+ All Categories
Home > Documents > Donghui Quan Eric Herbst The Ohio State University.

Donghui Quan Eric Herbst The Ohio State University.

Date post: 18-Jan-2018
Category:
Upload: octavia-webster
View: 217 times
Download: 0 times
Share this document with a friend
Description:
CHNO Isomers in the Universe HNCO TMC-1: ~ 5 × (Marcelino et al. 2009a) Sgr B2: ~ × (Churchwell et al. 1986; Liu & Snyder 1999; Brünken et al. 2009a,b) HOCN Sgr B2(OH): ~ 0.4% of [HNCO] (Brünken et al. 2009b; Turner 1991) Sgr B2 (M) : ~ 1.5% of [HNCO] (Brünken et al. 2009a,b; Marcelino et al. 2009b) TMC-1 : ~ 1% of [HNCO] (Brünken et al. 2009a,b ) Cold Cores: ~ 2% of [HNCO] (Marcelino et al. 2009b) HCNO TMC-1 : < 0.3% of [HNCO] (Marcelino et al. 2009a) Cold Cores : ~ 2% of [HNCO] (Marcelino et al. 2009a) L1527 : ~ 3% of [HNCO] (Marcelino et al. 2009a)
13
Donghui Quan & Eric Herbst The Ohio State University
Transcript
Page 1: Donghui Quan  Eric Herbst The Ohio State University.

Donghui Quan& Eric Herbst

The Ohio State University

Page 2: Donghui Quan  Eric Herbst The Ohio State University.

OutlineObservational ResultsModeling MethodEssential ReactionsResults and DiscussionConclusion

Page 3: Donghui Quan  Eric Herbst The Ohio State University.

CHNO Isomers in the UniverseHNCOTMC-1: ~ 5 × 10-10 (Marcelino et al.

2009a)Sgr B2: ~ 0.5-5× 10-9 (Churchwell et al. 1986; Liu & Snyder

1999; Brünken et al. 2009a,b)

HOCNSgr B2(OH): ~ 0.4% of [HNCO] (Brünken et al. 2009b; Turner

1991)Sgr B2 (M) : ~ 1.5% of [HNCO](Brünken et al. 2009a,b; Marcelino et al. 2009b)

TMC-1 : ~ 1% of [HNCO] (Brünken et al. 2009a,b )

Cold Cores: ~ 2% of [HNCO] (Marcelino et al. 2009b)

HCNOTMC-1 : < 0.3% of [HNCO] (Marcelino et al.

2009a)Cold Cores : ~ 2% of [HNCO] (Marcelino et al. 2009a)L1527 : ~ 3% of [HNCO] (Marcelino et al.

2009a)

Page 4: Donghui Quan  Eric Herbst The Ohio State University.

Why different?

Page 5: Donghui Quan  Eric Herbst The Ohio State University.

Modeling Method – Gas-grain Modeling

Four models: hot core, warm envelope, lukewarm, cold core.

Gas-grain network: ~700 species, >6000 reactions.

3-phase warm-up: T starts at low constant value, increases to and stays at higher value after certain time-point.

Non-thermal desorption: driven by energies from exothermic surface reactions.

Page 6: Donghui Quan  Eric Herbst The Ohio State University.

Modeling Method – Physical Conditions and Initial Abundances

Page 7: Donghui Quan  Eric Herbst The Ohio State University.

Essential Formation ReactionsGas phase: NCO+ + H2 -> HNCO+ + H, HNCO+ + H2 -> HNCOH+/H2NCO+ + H, HNCOH+ + e- -> HNCO/HOCN + H, H2NCO+ + e- -> HNCO + H. HCNO & HONC can be produced similarly, plus: CH2 + NO -> HCNO + H.

Grain surface (J): N + HCO -> NCO + H, JH + JNCO -> JHNCO/JHOCN. JC + JNO -> JCNO, JH + JCNO -> JHCNO/JHONC.

Page 8: Donghui Quan  Eric Herbst The Ohio State University.

Essential Destruction ReactionsHNCO: cations, cosmic ray indirect destruction, photon dissociation etc.

HOCN: cations, cosmic ray indirect destruction, photon dissociation etc, C + HOCN -> CO + HCN, HCO + CN, H + OCNC, and OH +

CNC, O + HOCN -> OH + NCO.

HCNO: cations, cosmic ray indirect destruction, photon dissociation etc, C + HCNO -> C2H + NO.

HONC: cations, cosmic ray indirect destruction, photon dissociation etc, O + HONC -> O2H + CN.

Page 9: Donghui Quan  Eric Herbst The Ohio State University.

Modeling results – Hot Core Model

• Peaks occur after warm-up;

• HNCO & HOCN: two time periods of best agreement;

• HCNO & HONC: abundances low.

Page 10: Donghui Quan  Eric Herbst The Ohio State University.

Modeling resultsMODEL   HNCO HOCN HCNO HONC Obs.

Source  

Hot Core 

Peak ~ 3× 105 yr   

Sgr B2(M)

 

 Evaporation after warm-up

Surface species show strong depletion into the gas-phase.

Comp. to Obs. HNCO & HOCN: best fit @1.2 - 1.5 × 105 yr & 1.1 - 1.6 × 106 yr.HCNO & HONC: abundance low during these time intervals.

  

Warm Env 

Peak ~ 3× 105 yr , Smaller

 ~ 3× 105 yr , Smaller

 No No  Env. Sgr B2 (M) &

(N), Sgr

B2(OH) 

Evaporation after warm-up

Surface species show fair depletion into the gas-phase.

Comp. to Obs. HNCO & HOCN: best fit @1.8-2.0 ×105 yr & 6.6-19×105 yr;HCNO: X ~ 10−12- 10 -11; HONC: abundance low.

  

Lukewarm

Peak No apparent peaks.    

L1527Evaporation

after warm-up Insignificant.

Comp. to Obs. HNCO & HCNO: good agreement after t > 100 yr;HOCN: X > 10-11 when t > 2× 105 yr; HONC: abundance low.

 Cold Core

Peak  weak peak~ 2× 105 yr No  No No

 TMC-1 &

other Cold Cores

Comp. to Obs.

Good fit after 104 yr

HOCN to HNCO ratio

fits obs. @105 - 5× 106 yr

~ 1/10 -1/500 of HNCO

May be detectable.

Page 11: Donghui Quan  Eric Herbst The Ohio State University.

An analogous system – CHNS Isomers

Page 12: Donghui Quan  Eric Herbst The Ohio State University.

ConclusionsCHNO isomers are produced by a combination

of surface and gas-phase chemistry.

In general, our models are able to reproduce both the abundance of the dominant isomer HNCO and the minor isomer, HCNO or HOCN.

CHNS isomers present another interesting case of how astronomical environments lead to the production and destruction of differing isomers.

Page 13: Donghui Quan  Eric Herbst The Ohio State University.

AcknowledgementDr. Yoshihiro Osamura

Dr. David Woon

Dr. Sandra Brünken

NSF funding

Thank you all!


Recommended