+ All Categories
Home > Documents > Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et...

Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et...

Date post: 12-Jan-2016
Category:
Upload: oswald-underwood
View: 217 times
Download: 2 times
Share this document with a friend
Popular Tags:
12
doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11- 10/1131r0 Sept. 2010 K. Ishihara et al., (NTT) Slide 1 Sept. 2010 Slide 1 Slide 1 Time-Domain CSI Compression Schemes for Explicit Beamforming in MU-MIMO Date: 2010-9-14 N am e A ffiliations A ddress Phone em ail K oichiIshihara N TT Corporation Hikarino-oka Y okosuka-shi, Japan +81-46-859- 4233 [email protected] t.co.jp Y usukeA sai N TT Corporation Hikarino-oka Y okosuka-shiJapan +81-46-859- 3494 [email protected] o.jp RiichiKudo N TT Corporation Hikarino-oka Y okosuka-shi, Japan +81-46-859- 3140 kudo.riichi@ lab.ntt.co .jp LaurentCariou O range Labs 4, rue du closcourtel 35512 Cesson-Sévigné +33 2 99 12 43 50 laurent.cariou@orange -ftgroup.com Authors:
Transcript
Page 1: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 1

Sept. 2010

Slide 1Slide 1

Time-Domain CSI Compression Schemes for Explicit Beamforming in MU-MIMO

Date: 2010-9-14

Name Affiliations Address Phone email Koichi Ishihara NTT Corporation Hikarino-oka

Yokosuka-shi, Japan +81-46-859- 4233

[email protected]

Yusuke Asai NTT Corporation Hikarino-oka Yokosuka-shi Japan

+81-46-859-3494

[email protected]

Riichi Kudo NTT Corporation Hikarino-oka Yokosuka-shi, Japan

+81-46-859-3140

[email protected]

Laurent Cariou Orange Labs 4, rue du clos courtel 35512 Cesson-Sévigné

+33 2 99 12 43 50

[email protected]

Authors:

Page 2: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 2

Sept. 2010

Introduction• Downlink (DL) MU-MIMO will be adopted to improve the spectrum

efficiency in TGac.• We have shown CSI report requirements for TGac in explicit feedback

and in need of some CSI compression scheme to achieve higher MAC efficiency for MU-MIMO transmission [1].

• In [2] and [3], time-domain CSI compression schemes were proposed to reduce the amount of CSI needed. – [2] uses discrete cosine transform (DCT).– [3] uses truncated inverse discrete Fourier transform (TiDFT).

• In this submission, we present these CSI compression schemes and evaluate these performances.

Page 3: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 3

Sept. 2010

Slide 3

Concept of time-domain CSI feedback

• Frequency-domain (FD) CSI-FB: CSI between a Tx antenna and a Rx antenna consists of Nsubc subcarrier components.

• Time-domain (TD) CSI-FB: CSI consists of only Ng components since it is assumed that the actual channel impulse response is present only the GI duration.

Less CSI-FB needed with TD than with FD: factor is Ng/Nsubc.

freq.

Nsubc

timeNg

Pow

er

Pow

er

Frequency-domain CSI Time-domain CSI

TD/FD conversion

Page 4: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 4

Sept. 2010

Slide 4

CSI compression scheme using DCT [2]

Pow

er

Freq.

Channel gain

Freq.

Freq.

Discontinuity

Inverse discrete Fourier transform (IDFT)

Discrete cosine transform (DCT)

Pow

er

Time

DCT

IDFT

• IDFT and DCT can create time-domain components.• In IDFT, the discontinuity at the band edges results in a spreading of energy in

the impulse response since DFT assumes that the frequency response is periodic, which causes large CSI error.

• In contrast, DCT can reduce the high-frequency components compared to DFT since it assumes mirror extension of the original data.

ContinuityNg

Page 5: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 5

Sept. 2010

CSI compression scheme using TiDFT [3]• In IDFT, the discontinuity at the band edges results in a spreading of energy

in the impulse response.• To overcome this problem, a truncated IDFT (TiDFT) matrix is applied:

TiDFT matrix is the truncated SVD of pseudo-inverse matrix for IDFT. • TiDFT/FFT operation enables CSI compression since it can suppress CSI

error due to discontinuity of the band edges.

HH FFFF1

rrank FVUF~

,~~ *

(NsubcxNFFT)-DFT matrixF

Pseudo-inverse matrix

Truncated SVD decomposition

TiDFT matrix

Page 6: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 6

Sept. 2010

Slide 6

-60 -50 -40 -30 -20 -100

20

40

60

80

100

MSE (dB)

CD

F

Performance comparison of 3 CSI-FB schemes (1/2)

Nb=8bits

7bits

6bits

5bits

4bits

DCTTiDFTConventional (FD)

Simulation parameters

Nb: Number of bits for each CSI coefficient

Channel model Model E

Bandwidth 40MHz

Number of FFT points N 128

Number of subcarriers Nsubc 114

Number of antennas at AP NT 8

Number of antennas at STA NR 1

DCT

Number of CSI-FB components for DCT LDCT

32x2

Number of DCT points NDCT 64

TiDFTNumber of CSI-FB components for TiDFT LTiDFT

32

Note: CSI before compression is perfect CSI. When CSI before compression includes the effect of noise, MSE performance of DCT and TiDFT will be 3dB and 6dB better than conventional FD respectively because of time domain smoothing.

Page 7: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 7

Sept. 2010

Performance comparison of 3 CSI-FB schemes (2/2)

Simulation parametersChannel model Model E

Bandwidth 40MHz

Modulation 64QAM

Coding rate 5/6

Transmit beamforming ZF

DCT

Number of CSI-FB components for DCT LDCT

32x2

Number of DCT points NDCT 64

TiDFTNumber of CSI-FB components for TiDFT LTiDFT

32

10-5

10-4

10-3

10-2

10-1

100

10 15 20 25 30

IdealConv. (4bits)Conv. (5bits)Conv. (6bits)DCT (4bits)DCT (5bits)DCT (6bits)TiDFT (4bits)TiDFT (5bits)TiDFT (6bits)

Ave

rage

BE

R

SNR (dB)

DL MU-MIMO: AP(8Tx) to 4 STAs(1Tx)

Note: “Ideal” means Perfect CSI. The original CSI of three CSI-FB schemes is perfect CSI. The CSI error is due to quantization error and CSI compression operation. If original CSI includes the effect of noise, BER performance of time domain CSI-FB becomes much better than conventional scheme because of noise reduction by smoothing.

Page 8: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 8

0

2000

4000

6000

8000

10000

12000

DCT TiDFT Conv.

FB

inf

orm

atio

n (b

its)

Sept. 2010

Slide 8

Amount of FB information and calculation complexity

DCT TiDFT

AP 2NDCTlog2(NDCT) NsubcxLTiDFT

STA 2NDCTlog2(NDCT) Nlog2N

FB information bits per STA

DCT (3+2xNbxNTxNR)xLDCT

TiDFT (3+2xNbxNTxNR)xLTiDFT

Conv. (3+2xNbxNTxNR)xNsubc

Number of additional multiplications for TD conversion

0

500

1000

1500

2000

2500

3000

3500

4000

DCT TiDFT

Num

ber

of a

ddit

iona

l m

ulti

plic

atio

ns

@STA

@AP

Nb=6bits

Page 9: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 9

-50 -45 -40 -35 -30 -25 -20 -15 -100

20

40

60

80

100

MSE (dB)

CD

F

-50 -45 -40 -35 -30 -25 -20 -15 -100

20

40

60

80

100

MSE (dB)

CD

FSept. 2010

Slide 9

Effect of the number of CSI-FB coefficients

Channel model B (small delay spread) Channel model E (large delay spread)

DCTDCT

Nb=6bits Nb=6bits

LDCT=32x2, 24x2, 16x2

LDCT=32x2

LDCT=24x2

LDCT=16x2

Page 10: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 10

0

2000

4000

6000

8000

10000

12000

DCT Conv.F

B i

nfor

mat

ion

(bit

s)

Sept. 2010

Performance comparison of 3 CSI-FB schemes (2/2)

Channel model BNb = 6bits Nb=6bits

When the delay spread is small, the amount of FB information can reduce by controlling the number of CSI-FB components L.

10-5

10-4

10-3

10-2

10-1

100

10 15 20 25 30 35 40

Ideal

DCT(L=16x2)

DCT(L=24x2)

DCT(L=32x2)

Ave

rage

BE

R

SNR (dB)

Note: When using optimization of TiDFT matrix, TiDFT can also reduce the number of FB information bits.

Page 11: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 11

Sept. 2010

Slide 11

Conclusion• We presented the performance evaluations for time-domain CSI-FB

schemes to reduce the amount of FB information.• Time-domain approach can reduce FB information since the number

of channel impulse response components fits within GI period.– DCT reduces CSI-FB information by about half of the conventional one

with some additional calculation.– TiDFT is the most effective scheme of CSI compression although

calculation complexity increases at STA.• The amount of FB information can be adjusted dynamically by

controlling the number of CSI-FB components with the demand of CSI accuracy.

• In addition, time-domain operation can improve the CSI estimation accuracy by reducing the noise on the estimated channel coefficients.

Page 12: Doc.: IEEE 802.11-09/0161r1 Submission doc.: IEEE 802.11-10/1131r0 Sept. 2010 K. Ishihara et al.,(NTT) Slide 1 Sept. 2010 Slide 1 Time-Domain CSI Compression.

doc.: IEEE 802.11-09/0161r1

Submission

doc.: IEEE 802.11-10/1131r0

K. Ishihara et al.,(NTT)

Sept. 2010

Slide 12

Sept. 2010

K. Ishihara et al.,(NTT)Slide 12

References

[1] K. Ishihara et al., CSI Report for Explicit Feedback Beamforming in Downlink MU-MIMO, IEEE 802.11-10/0332r0, Mar. 2010.

[2] K. Ishihara et al., CSI Feedback Scheme using DCT for Explicit Beamforming, IEEE 802.11-10/0806r1, July 2010.

[3] L. Cariou and M. Diallo, Time Domain CSI report for explicit feedback, IEEE 802.11-10/0586r1, May 2010.


Recommended