+ All Categories
Home > Documents > Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

Date post: 06-Apr-2018
Category:
Upload: mutrexcz
View: 219 times
Download: 0 times
Share this document with a friend

of 16

Transcript
  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    1/16

    UCRL-CR-128684S/C. B331058

    Ultrashort X-Ray Backlighters andApplications

    Donald UmstadterUniversity of Michigan

    Submitted as Final Report on the DOWLLNL Contract W-7405-ENG-48, Subcontract No.B331058 for period covering 8/1/96 - 7/31/97

    August 13,1997

    :.,.,.::.:4.,.::....

    ..*. ..............................;.:.:.,,,..,,,,,,::,,,,,,,:,,,,:,,,:,.

    - . .

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    2/16

    DISCLAIMER

    This document was prepared as an account of work sponsored by an agency of the United StatesGovernmen t. Neither the United States Governm ent nor the University of California nor any of theiremp loyees, makes an y wa rranty, express or imp lied, or assum es any legal liability or resp onsibility forthe accuracy, completeness, or usefulness of any information, appar atus, prod uct, or process disclosed,or represents that its use wou ld not infringe privately owned rights. Reference herein to any specificcommercial product, process, or service by trade name, trademark, manufacturer, or otherwise, doesnot necessarily constitute or imply its endorsem ent, recommend ation, or favoring by th e United StatesGovernm ent or the University of California. The views and opinions of authors expressed herein d onot necessarily state or reflect those of the United States Government or the Un iversity of California,and sha ll not be used for advertising or produ ct endorsement purp oses.

    Work performed und er the au spices of the U.S. Department of Energy by Lawrence Livermore NationalLaboratory un der Con tract W-7405-ENG-48.

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    3/16

    Ultrashort X-Ray Backlighters andApplications

    Final Repor t on the DOE/LLNL ContractW-7405-ENG-48, Subcont ract No. B331058

    Covering the Period 8/1/96-7/31/97At tn : Mr . E dwin Ca ssidySubcont ract Adminis t ra tor

    Lawrence Livermore Na t iona l Labora toryP.O. Box 808, Ma il Code L-650

    7000 Ea st Ave.Livermore, CA 94551

    Donald Umst adt er , P .I.Assoc. Professor

    Cen t er for U lt r afa st Op tica l Science1006 1ST Bldg.

    University of MichiganAnn Arbor , MI 48109-2099

    Augu st 14, 1997

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    4/16

    , ...

    AbstractPr evious ly, u sing u lt r a shor t la ser pu lses focused on to solid t a r ge ts ,

    we have exper imen t ally s tudied a con t rolla ble u lt ra fa st br oadband r a-d ia t ion sou r ce in t h e ext reme u lt ra violet for t ime-r es olved dynamica lst udies in u lt ra fa st science [J . Workma n, A. Ma ksimch uk, X. Llu ,U. E llen berger , J . S. Coe, C.-Y. Ch ien , a nd D. Um st adt er , Con tr olof Br igh t P icos econd X-Ray Em is sion fr om In ten se Sub-P icos econdLaser-Plasma Interact ions, Phys. R ev . L et t. 75, 2324 (1995)]. Oncea rm ed wit h a br igh t u lt ra fa .s t br oa dba nd con tin uum x-r ay s ou rce a nda ppr opr ia te det ect or s, we u sed t he sou rce a s a ba ckligh ter t o st udy ar em ot ely pr odu ced pla sm a. Th e a pplica tion of t he sou rce t o a prob-lem r eleva nt t o h igh -den sit y m at ter complet es t he t ria d: cr ea tin g a ndcon t rollin g, efficien t ly d et ect in g, a nd app lying t h e sou rce. Th is wor kr ep res en t ed t he fir st u se of an u lt r a fa st la ser -p roduced x-r ay sou r ce a sa t im e- r esolvin g pr obe in a n a pplica tion r eleva nt t o a tom ic, pla sm aa nd h igh -en er gy-den sit y m at ter ph ysics. Usin g t he x-r ay sou rce a sa ba ckligh ter , we a dopt ed a pump-pr obe geomet ry t o in vest iga te t hedynamic ch anges in elect ron ic stu ct ure of a thin met allic film a s itis per tu rbed by a n u lt ra sh or t la ser pu lse. Beca use t he la ser deposit sit s energy in a skin depth of about 100 ~ before expansion occurs,u p to giga ba r pressu re sh ock wa ves la st in g picosecond in du rat ionhave been predicted to form in th ese novel pla sma s. This ra ises th epossib ilit y of s tudying h igh -ener gy-dens it y ma t t er r elevan t t o iner t ia lcon fin emen t fu sion (ICF ) and a st r ophys ics in sma ll-s ca le la bor at or yexper imen t s. I n t he past , t ime-r esolved measur emen t s of K-edge sh ift sin pla sm as dr iven by n an osecon d pu lses h ave been u sed t o in fer con -dit ion s in h igh ly compr es sed mat er ia ls . In t his st udy, we u sed 100-fsla ser pu lses t o im pu lsively dr ive sh ock s in to a sample (a n u nt am ped1000 ~ aluminum film on 2000 ~ of parylene-n), mea su rin g L-edgeshifts.

    2

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    5/16

    ...

    I n t r oduc t i o nWe demonst ra te the fir st use of a laser-produced x-ray source as a t ime-r esolvin g pr obe in a n a pplica tion r eleva nt t o a tom ic, pla sm a a nd h igh -en er gy-density mat ter physics. Using the x-ray source as a backligh ter , we adopta pump-probe geometry to invest iga te the dynamic changes in elect ron icst ructu re of a thin meta llic film as it is per turbed by an ult ra shor t -la serpulse. Because the laser deposit s it s energy in a skin depth of about 100 ~befor e expansion occur s, very lar ge a mplit ude shock wa ves can be gen er at edwithout mater ia l pre-hea t , commonly found in long pulse in teract ions[l].Under these novel condit ions, predict ions indica te the generat ion of up togigabar pressu re shock waves last ing picosecond in dura t ion[2, 3]. Th isra ises the possibilityy of studying high energy density mat ter , relevan t toin er tia l confinem en t fusion (ICF) a s well a s a st roph ysica l st at es of m at ter insm all-sca le la bor at or y exper im en ts wit h picos econ d t empor al r esolu tion .

    La se r Com pr ess ion a nd Sh ock Gen er a t io~Plasma densit ies above solid, and elect ron tempera tu res below the Fermit empera tu re (defined below) can occur when the ablat ive force from a laser -hea ted solid genera tes a shock wave t raveling in the opposite direct ion , in tothe solid. The process of shock generat ion can be thought . of as a waveinduced by a moving piston . The force and velocity of the piston will bedetermined by the velocit y and density of mater ia l abla t ing into the vac-uum; th is is Newtons third law, or the rocket effect . The pressur e dueto thermal expansion (abla t ion), &, can be determined from the ideal gasequa tion -of-st at e ~t ~ = n#Ie. For an ult ra sh or t-pulse la ser in t er act ion wit ha solid, the density a t which the laser is absorbed can be close to solid. Witht empera tu res in the range of abou t 1000 eV and a density of 1022 cm-3,on e obt ain s a pr essu re of 1013 dyn es/cm 2 or a ppr oxim at ely t en -m illion a tm o-spheres. There a re few conven t iona l means of obtaining pressu res t his highwit h ou t t h ermonu clea r d et on a tion s.

    E xp er im en t a l Te ch n iq u esExper iments for measur ing hot dense mat ter , and, in par t icu lar , shock wavepr oper ties, include bot h opt ical and x-r ay dia gn ost ics. Mea sur em en ts of t her ea r-su rfa ce lumin ou s em ission [4, 5, 6, 7], r eflect ivit y [8] a nd ph as e sh ift s[9] a l-

    3

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    6/16

    ..,.

    a)~b)mL_)ImL_(d+ [---(,IP lz *

    x x

    e)i-t=_(+_t2k_. xFigure 1: Gradual steepening of the pressure and density profile in a com-pression wa ve gen erat ed by an a ccelera tin g pist on . In crea sin g sou nd speedsa t poin t s 1, 2 and 3 lead to overshoot ing as shown in (d), correspondingto a physica l ly meaningless solu t ion; (e) shows the actua l profile with a dis-cont inuity. (f) and (g) are the corresponding density profiles from (d) and(e). (Ada pted from Zeldovich an d Ra izer .)

    low one t o determin e sh ock speed. Usin g t hin t argets of va rying th ickn esses,one can measure the t ime a t which a shock arr ives a t the rear surface. Thkican be compared to the t ime at which the laser pulse ar r ives a t the frontsurface to map out the evolving and steady-sta te shock speed. Direct mea-surements of shock speed and density can be obta ined using x-ray[lO, 11, 12]and opt ica l[13] st r eak shadowgraphy. Using target s tha t are t ransparent tothe backlighter under normal condit ions (e.g. plast ics or fused silica ) onecan determine density and it s evolut ion , from changes in the opacity dueto mater ia l compression and heat ing. Density measurements using EXAFS(extended x-ra y a bsorpt ion fin e st ruct ure)[14, 15, 16] r ely on th e spa cin g be-tween sca tter in g cen ters t o sh ow in ter ference pa tt ern s in t he a bsorbed x-rayspect rum. Shift s in the energy of photoabsorpt ion edges[l 7, 18] can occur indense mater ia ls due to a phenomenon known as cont inuum lowering. Th e

    4

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    7/16

    . ..

    dynamics of the edge shift can be used to infer proper t ies of the shockedregion. ,The techniques ment ioned have shown compression factors approach-ing three in solid ta rgets with pressu res as high as tens-of-megabars. Itshou ld be emphasized that a ll of the methods and measurement s descr ibedhere have been carr ied out with nanosecond laser in teract ions (except Ref.[9]) with intensit ies between 103-105 W/cm. In the next sect ion wepr esen t t im e-r esolved exper im en ta l m ea su rem en ts of h igh -den sit y m at ter u s-ing photoabsorpt ion-edge sh ift s. The compression of an a luminum foil isaccom plished using a 100-fs la ser pulse t o gener at e a sh ock wave.

    Ult r ash or t Soft X-r ay Ba ck ligh te r in a P um p-P r ob e Ge-ome t r yIn t his sect ion an experimental setup is descr ibed which was used for t ime-r esolving a sh ift in th e LZI,lII phot oabsor pt ion edge in a t hin alum in um foil,com pr essed by a 100-fs la ser -m at ter in ter act ion . Alumin um is chosen a s t het ar get , du e t o it s well-s tu died ph ysica l pr oper ties, it s ver sa tilit yy a nd iow-cos tta rget const ruct ion. The L-edge was chosen instead of the K-edge for it sa ccessibilit yy t o t he soft x-ray sou rce. The geom et ry uses a 100 fs la ser pum pand a t ime-resolving x-ray probe. This a rrangement lends it self to a lmostan y t ype of pump-pr obe x-r ay a bsor pt ion m ea su rem en ts.

    E xp er im en t a l Ch a mb erAs shown in Fig. 2, 50 mJ of the 100-fs 1O-HZ Ti:Sapph ire laser pu lses weresen t to a beamsplit t er , where 90 percent of the energy was reflected on to anf/5 off-axis pa rabola , used to focus the light onto a solid gold ta rget . Thebr oa dba nd u lt ra sh or t-pu lse x-r ay poin t sou rce gen er at ed fr om t his in ter act ionwas refocused to a sample a t the opposite end of the experimen tal chamberusing a sect ion of a gra zing inciden ce ellipsoida l opt ic; a cen tr al beam blockeliminat ed any perturba t ions to the sample tha t might a r ise from hot elec-t rons or hard x-rays produced by the laser -gold interact ion. The remaining5 mJ of laser ligh t was sent in to an opt ical delay line and then focused withan f/10 lens onto the thin meta llic sample to an int ensity of 1 x 1014 W /cm2.The sample plane was coinciden t with the slit of a var iable spaced-grat inggrazing incidence imaging soft -x-ray spect rometer . The MCP coupled to

    5

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    8/16

    , ..

    opticaldelayMS

    gold target

    fist-field grazing Incldancesoft x+ay spsctromstar

    10 Hz ll:Sapphire Laser4 4 Fc

    Figur e 2: E xper im ent al pum p-pr obe set up for a bsor pt ion spect roscopy (de-t ails in t ext ).

    the end .of the soft x-ray spect rometer enabled us to record spect ra lly andspa t ia lly resolved x-ray absorpt ion through the per t urbed sample mat er i a l.Time resolu t ion was obtained by changing the ar r ival t ime of the laser pu lsewith respect t o the x-ray pu lse. As ment ioned ear lier , th is exper imenta l ar -rangement a llows any type of sample to be probed, whether it be a gas jet ,liquid, wire or th in film. In th is exper iment the sample consisted of 1000~ of a luminum deposited onto 2000 ~ of parylene-n (C-H.), a s a rear -sidesuppor ting st ruct ur e. Due t o t he spa tia l r esolut ion afforded by t he spect rom -eter (100 pm), compar ison of absorpt ion spect ra through cold a luminum totha t of t he per turbed a luminum was possible for each data point . The laserfocu s of 125 m icr on s, wh ich was sm aller t han t he 300-400 m icr on x-r ay pr obefocu s, a llowed clea r r esolu tion of t he per tu rbed r egion .

    X-r a y Ba ck ligh t erBroadband emission has previously been measured fr?m 20 to 200 ~[19, 20],however , here we focus on the emission in the range of 100 to 200 ~, in ther egion of t he alu min um Lll,lll-edge. The pulse du rat ion wa s lim it ed t o 20-ps.

    6

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    9/16

    Thes e longer pu lse dur at ion s a r e due t o in t en sit y con t ra st lim it at ion s of t he790-nm la ser ,ligh t . F r equency doubling was found to be p roh ibit ively ineffi-cien t (15 -20 per cen t ), pos sibly due t o a combin at ion of t he shor t la ser -puls edu ra tion a nd KDP doublin g cr yst al t hick ness. la ser Th ese mea su remen ts

    -,

    o 100 200time (ps)

    , 1aFWHM=22 ps 40 50 100 150 200 250time (ps)c);m time integrated spectraE5co 80 100 120 140 160 180X-rsywavelength(Angstroms)F igu re 3: Soft x-r ay sou rce gener a t ed by a 100-fs la ser in t er a ct ion wit h a solidgold t ar get . (a ) Tempor a lly a nd spect r ally r es olved images of t h e sou r ce. (b)Temporal lineout n ear 170 ~. (c) The spect r um was measured separ atelywith a micro-channel-pla te .were obt a ined wit h t he x-r ay jit t er -fr ee s tr eak camera [21]. The image shownin F ig. 3 is a n a ccumu la tion of 20 in t er a ct ion s. In F ig. 3(a ), t he cu r va t ur e duet o differ en t elect ron pa th s in t he st rea k camer a h ss n ot been cor rect ed. Th et ime-in t egr a t ed spect rum in F lg.3 (c) was obt a ined wit h t he micro-cha rmel-pla te (MCP ) u sed for t he pump-pr obe mea su remen ts. Th e decr ea se in spec-t ra l in ten sit y in F ig.3(a ) a nd (c) is du e t o t he spect ra l in ten sit y r espon se oft he spect romet er gr a t ing and det ect or s.

    7

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    10/16

    .

    Exp er im en t a l Ob se r va t ion of P h ot oa bsor p tion -E dge Sh ift sin Com pr essed Alu m in u mThe absorpt ion fea ture used for analysis of the aluminum sample was theLZZ,II1 p hot oa bsor pt ion -edge a t 72.78 eV (170.04 ~)[22]. Th e posit ion of t heedge gives a direct measure of the ioniza t ion poten t ia l, and, thus, the elec-t ron ic st ructu re of the probed sample. The energy of the edge will change as

    1 I r

    [ . . . . . . ...1.........1.. . . . . ...1-

    -r,.IIIIPI l%, ,\ ,l# iIIIIIIII,11

    1 4 0 1 5 0 1 6 0 1 7 0 1 8 0X-ray wavelength (Angstroms)F igu re 4: Compa rison of t he t ra nsm it ted x-r ay ba ckligh ter spect rum sh owin gthe maximum red shift (dashed line) and the cold aluminum edge posit ion(sol id l ine ).a fu nct ion of m at er ia l den sit y, t em per at ur e and ioniza tion st at e[17, 18]. Fig-u re 4 sh ows t he x-r ay ba ckligh ter spect ru m, gener at ed fr om t he gold in ter ac-t ion, a ft er t ra nsm ission t hrough t he t hin alum inu m sa mple. The t wo spect racor respond to t ransmission before a rr ival of the laser pu lse (solid line) andt ra nsm ission just a ft er t he la ser pu lse ha s com pr essed t he a lum inu m (dashedline). The laser-pump in tensity used was 1 x 1014 W/cm 2, consist ent wit hpr eviou s lon ger -pu lse wor k. Aft er t he la ser pu lse h as a rr ived, t he spect ra l po-sit ion of t he phot oabsor pt ion edge ha s shift ed t o longer wavelengt h by 1.6 ~(r ed shift ed). The m ea sur ed spect ra l shift of t he LIZ,llZ-edge, wit h r espect

    8

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    11/16

    2.5 - l g rlgl l 1 11,,2 . 0 - .

    T41 . 5 -T

    1.0 -T &

    0 . 5 -1

    0 . 0 - . *

    1- 0 . 5 1 . . . . 1 . . . . 1 . . 1 . 1 . . . . ! . . . . 1 . . . . 1 . . . .

    - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0delay time (ps)Figure5: fidshift of thea luminum Lzl,Izz edge *a funct ion ofx-ray probedela y t im e.

    to it s cold, neutra l posit ion , is recorded as a funct ion of probe delay in Fig.5.Each data poin t consisted of 10 to 20 laser shot s. Error bars indica te thet ime resolu t ion of the 20-ps x-ray probe on the t ime axis and the averagingof severa l da ta files on the shift axis. The ear ly t imes (t < O) correspondto probing unper turbed sample with the soft x-ray source before the laserar r ives. We then see a maximum red-shift of 1.6+ 0.4 ~, which decreases a tla t er t imes as the sample decompresses. The shift of 1.6 ~ is much grea terthan one would expect due to the Doppler sh ift of an expanding ma ter ia l.For expansion velocit ies as high as 106 cm/sec (one might expect a t th is in-tensity) a maximum Doppler sh ift a t 170 ~ would correspond to 0.017 ~.The spect ra l posit ion of the photoabsorpt ion edge fa lls back to it s cold posi-t ion with in approximately 50-ps. This t ime-sca le turns out to be consist en twith propagat ion of a disturbance through a cold 1000 ~ aluminum samplea t the sound speed.

    9

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    12/16

    ..,-.

    Con tr ib u t ion s t o t h e P h ot oa bsor p t ion Ed ge Sh iftTo gain an understanding of the exper imenta l resu lt s, we use an analyt icplasma model to descr ibe the rela t ionship between L-edge posit ion and thea ssocia ted pla sm a pa ramet er s; t em per at ur e, den sit y a nd ion iza tion . Beca useth e h ydrodyn amics code does not in clude a reason able equa tion-of-sta te forhigh densit ies and low tempera tures, nor can it handle shock waves[23], thefollowin g a na lysis will rely pr ima rily on the a nalyt ica l m odel. Referen ce toh ydrodyn amics sim ula tion s from a bet t er a dapt ed code (CHIVAS), corrobo-r ates our un derstan dhg of th e shock and rela xa tion dyn amics. Our a nalyt ica la na lysis depen ds on t hr ee ba sic ph en om en a: Ion iza tion , wh ich gen er at es blu espect ra l sh ift s, con tin uum lower in g, wh ich con tr ibu tes r ed sh ift in g a nd elec-t ron degeneracy, wh ich t akes in to a ccou nt some solid-sta te effect s. The tota lsh ift in t he ioniza tion poten tia l, and, thu s, th e phot oabsorpt ion edge, will begiven by t he sum of t hese t hr ee con tr ibu tion s[17]

    AE~O~= AEim + AEd + AEd.~,where AEim is the shift due to ioniza t ion , AEd is the shift due to cont inuumlower ing an d AE de~ is th e sh ift du e t o elect ron degeneracy.

    Th e th ree con tr ibu tion s descr ibed in t he previou s sect ion sum together togive a tota l sh ift , AE~O~= AEim + AEC1 + AEd.~[17], as st a ted above. Thetot al sh ift is, th erefore, a fun ct ion of elect ron tempera ture, density an d ion-izat ion sta te, giving a th ree dimen sion al pa rameter spa ce which cha nges witht ime. Taking the analyt ic model descr ibed in the previous sect ion , one canplot the predict ed shift as a funct ion of density for a par t icu lar tempera tureand ion iza tion st ate. Using th e a bove pla sma model, with Sa ha -ba sed sca lin gfor ioniza t ion as a funct ion of tempera ture, we can plot the locus of poin tsrepresen tin g th e ma ximum observed edge-shift a s a fun ct ion of tempera tur eand ion density. The exper imen ta l er ror in the shift m easu rement is ir iclu dedin the width of the curve, determined by the model a t a shift of 1.6~0.4~. This plot demonstra t es the need for a measurement of the tempera tureto accura tely determine the density, and hence the compression in our sam-ple. Without such a complimentary measurement , deta iled hydrodynamicinformat ion is necessary to isola t e a single set of parameters descr ibing theplasma. With the use of the deta iled 1.5-D hydro code CHIVAS, we finda tempera ture and maximum compression which fa ll close to our experi-menta l boundar ies [24]. The discrepancy between the analyt ic analysis andthe numerica l resu lt s may be due to the omission of band st ructure in the

    10

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    13/16

    , a.... .

    analyt ic model. The numerica l result s show consistency with our analyt icapproach and indicate a maximum compression of 1.4 t imes solid density a ta tempera ture of 3.9 eV.

    Of cou rse, in ou r geom et ry a n a bsor pt ion m ea su rem en t in tegr at es t he con -t r ibu t ions from each region of the sample, which can be roughly divided intoa high t emper at ur e low densit y blow-off region, a high den sit y low t em per a-t ur e com pr essed r egion a nd t he u ndist ur bed cold m at er ia l. H igh t em per at ur eregions cont r ibute ioniza t ion blue sh ift s tha t a re masked by red shift s. Wetherefore probe the higher density regions a t any given t ime. In fact , weexpect t he m ea sur ed shift t o be a weight ed average, r esult ing fr om cont ribu-t ion s fr om differ en t posit ion s in t he high den sit y r egion .

    H ydr odyn am ic ca lcu la tion s of 100-fs la ser gen er at ed s hock wa ves in dica tethat the shock will be genera ted in picosecond and will t raverse the 1000~ mater ia l on a t ime-sca le of the order 5 to 10 picoseconds[2, 24, 25]. Th isgives a propaga t ion speed of abou t 106 cm/s, which in the cold mater ia lwould cor respond to a Mach number of about 2. Th is implies that ourt ime-resolut ion is ideal for measur ing the dynamics of the relaxat ion of themat er ia l after the shock, but not yet sufficient to resolve the dynamics of thes hock wave it self.

    Non te ch n ica l Asp ec t s of t h e Rep or tThe work was done a t the University of Mich igan Cen ter for Ult rafast Op-t ica l Science (CUOS ), where a gradua te studen t was suppor ted by th is con-t ra ct . The following publicat ion acknowledged t he suppor t of th e cont ra ct , J .Workman, M. Nantel, A. Maksimchuk and D. Umstadter , Applica t ion of aP icosecon d X-Ra y Sou rce t o Tim e-Res olved P la sm a Dyn am ics , Appl. F hys.Let t. 70, 312 (1997). Th e r esu lt s wer e a lso discu ssed in t he following in vit edt alk : At om ic. P rocess es in U lt ra Sh or t-P uls e La ser -P la sm as, ln ter na tior za lCon feren ce on L aser In teraction an d R elated Plasm a Ph en om en a, Monterey,CA, Apr il, 1997.

    Re f e r en c e s[1] Ya . B. Zeldovich a nd Yu. P . Ra .izer , Physics of S hock Waves and Hzgh-

    T em p era tu re H yd rod yn am i c Ph en om en a (Aca dem ic P ress, New Yor k,1967).

    11

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    14/16

    ,:.. .

    [2] V. E. Gusevj Phys. Vibr . 57,1 (1993).[3] A. Ng, A. Forsman, and P. Celliers, Phys. Rev. E 51, R5208 (1995).[4) A. Ng, D. Parfeniuk and L. DaSilva , Phys. Rev. Let t . 54,2604 (1985).[5] R. J . Tra inor , J . W. Shaner , J . M. Auerbach and N. C. Holmes, Phys.

    Rev. Let t . 42, 1154 (1979).[6] B. Arad, A. Borowitz, S. Eliezer , Y. Gazit , L Gilath, M. Given, S.

    J acke 1, A. D. Krumbein and H. Szichman, Plasma Phys. Cont . Fusion26,845 (1984).

    [7] F. Cot tet , J . P . Remain, R. Fabbro and B. Fara l, Phys. Rev. Let t . 52,1884 (1984).

    [8] M. Werdinger , B. Arad, E. Moshe and S. Eliezer , Quant . Elect ron. 25,153 (1995).

    [9] R. Evans, A. D. Badger , F . Falli&s, M. Mahdieh , T. A. Hall, P . Aude-ber t , J .-P. Geinder , J .-C. Gauthier , A. Mysyrowicz, G. Grillon and A.An tonet ti, Phys. Rev. Let t. 77, 3359 (1996).

    [10] R. Kodama, K. A. Tanaka , M. Nakai, K. Nishihara , T. Nor imatsu, T.Yamanak a and S. Nakai, Phys. F lu ids B 3, 735 (1991).

    [11] B.A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A- Reming-ton , P. L. Miller , T. A. Peyser and J . D. Kilkenny, Phys. F lu ids B 5,2259 (1993); B. A. Hammel, J . D. Kilkenny, D. Munro, B. A. Reming-ton, H. N. Kornblum, T. S. Perry, D. W. Phillion and R. J . Wallace,P hys. P la sm as 1, 1662 (1994).

    [12] J . Edwards, M. Dunne, R. Taylor , O. Willi, C. A. Back and S. J . Rose,Ph ys. Rev. Let t. 71,3477 (1983).

    [13] A. Ng, P . Cellier s and D. Parfeniuk, Phys. Rev. Let t . 58,214 (1987) .[14] T. A. Hall, A. Djaoui, R. W. Eason, C. L. J ackson, B. Shiwai, S. L.

    Rose, A. Cole and P. Apte, Phys. Rev. Let t . 60,2034 (1988)..

    12

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    15/16

    [15] A. Djaoui, B. Shiwa i, T. A. Hall, R. W. Eason, C. J ackson and S. J .Rose, Plasma Phys. Cont . Fusion 31, 111 (1989); A. Djaoui, T. A.Hall. R: C. Albers, J . J . Rehr and J . Must re, Laser Par t . Beams 8,319(1990).

    [16] F. I. Gordon, P lasma Phys. Cont . Fusion 35,1207 (1993).[17] D. K. Bradley, J . Kilkenny, S. Rose, and J . D. Hares, Phys. Rev. Let t .

    59,2995 (1987).[18] L. DaSilva , A. Ng, B. K. Godwal, G. Chiu, and F . Cot tet , M. C.

    Richardson, P. A. J aanimagi and Y. T. Lee, Phys. Rev. Let t . 62, 1623(1989).

    [19] M. M. Murnane, H. C. Kapteyn, R. W. Fa lcone, Phys. Rev. Let t . 62,155 (1989).

    [20] J . Workman, A. Maksimchuk, X. Liu, U. Ellenberger , J . S. Coe, C. Y.Chien, and D. Umst adter , Phys. Rev. Let t . 75,2324 (1995).

    [21] A. Maksimchuk, M. Kim, J . Workman, G. Kern , J . Squire, D. Du, D.Umstadt er , G. Mourou, and hf. Bouvier , Rev. Sci. Inst rum. 67, 697(1996).

    [22] B. L. Henke, P. Lee, T. J . Tanaka, R. L. Shimabukuro, and B. K.Fujikawa , J . Opt . Sot . Am. B 3, No. 11, 1540 (1986).

    [23] Th e h ydr odyn am ics code descr ibed u ses a rt ificia l viscocit y t o damp ou tsh ock wa ves. Th is is don e t o a void n um er ica l er ror fr om st eep gr adien ts.

    [24] S, J acquemot and A. Decost er , pr ivat e comm un ica tion, 1996.[25] J . C. Gaut hier , pr ivat e commun icat ion, 1996.[26] Th ese a re a lso kn own a s Kr on ig a nd Kossel st ru ct ur e, r espect ively.

    13

    .. .

  • 8/3/2019 Donald Umstadter- Ultrashort X-Ray Backlighters and Applications

    16/16

    TechnicalInformationDepartmentLawrenceLivermoreNationalLaboratory

    UniversityofCaliforniaLivermore,California945

    51


Recommended