of  chi-­‐squared  random  variables  (beta  random  variable)  

Page 69: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Numerical  results:  Chebyshev  bound  

Page 70: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Numerical  results:  Beta  approximaTon    

Page 71: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Take-­‐aways  

•  DMIMO  as  an  enabler  of  long-­‐range  ``wireless  fiber’’  – 5  GHz  x  dual  polarizaTon  x  4-­‐fold  spaTal  mulTplexing  x  2.5  bps/Hz  =  100  Gbps  

•  AnalyTcal  rules  of  thumb  and  performance  predicTons  that  closely  match  simulaTons  

•  Significant  implementaTon  challenges  remain  – Hardware/signal  processing  co-­‐design  for  relays  and  receiver  

Page 72: DMIMO:&UCSB&update& · 2014. 8. 27. · DMIMO:&UCSB&update& Upamanyu(Madhow(ECE&Dept University&of&California,&SantaBarbara DMIMO&Summit,&August18,&2014&

Conclusions  

•  DMIMO  remains  in  its  infancy  – Figuring  out  basic  building  blocks  

•  STll  a  lot  of  work  on  fundamentals  – Wideband  (frequency  selecTve)  channels  – Reciprocity  

•  Concept  system  designs    – Distributed  base  staTon,  distributed  911,  CoMP  

•  Enhancing  testbed  capabiliTes  – Wideband,  long-­‐range  


Recommended