+ All Categories
Home > Documents > Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A...

Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A...

Date post: 27-Mar-2015
Category:
Upload: autumn-wade
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
38
doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al. Slide 1 A simple & scalable traffic engineering solution for 802.11s Date: 2007-09-17 Authors: N am e A ffiliations A ddress Phone em ail Guido R. H iertz Philips Com N ets, Chairof Comm unication N etw orks, RW TH A achen U niversity, K opernikusstr. 16, 52074 A achen, Germ any +49-241-802- 5829 [email protected] D ee D enteneer Philips Philips, H TC 37, 6515 A E Eindhoven, The Netherlands +31-40-2749- 743 [email protected] m
Transcript
Page 1: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

September 2007

Guido R. Hiertz, Philips et al.Slide 1

A simple & scalable traffic engineering solution for 802.11s

Date: 2007-09-17Authors:Name Affiliations Address Phone email Guido R. Hiertz Philips ComNets, Chair of

Communication Networks, RWTH Aachen University, Kopernikusstr. 16, 52074 Aachen, Germany

+49-241-802-5829

[email protected]

Dee Denteneer Philips Philips, HTC 37, 6515 AE Eindhoven, The Netherlands

+31-40-2749-743

[email protected]

Page 2: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Abstract

• EDCA provides the basic medium access scheme for 802.11s mesh networks. As EDCA has been designed for single-hop communication it performs poor in a multi-hop environment. Self-induced congestion is an inherent characteristic of EDCA in mesh network. To overcome the disadvantages of EDCA in the harsh environment of wireless mesh networks, we propose a simple modification based on the principles of cooperation.

September 2007

Guido R. Hiertz, Philips et al.Slide 2

Page 3: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

September 2007

Guido R. Hiertz, Philips et al.Slide 3

Outline

• Self-induced congestion in 802.11s

• Dissimilar capacity distribution in wireless mesh networks

• Solutions to avoid congestion 802.11s

• Cooperation in 802.11 EDCA

• Recommendation

Page 4: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Self-induced congestion in 802.11s

September 2007

Guido R. Hiertz, Philips et al.Slide 4

Page 5: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Problem

• 802.11 implements an opportunistic medium access scheme– EDCA & DCF stations

compete on wireless medium

– Devices operate selfish• Imbalance in up- &

downlink in infrastructure mode, etc.

– “All against one AP”• Maximization of share of

capacity

• 802.11 assumes similar conditions for each device– All traffic delivered via

central AP• 99% of all 802.11 WLAN

have star topology– AP in radio range of all

devices– AP involved in each

frame exchange• Up- & Downlink

– DLS yet not used

September 2007

Guido R. Hiertz, Philips et al.Slide 5

Page 6: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Single-frequency channel operation

• Current products– Mesh: 802.11a

– BSS: 802.11b/g

• Future products– Mesh & BSS share

single transceiver

September 2007

Guido R. Hiertz, Philips et al.Slide 6

Mesh

BSS BSS

BSS

BSS

BSS

Mesh

BSS BSS

BSS

BSS

BSS

Page 7: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Shared medium & multiple hops

• Selfish operation of 802.11 devices– Useful in single hop

environment

– Opportunistic approach

– Grab as much as possible

– Stupid for Mesh networks

• Frames are forwarded over multiple hops

• MPs mutually provide forwarding service– MPs should not

contend

– MPs should cooperate

September 2007

Guido R. Hiertz, Philips et al.Slide 7

Page 8: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Neighborhood capture [1]

• Devices with less neighbors access wireless medium more frequently

• Capacity available at edge of network– Edge unaware

of center

• Center network suffers from competition– Less capacity available

Forwarders in a Mesh network get

easily congested– Traffic aggregates &

no priority over edge

September 2007

Guido R. Hiertz, Philips et al.Slide 8

Low Capacity

Page 9: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Dissimilar capacity distribution in wireless mesh networks

September 2007

Guido R. Hiertz, Philips et al.Slide 9

Page 10: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Capacity distribution in Mesh

• Edge devices have low amount of neighbors– Wireless medium

often detectedas idle

– Sufficientcapacity

• Center devices have high amount of neighbors– Constant competition

with neighbors

– Wireless medium seldom detected as idle

– Capacity not sufficient

September 2007

Guido R. Hiertz, Philips et al.Slide 10

Page 11: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Desired behavior: Refrain from access to wireless medium until next hop has forwarded

• May be difficult to detect if frames were forwarded– The acknowledgments send

by the intended receiver of the forwarder may be out of range It may be impossible to detect a successful frame forwarding

• May require an additional timeout

• May not work with non-omnidirectional transmissions– E.g. beamforming in

802.11n

• Each Mesh link has a unique encryption key– Mesh header including

Mesh sequence number is in frame body

September 2007

Guido R. Hiertz, Philips et al.Slide 11

Not possible, not implementable

Page 12: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solutions to avoid congestion in 802.11s

September 2007

Guido R. Hiertz, Philips et al.Slide 12

Page 13: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 1: Multiple frequency channels• Pro

– Unlicensed bands are available for free

• Inefficient designs tolerable– Provide dedicated links

between neighboring MPs• Links become independent

– Increase spatial frequency reuse distance

• Low interference possible– Form “logical” but not

physical mesh• No sharing of common

resource needed

• Con– Additional hardware required

• Expensive– Some markets do not tolerate

minor, additional cost• Not applicable in all scenarios

– Adjacent channel interference

• Multiple transceivers in the same band are not independent to each other

• No orthogonal operation possible

• Expensive work-around needed

– Not described in 802.11s• Not to be considered by

802.11s?• Vendor specific

September 2007

Guido R. Hiertz, Philips et al.Slide 13

Page 14: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 2: Use MDA

• MDA inherently avoids congestion– Neighbor MPs aware

of their schedules

– Capacity can be allocated to center network

• MPs mutually inform about planned transmissions

• Mesh forms backbone network for aggregated traffic– Data rates average

September 2007

Guido R. Hiertz, Philips et al.Slide 14

Page 15: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 3: Modify EDCA

• Provide inherent congestion avoidance– Modify channel access to

deal with forwarded traffic

• Introduce cooperative approach– It’s of an MPs own

interest that its peer MP can forward traffic

• How to achieve cooperation?– Provide sufficient

capacity to you peer MP– Allow the next hop peer

MP to forward the traffic• In a single frequency

channel Mesh, the next hop peer MP uses the same frequency channel

Refrain from access to the wireless medium

September 2007

Guido R. Hiertz, Philips et al.Slide 15

Page 16: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

A simple modification to the 802.11 EDCA

September 2007

Guido R. Hiertz, Philips et al.Slide 16

Page 17: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

A model for the wired world

• Traffic aggregates in the Mesh network– Congestion avoidance,

back-pressure … deal with an inherent problem

• Leaky bucket does not show whole picture

• Missing: Wireless links not independent!– Neighboring MPs share

the wireless medium Common resource

September 2007

Guido R. Hiertz, Philips et al.Slide 17

Traffic source 1

Traffic source 2

Forwarding rate 2

Forwarding rate 1

Forwarding rate 3

Lost traffic due to congestion

Buffer/Queue

Page 18: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Cooperation in wireless: Self-limitation

• An MP becomes congested if it does not have sufficient capacity to handle traffic that is to be relayed– Neighbors need to help

out

– Support next hop

• Advantages– Self-limiting system

• The more an MP requires others to forward traffic, the more it throttles itself

– Each MP provides its next hop peer MP with at least the same capacity of the wireless medium that itself used for the frame exchange

September 2007

Guido R. Hiertz, Philips et al.Slide 18

Page 19: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Cooperation in 802.11 EDCA

September 2007

Guido R. Hiertz, Philips et al.Slide 19

Page 20: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution

• For each frame f that an MP A transmits to another MP B subject to being forwarded, MP A shall wait for the duration of the frame f before accessing the wireless medium again

• Cooperative design– If MP A requires MP B

to forward a frame, MP A shall support MP B in providing the forwarding service

– MP A should wait a least for a period that is equal to its own frame transmission before accessing the wireless medium again

September 2007

Guido R. Hiertz, Philips et al.Slide 20

Page 21: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Definition of waiting time w

• With DCF, the waiting time w equals the duration of the full frame exchange sequence– Including optional

RTS/CTS, duration for fragmented frame transmissions and all necessary acknowledgments

• With EDCA, the waiting time w equals the duration of the TXOP used for transmission of the frame/frames that shall be forwarded– Includes everything

• RTS/CTS• Block ACK• ...

September 2007

Guido R. Hiertz, Philips et al.Slide 21

Page 22: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Generalized solution for 802.11s

• In 802.11s, all MPs use EDCA for frame exchange– With EDCA, any

frame exchange is part of a TXOP The TXOP is the

basic medium allocation unit

• If an MP requests the frame forwarding service of one of its peer MPs, the MP shall refrain from access to the wireless medium for a duration w that equals the duration of the frame exchange sequence during its last TXOP.

September 2007

Guido R. Hiertz, Philips et al.Slide 22

Page 23: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Means to implement w

• Adjustable medium access parameters with EDCA– AIFS

• Minimum idle period• Via AIFSN

– Contention Window• Initial size CWmin• Current Size CW• Maximum size CWmax

• Transmission duration– TXOP

• Shall be considered for further improvement

1. SetAIFS = w

for next contention2. Add

w/aSlotto next CW

3. SetCWmin =

w/aSlot draw CW from

[0, CWmin]4. Suspend backoff until

timer t = NOW + w

expires

September 2007

Guido R. Hiertz, Philips et al.Slide 23

Page 24: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 1:Frame exchange duration dependent AIFS

September 2007

Guido R. Hiertz, Philips et al.Slide 24

Page 25: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 1: Modify AIFS of next backoff

• Set AIFS = w for next contention– Sever penalty for transmitting MP– Wireless medium required to be idle for a period equal to the MP’s

last frame exchange sequence• May underutilize the wireless medium• May lead to starvation

September 2007

Guido R. Hiertz, Philips et al.Slide 25

Busy wireless medium

TXOP

AIFS (AC) Remaining slots of

contention windows

(CW)

Transmission Opportunity (TXOP) Set AIFS (AC) = wSever penalty, may lead to

underutilized wireless mediumWireless medium needs to be

idle for long duration

t

Waiting time w ≤ TXOPlimitdefined by transmission duration

Amount of slots drawn from CWmin(AC)

Page 26: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 2:Frame exchange duration dependent

addition to the CW

September 2007

Guido R. Hiertz, Philips et al.Slide 26

Page 27: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 2: Add w/aSlotto CW of next backoff

• Random number of slots CW drawn from [0, CWmin] enlarged by w/aSlot for next contention– CW may become very large

– No uninterrupted idle wireless medium required as in solution 1

September 2007

Guido R. Hiertz, Philips et al.Slide 27

Busy wireless medium

TXOP

AIFS (AC) Remaining slots of

contention window (CW)

Transmission Opportunity (TXOP) AIFS (AC) Set CW (amount of slots) =

Random[0,CWmin]+

w/aSlot

t

Waiting time w ≤ TXOPlimitdefined by transmission duration

Page 28: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 3:Frame exchange duration dependent

CWmin setting

September 2007

Guido R. Hiertz, Philips et al.Slide 28

Page 29: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 3: Modify CWmin of next backoff

• Set CWmin = w/aSlot for next contention– On average, the CW duration will be ~ w/2

– Easy to implement

– May not provide full self-throttling needed for sufficient forwarding capacity

September 2007

Guido R. Hiertz, Philips et al.Slide 29

Busy wireless medium

TXOP

AIFS (AC) Remaining slots of

contention window (CW)

Transmission Opportunity (TXOP) AIFS (AC) Set CWmin = w/aSlot Draw random number (CW) from [0,CWmin]

t

Waiting time w ≤ TXOPlimitdefined by transmission duration

Page 30: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 4(a):Frame exchange duration dependent

backoff suspension

September 2007

Guido R. Hiertz, Philips et al.Slide 30

Page 31: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 4(a): Suspend next backoff for a period w

• MP does not initiate a new backoff until a period w following its last TXOP has expired– The forwarding MP may find the wireless medium idle and does

not need to contend with the forwarding service requesting MP

– Penalty seems to be acceptable

September 2007

Guido R. Hiertz, Philips et al.Slide 31

Busy wireless medium

TXOP

AIFS (AC) Remaining slots of

contention window (CW)

Transmission Opportunity (TXOP) AIFS (AC) Amount of slots drawn

from CWmin(AC)

t

Waiting time w ≤ TXOPlimitdefined by transmission duration

Backoff supsended for a period w. Wireless medium become busy and idle during w. At the end of w the MP may initiate a backoff again.

Page 32: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 4(b):Frame exchange duration dependent

backoff suspension with early resynchronization to the wireless medium

busy/idle state

September 2007

Guido R. Hiertz, Philips et al.Slide 32

Page 33: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Solution 4(b): Suspend next backoff until wireless medium becomes busy

• MP does not initiate a new backoff until a period w following its last TXOP has expired or until the wireless medium becomes busy and idle again– MP provides access to the WM for a least one other MP– May not guarantee the priority needed for the forwarding MP

September 2007

Guido R. Hiertz, Philips et al.Slide 33

Busy wireless medium

TXOP

AIFS (AC) Remaining slots of

contention window (CW)

Transmission Opportunity (TXOP) AIFS (AC) Amount of slots drawn

from CWmin(AC)

t

Waiting time w ≤ TXOPlimitdefined by transmission duration

Backoff supsended at maximum for period w. As

soon as the wireless medium becomes busy, the

MP waiting timer w is deleted and the MP

resynchronizes to the wireless medium including

the initiation of a new backoff

Page 34: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Recommendation

September 2007

Guido R. Hiertz, Philips et al.Slide 34

Page 35: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Recommended modification of EDCA

• Solution 3 is easy to implement– Frame exchange duration dependent CWmin setting

– Requires to record the duration of the last frame exchange sequence/TXOP

– In any case, the device performs a backoff and therefore draws a random number from [0, CWmin]

– CWmin can be easily adopted

– Mean penalty ≈ ½ * last frame exchange duration

• Provides compromise between full penalization and purely opportunistic EDCA behavior

September 2007

Guido R. Hiertz, Philips et al.Slide 35

Page 36: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

September 2007

Guido R. Hiertz, Philips et al.Slide 36

References

• [1] M. Benveniste, “Neighborhood Capture” in Wireless LANs, Submission IEEE 802.11-01/596, November 2001

Page 37: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Backup slides

September 2007

Guido R. Hiertz, Philips et al.Slide 37

Page 38: Doc.: IEEE 802.11- 07/2534r0 Submission September 2007 Guido R. Hiertz, Philips et al.Slide 1 A simple & scalable traffic engineering solution for 802.11s.

doc.: IEEE 802.11- 07/2534r0

Submission

Remarks

• Modifications possible– Example: Set

CWmin = k * w/aSlot where k ]0;1]• Modifies penalty

• May be adjustable or administrator/user configurable– Needs default value set

in standard

• Shall all Access Categories (ACs) of an MP be penalized?– Any medium access

reduces the forwarders possibility to detect an idle wireless medium• From a resource sharing

point of view, it does not matter which AC access the wireless medium

September 2007

Guido R. Hiertz, Philips et al.Slide 38


Recommended