+ All Categories
Home > Documents > Dominant dextral to sinistral coiling change in planktic ... · 23 - H 24 - H 25 - H Blake Nose...

Dominant dextral to sinistral coiling change in planktic ... · 23 - H 24 - H 25 - H Blake Nose...

Date post: 13-Oct-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
1
Dominant dextral to sinistral coiling change in planktic foraminifer Morozovella during the Early Eocene Climatic Optimum in the Atlantic Ocean Roberta D’Onofrio Department of Physics and Earth Sciences, Ferrara University, Italy [email protected] Valeria Luciani Department of Physics and Earth Sciences, Ferrara University, Italy [email protected] Bridget Wade Department of Earth Sciences, University College London, UK [email protected] Gerald R. Dickens Department of Earth Sciences, Rice University Houston, USA [email protected] At all ODP sites investigated, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all species became, at all sites, prevailing sinistral within the EECO (Figs. 4, 5). Specifically, the switch from dominant dextral to sinistral coiling occurred at all sites ~ 300 Kyr after the K/X event (~52.8 Ma). The coiling switch occurred ~550 kyr to ~650 kyr after a distinct drop in abundance. We provide therefore evidence of a coiling variation during the warmest interval of the early Paleogene. Our records highlight that the recorded coiling variations might provide a biostratigraphic tool for correlation of early Eocene marine strata Coiling direction is a basic characteristic of trochospiral planktic foraminifera (Fig. 1). However, although modifications in the coiling direction within ancient planktic foraminiferal populations may reflect important changes in evolution or environment, they remain scarcely discussed. Here we present data on fluctuations in the coiling direction within morphologically defined Morozovella species from successions that span the interval of peak Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53-49 Ma). We selected three widely separated Ocean Drilling Program (ODP) Sites in the Atlantic Ocean: the subtropical Site 1051, the equatorial Site 1258 and the temperate South Atlantic Site 1263 (Fig. 2). The surface-dwelling genus Morozovella is of particular interest because it dominated tropical- subtropical early Paleogene assemblages, and suffered an abrupt and permanent decline in abundance and taxonomic diversity at the start of the EECO (Luciani et al., 2016 ClimPast; 2017 Paleoceanography; 2017b GloPlaCha; D’Onofrio et al. 2020 Geosciences (Fig. 3). Figure 1. Examples of sinistral and dextral coiling within the same morphospecies of Morozovella from the early Eocene sediments of the Site 1051. A-B: cartoons showing spiral view of sinistral (A) and dextral (B) coiled Morozovella crater. C-D: sinistral and dextral Morozovella formosa. E-F: sinistral and dextral Morozovell aragonensis. G-H: Cartoons of sinistral (G) and dextral (H) coiled Morozovella aragonensis in umbilical view where chambers increase appears in the opposite direction with respect to the dorsal view. I-J: sinistral and dextral coiled Morozovella marginodentata. K-L: sinistral and dextral coiled Morozovella crater. Scale bar: 100 µm. -60° -30° 60° 30° -60° -30° 60° 30° 1051 1263 1258 PALEOMAP AT ca 50 MA http://www.odsn/de/services/paleomap.html Figure 2. EECO I-1 I-2 H-1 = ETM2 K/X = ETM3 J H-2 N L-2 L-1 Q O T P R S M U 40 50 30 20 Acarinina (%) 40 10 50 0 30 20 Morozovella (%) 4 10 0 30 20 Subbotinids (%) 90 70 80 60 bulk δ C (‰) 0.8 2 1.6 1.2 13 0.4 0.8 1.2 0.4 0 -0.4 -0.8 13 N. truempyi δ C (‰) E6 / E7a E5 E4 Chronostratigraphy E-Zonation LOWER EOCENE Depth (rmcd) 240 260 280 300 250 270 290 1263 B Recovery 20 - H 21 - H 22 - H 23 - H 24 - H 25 - H Blake Nose (ODP Site 1051) Figure 3. In order to establish whether the observed coiling switch was related to changes in morozovellid ecological niche we estimated stable carbon isotopes on dextral (DX) and sinistral (SN) species from samples located below and above the coiling change at sites 1258 and 1263 (Fig. 6). At Site 1263, in the interval pre-shift (Fig. 6A) dominated by DX forms, SN morphotypes occupied a lower position in the mixed-layer with respect to the DX forms. Interestingly, during the coiling switch (Fig. 6B) we observe a reversal situation, i.e., SN morphotypes moved higher in the mixed-layer. After the coiling shift, in the interval of dominant SN morphotypes (Fig. 6C), the position of the two morphotypes in the mixed-layer changes according to the different species. Specifically, M. formosa SN is higher at Site 1263 whereas M. crater SN results in a lower position with respect to DX morphotypes at both sites. M. aragonensis SN and DX proved to be at similar position at Site 1258. Intriguingly, SN M. crater and SN M. aragonensis show higher degrees of resilience because in the post-shift interval (Fig. 6C) they returned to stay deeper with respect to the DX forms. By contrast, M. formosa, that disappeared during the EECO, probably had lower degrees of flexibility as SN coiled forms maintained a higher mixed-layer habitat during the post-shift interval. It is thus possible that only morphotypes sinistrally coiled had enough flexibility to keep the optimal environmental conditions for their survivorship across the EECO. We need however more effort to understand the meaning of these modifications, such as to verify whether variations in sea surface temperature or other parameters directly corresponded to the coiling change. Coiling switches can relate to ecophenotypic adaption (when a single species changes morphology in response to variation in environmental parameters, such as temperature) or genetic variance (when two almost identical morphotypes have different genetic signatures so they represent ‘cryptic’ species from a morphological point of view). Previous interpretations of coiling flips in planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response. Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter. EECO M (C23r-H2) I-1 (C24n.3n-H1) H-1 = ETM2 (C24r-H8) K/X = ETM3 (C24n.1n-H1) J L-1 (C23r-H1) L-2 I-2 (C24n.3n-H2) H-2 (C24r-H9) Q (C22r-H1) P (C23n.1n-H1) R (C22r-H2) T (C22r-H4) S (C22r-H3) N (C23r-H3) O (C23n.2n-H1) M (C23r-H2) I-1 (C24n.3n-H1) H-1 = ETM2 (C24r-H8) K/X = ETM3 (C24n.1n-H1) J L-1 (C23r-H1) L-2 I-2 (C24n.3n-H2) H-2 (C24r-H9) Q (C22r-H1) P (C23n.1n-H1) R (C22r-H2) T (C22r-H4) S (C22r-H3) N (C23r-H3) O (C23n.2n-H1) M (C23r-H2) I-1 (C24n.3n-H1) H-1 = ETM2 (C24r-H8) K/X = ETM3 (C24n.1n-H1) J L-1 (C23r-H1) L-2 I-2 (C24n.3n-H2) H-2 (C24r-H9) U Blake Nose ODP Site 1051 Sinistral within Morozovella (%) 0 60 20 80 40 100 Sinistral within Morozovella (%) 0 60 20 80 40 100 Demerara Rise ODP Site 1258 Sinistral within Morozovella (%) 0 60 20 80 40 100 Walvis Ridge ODP Site 1263 Dextral within Morozovella (%) 0 60 20 80 40 100 Dextral within Morozovella (%) 0 60 20 80 40 100 Dextral within Morozovella (%) 0 60 20 80 40 100 Dextral Sinistral 0.8 0.6 0.2 0.0 N. truempyi δ C (‰) 13 1.2 1.0 0.4 -0.8 -0.6 -0.2 -1.0 -0.4 0.8 0.6 2.0 1.2 1.0 0.4 1.8 1.6 1.4 bulk δ C (‰) 13 0.8 0.6 0.2 1.2 1.0 0.4 1.8 1.6 1.4 bulk δ C (‰) 13 -0.20.0 1.4 0.8 0.6 0.2 1.6 0.0 bulk δ C (‰) 13 1.2 1.0 0.4 E-Zonation Chronostratigraphy 54.2 54.0 53.8 53.6 53.4 53.2 53.0 52.8 52.6 52.4 52.2 52.0 51.8 LOWER EOCENE E6 / E7a E5 E4 51.6 51.4 51.2 51.0 50.8 50.6 50.4 Age (Ma) Polarity Chron E-Zonation C24r C23r C24n.1n C24n.3n C23n.1n C22r C23n.2n E7a E6 E5 E4 C24n.1n C24n.2n 53.8 53.6 53.4 53.2 53.0 52.8 52.6 52.4 52.2 52.0 51.8 51.6 51.4 51.2 51.0 50.8 50.6 50.4 50.2 50.0 49.8 49.6 E-Zonation Polarity Chron Chronostratigraphy 54.2 54.0 53.8 53.6 53.4 53.2 53.0 52.8 52.6 52.4 52.2 52.0 51.8 C23n C24n.1n C24n.3n C24r C23r LOWER EOCENE E6 / E7a E5 E4 Chronostratigraphy LOWER EOCENE Age (Ma) Age (Ma) Figure 5. = Coiling shift bulk δ C (‰) 0.4 1.6 1.2 0.8 13 0 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 80 20 100 0 60 40 Sinistral within M. aequa (%) Sinistral within M. subbotinae (%) Sinistral within M. gracilis (%) Sinistral within M. marginodentata (%) Sinistral within M. lensiformis (%) Sinistral within M. formosa (%) Sinistral within M. crater (%) Sinistral within M. aragonensis (%) Sinistral within M. caucasica (%) I-1 I-2 EECO H-1 = ETM2 K/X = ETM3 J H-2 M L-2 L-1 360 380 400 420 440 460 Depth (mbsf) Recovery Polarity Chron Chronostratigraphy E - Zonation C21n C21r C23n C24n C24n MIDDLE EOCENE LOWER EOCENE E7b / E8 E6 / E7a E5 E4 Blake Nose ODP Site 1051 40 10 50 0 30 20 Morozovella (%) 80 20 100 0 60 40 Sinistral within Morozovella (%) 20 80 0 100 40 60 Dextral within Morozovella (%) Dextral Sinistral Base Base Top Top Top Top 135 125 115 105 95 85 65 75 C24r C23r C24n.1n C24n.3n C23n C22r 55 Demerara Rise ODP Site 1258 Depth (rmcd) Polarity Chron E-Zonation E7a E6 E5 E4 1.4 1.0 0.6 0.2 1.8 -0.2 bulk δ C (‰) 13 Q (C22r-H1) P (C23n.1n-H1) R (C22r-H2) T (C22r-H4) S (C22r-H3) N (C23r-H3) O (C23n.2n-H1) M (C23r-H2) I-1 (C24n.3n-H1) H-1 = ETM2 (C24r-H8) K/X = ETM3 (C24n.1n-H1) J-1 L-1 (C23r-H1) L-2 I-2 (C24n.3n-H2) H-2 (C24r-H9) J-2 0 60 20 80 40 100 Sinistral within Morozovella (%) Sinistral within M. aequa (%) Sinistral within M. subbotinae (%) Sinistral within M. gracilis (%) Sinistral within M. marginodentata (%) Sinistral within M. formosa (%) Sinistral within M. lensiformis (%) Sinistral within M. crater (%) Sinistral within M. aragonensis (%) Sinistral within M. caucasica (%) 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 60 20 80 40 100 0 30 10 40 20 50 Morozovella (%) 0 60 20 80 40 100 Dextral within Morozovella (%) Dextral Sinistral Base Top Top Top Top Top Base EECO I-1 I-2 H-1 = ETM2 K/X = ETM3 J H-2 N L-2 L-1 Q O T P R S M U 80 20 100 0 60 40 Sinistral within Morozovella (%) 80 20 100 0 60 40 Sinistral within M. aequa (%) 80 20 100 0 60 40 Sinistral within M. subbotinae (%) 80 20 100 0 60 40 Sinistral within M. marginodentata (%) 80 20 100 0 60 40 Sinistral within M. gracilis (%) 80 20 100 0 60 40 Sinistral within M. crater (%) 80 20 100 0 60 40 Sinistral within M. lensiformis (%) 80 20 100 0 60 40 Sinistral within M. formosa (%) 80 20 100 0 60 40 Sinistral within M. aragonensis (%) 80 20 100 0 60 40 Sinistral within M. caucasica (%) 80 20 100 0 60 40 Dextral within Morozovella (%) Dextral Sinistral bulk δ C (‰) 0.8 2 1.6 1.2 13 0.4 0.8 1.2 0.4 0 -0.4 -0.8 13 N. truempyi δ C (‰) E6 / E7a E5 E4 Chronostratigraphy E-Zonation LOWER EOCENE Depth (rmcd) 1263 B Recovery 240 250 260 270 280 290 300 20 - H 21 - H 22 - H 23 - H 24 - H 25 - H 10 20 0 Morozovella (%) 40 30 5 15 35 25 45 Walvis Ridge ODP Site 1263 Top Top Top Top Base Base Figure 4. Walvis Ridge (ODP Site 1051) 1.5 2.0 2.5 3.0 δ C (‰) 13 3.5 1.5 2.0 2.5 3.0 δ C (‰) 13 3.5 1.5 2.0 2.5 3.0 δ C (‰) 13 3.5 ODP Site 1258 Demerara Rise -2.6 -2.2 -2.4 -3.0 -2.8 -2.0 -2.6 -2.2 -2.4 -3.0 -2.8 -2.0 δ O (‰) 18 -2.6 -2.2 -2.4 -1.8 -2.8 -2.0 1.0 1.5 2.0 2.5 δ C (‰) 13 3.0 1.0 1.5 2.0 2.5 δ C (‰) 13 3.0 1.0 1.5 2.0 2.5 δ C (‰) 13 3.0 -0.8 -0.4 -0.6 -1.2 -1.0 -0.2 δ O (‰) 18 -0.8 -0.4 -0.6 -1.2 -1.0 -0.2 -0.8 -0.4 -0.6 -1.2 -1.0 -0.2 ODP Site 1263 Walvis Ridge PRE SHIFT COILING SHIFT POST SHIFT M. aequa M. subbotinae M. marginodentata M. formosa M. aragonensis M. crater M. caucasica M. aequa M. subbotinae M. formosa M. aragonensis M. crater Dextral morphotypes Sinistral morphotypes Fig. 6. C) B) A)
Transcript
Page 1: Dominant dextral to sinistral coiling change in planktic ... · 23 - H 24 - H 25 - H Blake Nose (ODP Site 1051) Figure 3. In order to establish whether the observed coiling switch

DominantdextraltosinistralcoilingchangeinplankticforaminiferMorozovelladuringtheEarlyEoceneClimaticOptimumintheAtlanticOcean

RobertaD’OnofrioDepartmentofPhysicsandEarthSciences,FerraraUniversity,Italy

[email protected]

ValeriaLucianiDepartmentofPhysicsandEarthSciences,FerraraUniversity,Italy

[email protected]

BridgetWadeDepartmentofEarthSciences,UniversityCollegeLondon,UK

[email protected]

GeraldR.DickensDepartmentofEarthSciences,Rice

UniversityHouston,[email protected]

At all ODP sites investigated, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all species became, at all sites, prevailing sinistral within the EECO (Figs. 4, 5). Specifically, the switch from dominant dextral to sinistral coiling occurred at all sites ~ 300 Kyr after the K/X event (~52.8 Ma). The coiling switch occurred

~550 kyr to ~650 kyr after a distinct drop in abundance. We provide therefore evidence of a coiling variation during the warmest interval of the early Paleogene. Our records highlight that the recorded coiling variations might provide a biostratigraphic tool for correlation of early Eocene marine strata

Coiling direction is a basic characteristic of trochospiral planktic foraminifera

(Fig. 1). However, although modifications in the coiling direction within

ancient planktic foraminiferal populations may reflect important changes in

evolution or environment, they remain scarcely discussed. Here we present

data on fluctuations in the coiling direction within morphologically defined

Morozovella species from successions that span the interval of peak

Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53-49 Ma).

We selected three widely separated Ocean Drilling Program (ODP) Sites in

the Atlantic Ocean: the subtropical Site 1051, the equatorial Site 1258 and

the temperate South Atlantic Site 1263 (Fig. 2). The surface-dwelling genus

Morozovella is of particular interest because it dominated tropical-

subtropical early Paleogene assemblages, and suffered an abrupt and

permanent decline in abundance and taxonomic diversity at the start of the

EECO (Luciani et al., 2016 ClimPast; 2017 Paleoceanography; 2017b

GloPlaCha; D’Onofrio et al. 2020 Geosciences (Fig. 3).

Figure 1.

Examples of sinistral and dextral coiling within the same morphospecies of Morozovella from the early Eocene sediments of the Site 1051. A-B: cartoons showing spiral view of sinistral (A) and dextral (B) coiled Morozovella crater. C-D: sinistral and dextral Morozovella formosa. E-F: sinistral and dextral Morozovell aragonensis. G-H: Cartoons of sinistral (G) and dextral (H) coiled Morozovella aragonensis in umbilical view where chambers increase appears in the opposite direction with respect to the dorsal view. I-J: sinistral and dextral coiled Morozovella marginodentata. K-L: sinistral and dextral coiled Morozovella crater. Scale bar: 100 µm.

-60°

-30°

60°

30°

-60°

-30°

60°

30°

1051

1263

1258

PALEOMAP AT ca 50 MA http://www.odsn/de/services/paleomap.html

Figure 2.

EECO

I-1I-2

H-1 = ETM2

K/X = ETM3

J

H-2

N

L-2L-1

Q

O

T

P

RS

M

U

40 503020

Acarinina (%)

4010 500 3020

Morozovella (%)

40100 3020

Subbotinids (%)

9070 8060 100 100 20 50505050 50

S. senni (%

)

Chiloguembelinids (%)

Igorina (%)

Planorotalites (%

)

Globanomalina (%)

Catapsidrax (%

)

G. nuttalli (%)

bulk δ C (‰)

0.8 21.61.2

13

0.4

0.8 1.20.40-0.4-0.8

13N. truempyi δ C (‰)

E6 /

E7a

E5E4

Chr

onos

tratig

raph

yE-

Zona

tion

LOW

ER

EOC

ENE

Dep

th (r

mcd

)

240

260

280

300

250

270

290

1263

B R

ecov

ery

20 -

H21

- H

22 -

H23

- H

24 -

H25

- H

Blake Nose (ODP Site 1051)

Figure 3.

In order to establish whether the observed coiling switch was related to changes in morozovellid ecological niche we estimated stable carbon isotopes

on dextral (DX) and sinistral (SN) species from samples located below and above the coiling change at sites 1258 and 1263 (Fig. 6). At Site 1263, in

the interval pre-shift (Fig. 6A) dominated by DX forms, SN morphotypes occupied a lower position in the mixed-layer with respect to the DX forms.

Interestingly, during the coiling switch (Fig. 6B) we observe a reversal situation, i.e., SN morphotypes moved higher in the mixed-layer. After the

coiling shift, in the interval of dominant SN morphotypes (Fig. 6C), the position of the two morphotypes in the mixed-layer changes according to the

different species. Specifically, M. formosa SN is higher at Site 1263 whereas M. crater SN results in a lower position with respect to DX morphotypes at

both sites. M. aragonensis SN and DX proved to be at similar position at Site 1258. Intriguingly, SN M. crater and SN M. aragonensis show higher

degrees of resilience because in the post-shift interval (Fig. 6C) they returned to stay deeper with respect to the DX forms. By contrast, M. formosa,

that disappeared during the EECO, probably had lower degrees of flexibility as SN coiled forms maintained a higher mixed-layer habitat during the

post-shift interval. It is thus possible that only morphotypes sinistrally coiled had enough flexibility to keep the optimal environmental conditions for

their survivorship across the EECO.

We need however more effort to understand the meaning of these modifications, such as to verify whether variations in sea surface temperature or

other parameters directly corresponded to the coiling change. Coiling switches can relate to ecophenotypic adaption (when a single species changes

morphology in response to variation in environmental parameters, such as temperature) or genetic variance (when two almost identical morphotypes

have different genetic signatures so they represent ‘cryptic’ species from a morphological point of view). Previous interpretations of coiling flips in

planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response.

Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter.

Fig.6

EECO

M (C23r-H2)

I-1 (C24n.3n-H1)

H-1 = ETM2 (C24r-H8)

K/X = ETM3 (C24n.1n-H1)

J

L-1 (C23r-H1)L-2

I-2 (C24n.3n-H2)

H-2 (C24r-H9)

Q (C22r-H1) P (C23n.1n-H1)

R (C22r-H2)

T (C22r-H4)

S (C22r-H3)

N (C23r-H3)

O (C23n.2n-H1)

M (C23r-H2)

I-1 (C24n.3n-H1)

H-1 = ETM2 (C24r-H8)

K/X = ETM3 (C24n.1n-H1)

J

L-1 (C23r-H1)L-2

I-2 (C24n.3n-H2)

H-2 (C24r-H9)

Q (C22r-H1) P (C23n.1n-H1)

R (C22r-H2)

T (C22r-H4) S (C22r-H3)

N (C23r-H3)

O (C23n.2n-H1)

M (C23r-H2)

I-1 (C24n.3n-H1)

H-1 = ETM2 (C24r-H8)

K/X = ETM3 (C24n.1n-H1)

J

L-1 (C23r-H1)L-2

I-2 (C24n.3n-H2)

H-2 (C24r-H9)

U

Blake NoseODP Site 1051

Sinistral withinMorozovella (%)

0 6020 8040 100

Sinistral withinMorozovella (%)

0 6020 8040 100

Demerara RiseODP Site 1258

Sinistral withinMorozovella (%)

0 6020 8040 100

Walvis RidgeODP Site 1263

Dextral withinMorozovella (%)

060 2080 40100

Dextral withinMorozovella (%)

060 2080 40100

Dextral withinMorozovella (%)

060 2080 40100Dextral

Sinistral

0.80.60.20.0

N. truempyi δ C (‰)13

1.21.00.4-0.8 -0.6 -0.2-1.0 -0.4

0.80.6 2.01.21.00.4 1.81.61.4

bulk δ C (‰)13

0.80.60.2 1.21.00.4 1.81.61.4

bulk δ C (‰)13

-0.20.0

1.40.80.60.2 1.60.0

bulk δ C (‰)13

1.21.00.4

E-Zo

natio

nC

hron

ostra

tigra

phy

54.2

54.0

53.8

53.6

53.4

53.2

53.0

52.8

52.6

52.4

52.2

52.0

51.8

LOW

ER

EOC

ENE

E6 /

E7a

E5E4

51.6

51.4

51.2

51.0

50.8

50.6

50.4

Age

(Ma)

Pola

rity

Chr

on

E-Zo

natio

n

C24

rC

23r

C24

n.1n

C24

n.3n

C23

n.1n

C22

rC

23n.

2n

E7a

E6E5

E4

C24n.1n

C24n.2n

53.8

53.6

53.4

53.2

53.0

52.8

52.6

52.4

52.2

52.0

51.8

51.6

51.4

51.2

51.0

50.8

50.6

50.4

50.2

50.0

49.8

49.6

E-Zo

natio

n

Pola

rity

Chr

onC

hron

ostra

tigra

phy

54.2

54.0

53.8

53.6

53.4

53.2

53.0

52.8

52.6

52.4

52.2

52.0

51.8 C23n

C24n

.1n

C24n

.3n

C24r

C23r

LOW

ER

EOC

ENE

E6 /

E7a

E5E4

Chr

onos

tratig

raph

yLO

WER

EO

CEN

E

Age

(Ma)

Age

(Ma)

Figure 5.

= Coiling shift

bulk δ C (‰)

0.4 1.61.20.8

13

0 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040 8020 1000 6040

Sinistral within M. aequa (%)

Sinistral within M. subbotinae (%)

Sinistral within M. gracilis (%)

Sinistral within M. marginodentata (%)

Sinistral within M. lensiformis (%)

Sinistral within M. formosa (%)

Sinistral within M. crater (%)

Sinistral within M. aragonensis (%)

Sinistral within M. caucasica (%)

I-1I-2

EE

CO

H-1 = ETM2

K/X = ETM3

J

H-2

M

L-2L-1

360

380

400

420

440

460

Dep

th (m

bsf)

Rec

over

yP

olar

ityC

hron

Chr

onos

tratig

raph

yE

- Zo

natio

n

C21n

C21r

C23n

C24n

C24n

MID

DLE

EO

CE

NE

LOW

ER

EO

CE

NE

E7b

/ E

8E

6 / E

7aE

5E

4

Blake NoseODP Site 1051

4010 500 3020

Morozovella (%)

8020 1000 6040

Sinistral within Morozovella (%)

2080 0100 4060

Dextral within Morozovella (%)

DextralSinistral

Base

Base

Top

Top

Top

Top

135

125

115

105

9585

6575

C24

rC

23r

C24

n.1n

C24

n.3n

C23

nC

22r

55

Demerara RiseODP Site 1258

Dep

th (r

mcd

)

Pol

arity

Chr

onE

-Zon

atio

nE

7aE

6E

5E

4

1.41.00.60.2 1.8-0.2

bulk δ C (‰)13

Q (C22r-H1) P (C23n.1n-H1)

R (C22r-H2)

T (C22r-H4) S (C22r-H3)

N (C23r-H3)

O (C23n.2n-H1)

M (C23r-H2)

I-1 (C24n.3n-H1)

H-1 = ETM2 (C24r-H8)

K/X = ETM3 (C24n.1n-H1)

J-1

L-1 (C23r-H1)L-2

I-2 (C24n.3n-H2)

H-2 (C24r-H9)

J-2

0 6020 8040 100

Sinistral withinMorozovella (%)

Sinistral withinM. aequa (%)

Sinistral withinM. subbotinae (%)

Sinistral withinM. gracilis (%)

Sinistral within M. marginodentata (%)

Sinistral withinM. formosa (%)

Sinistral withinM. lensiformis (%)

Sinistral withinM. crater (%)

Sinistral withinM. aragonensis (%)

Sinistral withinM. caucasica (%)

0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 100 0 6020 8040 1000 3010 4020 50

Morozovella (%)

060 2080 40100Dextral within

Morozovella (%)Dextral

Sinistral

Base

Top

Top

Top

Top

Top

Base

EE

CO

I-1I-2

H-1 = ETM2

K/X = ETM3

J

H-2

N

L-2L-1

Q

O

T

P

RS

M

U

8020 1000 6040

Sinistral within Morozovella (%)

8020 1000 6040

Sinistral within M. aequa (%)

8020 1000 6040

Sinistral within M. subbotinae (%)

8020 1000 6040

Sinistral within M. marginodentata (%)

8020 1000 6040

Sinistral within M. gracilis (%)

8020 1000 6040

Sinistral within M. crater (%)

8020 1000 6040

Sinistral within M. lensiformis (%)

8020 1000 6040

Sinistral within M. formosa (%)

8020 1000 6040

Sinistral within M. aragonensis (%)

8020 1000 6040

Sinistral within M. caucasica (%)

80 20100 060 40

Dextral within Morozovella (%)

Dextral

Sinistral

bulk δ C (‰)

0.8 21.61.2

13

0.4

0.8 1.20.40-0.4-0.8

13N. truempyi δ C (‰)

E6

/ E7a

E5

E4

Chr

onos

tratig

raph

yE

-Zon

atio

nLO

WE

R

EO

CE

NE

Dep

th (r

mcd

)

1263

B R

ecov

ery

240

250

260

270

280

290

300

20 -

H21

- H

22 -

H23

- H

24 -

H25

- H

10 200

Morozovella (%)

40305 15 3525 45

Walvis RidgeODP Site 1263

Top

Top

Top

Top

Base

Base

Figure 4.

Figure 6.

Walvis Ridge (ODP Site 1051)

1.5

2.0

2.5

3.0

δ C

(‰)

13

3.5

1.5

2.0

2.5

3.0

δ C

(‰)

13

3.5

1.5

2.0

2.5

3.0

δ C

(‰)

13

3.5

ODP Site 1258Demerara Rise

-2.6-2.2 -2.4 -3.0-2.8-2.0

-2.6-2.2 -2.4 -3.0-2.8-2.0

δ O (‰)18

-2.6-2.2 -2.4-1.8 -2.8-2.0

1.0

1.5

2.0

2.5

δ C

(‰)

13

3.0

1.0

1.5

2.0

2.5

δ C

(‰)

13

3.0

1.0

1.5

2.0

2.5

δ C

(‰)

13

3.0

-0.8-0.4 -0.6 -1.2-1.0-0.2

δ O (‰)18

-0.8-0.4 -0.6 -1.2-1.0-0.2

-0.8-0.4 -0.6 -1.2-1.0-0.2

ODP Site 1263Walvis Ridge

PR

E S

HIF

TC

OIL

ING

SH

IFT

PO

ST

SH

IFT

M. aequa

M. subbotinae

M. marginodentata

M. formosa

M. aragonensis

M. crater

M. caucasica

M. aequa

M. subbotinae M. formosa

M. aragonensis

M. crater

Dextral morphotypes

Sinistral morphotypes

Fig. 6.

C)

B)

A)

Recommended