+ All Categories
Home > Documents > Dr. Hugh Blanton ENTC 3331. Gauss’s Law Dr. Blanton - ENTC 3331 - Gauss’s Theorem 3 Recall...

Dr. Hugh Blanton ENTC 3331. Gauss’s Law Dr. Blanton - ENTC 3331 - Gauss’s Theorem 3 Recall...

Date post: 03-Jan-2016
Category:
Upload: jordan-franklin
View: 224 times
Download: 2 times
Share this document with a friend
Popular Tags:
65
Dr. Hugh Blanton ENTC 3331
Transcript

Dr. Hugh Blanton

ENTC 3331

Gauss’s Law

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 3

• Recall• Divergence literally means to get farther

apart from a line of path, or• To turn or branch away from.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 4

• Consider the velocity vector of a cyclist not diverted by any thoughts or obstacles:

Goes straight ahead at constant velocity.

(degree of) divergence 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 5

Now suppose they turn with a constant velocity

diverges from original direction

(degree of) divergence 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 6

Now suppose they turn and speed up.

diverges from original direction

(degree of) divergence >> 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 7

Current of water

No divergence from original direction

(degree of) divergence = 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 8

Current of water

Divergence from original direction

(degree of) divergence ≠ 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 9

• Source• Place where something originates.• Divergence > 0.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 10

• Sink• Place where something disappears.• Divergence < 0.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 11

• Derivation of Divergence Theorem• Suppose we have a cube that is infinitesimally small.

one of six faces

in

Vector field, V(x,y,z)

x

y

z

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 12

• Need the concept of flux:• water through an area• current through an area

• water flux per cross-sectional area (flux density implies• (total) flux = = scaler.

j

A

A

Aj ˆˆ

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 13

• Let’s assume the vector, V(x,y,z), represents something that flows, then• flux through one face of the cube is:

• For example might be:

• and

inV ˆ

in

xn ˆˆ dydzyz

dydzVdydzV xx xx ˆˆ

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 14

• The following six contributions for each side of the cube are obtained:

dydzVx

dydzVxdxdzVy

dxdzVy

dxdyVz

dxdyVz

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 15

• Now consider the opposite faces of the infinitesimally small cube.

• This holds equivalently for the two other pairs of faces.

in

x

y

z

dxx

VVV x

xx

112

dx

2xV1xV differential change of Vx over dx

vector magnitude on the input side.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 16

in

x

y

z

dxx

VVV x

xx

12

dx

2xV1xV

dydzVdydzV xx xx ˆˆand

dydzdxx

VVdydzdx

x

VV x

xx

x

21

1

• Flux in the x-direction.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 17

Divergence TheoremDivergence Theorem

• Divergence Theorem• Gauss’s Theorem• Valid for any vector field• Valid for any volume,

• Whatever the shape.

zyx Vz

Vy

Vx

VVdiv

Note that the above only applies to the Cartesian coordinate system.

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 18

• Since Gauss’s law can be applied to any vector field, it certainly holds for the electric field, and the electric flux density, .

• The use of in this context instead of is historical.

zyx ,,E

zyx ,,D

sdDdVDSV

ˆ

D

E

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 19

• If Gauss’s law is true in general, it should be applicable to a point charge.• Constuct a virtual sphere around a positive

charge with radius, R.

• must be radially outward along the unit vector, .

+q

D

D

R

sd

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 20

SSS

sDdsdDd RRsD ˆˆˆ

SSS

ddRDsdDsDd sin2

0

2

0

2 sin ddDR

0

2 sin2 dDR

220

2 4112cos2 DRDRDR

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 21

• What about the volume integral?

• only has a component along the radius vector

D

RD

RDR

RRdV R

V sin

1sin

sin

11 22

D

D

RD

RDR

RR R sin

1sin

sin

11 22

D

0,0,0 DDDR

D

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 22

RDRRR

22

1

D

2

00 0

222

sin1

dddRRDRRR

dVDR

R

V

4

R

R

R

R dRDRR

dRRDRRR 0

2

0

222

41

4

What is this?

44

1 22

qRD

R

qED R

ooRoR

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 23

• Throw in some physics!

24

1

R

qED RR

qqdRR

qdRR

qR

R

RR R

00 022 14

4

integration and differentiation cancel out

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 24

• So what?

• Coulomb’s law and Gauss’s law are equivalent for a point charge!

qdVdDRVS

DsD

ˆ4 2

qRo 24 E

24

1

R

q

oE

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 25

qdVdDRVS

DsD

ˆ4 2

divergence theorem

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 26

qdVdDRVS

DsD

ˆ4 2

Gauss’s Law

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 27

• Because of its greater mathematical versatility, Gauss’s law rather than Coulomb’s law is a fundamental postulate of electrostatics.• A postulate is believed to be true, although no

proof may be possible.

• Any surface of an arbitrary volume.

QdVdVS

DsD

ˆ

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 28

• Note

• which infers

sDD ˆddVQdVSVV

V

definition of charge distribution

Gauss’s Law

V D Differential form of

Gauss’s Law

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 29

• Maxwell Equation

• One of two Maxwell equations for electrostatics.

V D

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 30

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 31

t

DJH

t

BE

B

D

0

Electric flux density orDisplacement Field [C/m2]

Charge Density [C]

Magnetic Induction [Weber/m2

or Tesla]]

Magnetic Field [A/m] Current Density [A/m2]

Electric Field [V/m]Time [s]

Page 139

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 32

t

EJH

t

HE

H

E

r

r

r

r

)(

)(

0)(

)(

0

0

0

0

Page 139

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 33

• Use Gauss’s law to obtain an expression for the E-field from an infinitely long line of charge.

constantl 0

X)(rE

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 34

• Symmetry Conditions• Infinite line of charge• • •

0 ED0 zz ED

rrr DD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 35

• Gauss’s law considers a hypothetical closed surface enclosing the charge distribution.• This Gaussian surface can have any shape,

but the shape that minimizes our calculations is the shape often used.

constantl 0

D sdQd

S

sD ˆ

h

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 36

• The total charge inside the Gaussian volume is:

• The integral is:

• The right and left surfaces do not contribute since.

hQ l

dzrdDdh

o r

S

rrsD ˆˆˆ2

0

0zD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 37

2

0

h

or dzdrD

rhDr2

and

hrhD lr 2

rol

r Er

D

2

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 38

• Two infinite lines of charge.• Each carrying a charge density, l.• Each parallel to the z-axis at

• x = 1 and x = -1.

• What is the E-field at any point along the y-axis?

constantl

constantl

x

z

1

1

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 39

• For a single line of constant charge

• Using the principle of superposition of fields:

rE

o

lr

2

21 EEE

tot

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 40

x

x

y

z

1-1

1r2r

)0,,0( yE

2221 1010 yyr

11

ˆˆˆ

r

yxr

y

2222 1010 yyr

22

ˆˆˆ

r

yxr

y

22 1

ˆˆ

1

ˆˆ

2 y

y

y

y

o

ltot

yxyxE

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 41

• Only interested in the y-component of the field

22 1

ˆ

1

ˆ

2 y

y

y

y

o

ltot

yyE

21

ˆ2

2 y

y

o

ltot

yE

21

ˆ

y

y

o

ltot

yE

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 42

• A spherical volume of radius a contains a uniform charge density V.

• Determine for • and•

ED

aR aR

+q

DsdNote: Charge distribution for

an atomic nucleus where a = 1.210-15 m A⅓ (A is the mass number)

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 43

• Outside the sphere (R a), use Gauss’s Law

• To take advantage of symmetry, use the spherical coordinates:

• and

S

dsD ˆ

ddRds sin2

rD ˆrD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 44

• Field is always perpendicular for any sphere around the volume.

• The left hand side of Gauss’s Law is

0

2

0

22 sinsinˆˆˆ ddRDddRDd R

S

R

S

RRsD

22

44

R

QDQRD RR

4

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 45

• Recall that

dVdVV

V

V D

V D

0

2

0 0

2 sina

V

V

V ddRdRdV

0

2

0 0

2sina

V

V

V dRRdddV

4

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 46

Qa

dRR V

a

V 344

3

0

2

2

3

2

3

2 334

4

4 R

a

R

a

R

QD VV

R

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 47

• Inside the sphere (R a), use Gauss’s Law

QdVdV

V

S

sD ˆ

24 RDRpreviously calculated

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 48

R

V

V

V ddRdRdV0 0

2

0

2 sin

R

V dRR0

24

3

4 3RV

3

44

32 R

RD VR

3

RD V

R

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 49

• Thin spherical shell• Find E-field for• and •

aR aR

constantS

0S

a

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 50

• Inside ( )• Gauss’s Law

• This is only possible if .

aR

constantS

0S

a0ˆ Qd

S

sD

0D

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 51

• Outside ( )• Gauss’s Law

aR

constantS

0S

a S

S

S

dSQd sD ˆ

0

2

0

2 sin ddadS S

S

S

24 adS S

S

S

24 RDRpreviously calculated

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 52

22 44 aRD SR

2

2

R

aD SR

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 53

• An electric field is given as

• Determine• • Q in a 2m 2m 2m cube.

mVyxyxzyx 23ˆ2ˆ

1,, yxE

V

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 54

• Maxwell’s equation of Electrostatics

z

x

y

ED

divdiv V

yxy

yxx

div 232

E

0022 Vdiv E

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 55

z

x

y

QdS

sD ˆ

dydzyx xx ˆˆ22

0

2

0

For the surface 1 directed in the x-direction.

dydzyx 2

0

2

02

2

0

22

0

2

0

20 2

442

yxydyyxdyzyx

1

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 56

882

42

0

2

x

yxy

z

x

y

1

2

For the surface 2 directed in the -x-direction.

dydzyx xx ˆˆ22

0

2

0

8822

0

2

0 xdydzyx

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 57

z

x

y

3

For the surface 3 & 4 directed in the z- & -z directions.

40ˆ

S

dsD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 58

z

x

yFor the surface 5 directed in the y-direction.

5

dxdzyx yy ˆˆ232

0

2

0

dxdzyx 2

0

2

023

dxyxdxyzxz 2

0

2

0

20 4623

yxyx

81242

62

0

2

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 59

z

x

yFor the surface 6 directed in the -y-direction.

6

dxdzyx yy ˆˆ232

0

2

0

dxdzyx 2

0

2

023

y812

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 60

• By superposition

• Indeed, there is no charge in the cube.

0ˆ S

dsD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 61

• Find in all regions of an infinitely long cylindrical shell.• Inner shell( )• Cylindrical volume.

D

0V

constantV

3

1

1r

0ˆ QdS

sD

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 62

• Shell itself ( )• Cylindrical coordinates.

0V

constantV

3

1

31 r

dzrdDdh

r

S

rrsD ˆˆˆ2

0 0

r

D sd

h

r

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 63

dzrdDdzrdDh

r

h

r

2

0 0

2

0 0ˆˆ rr

rhDdrhDdzdrD rr

h

r

22

0

2

0 0

• Top and bottom face of cylinder do not contribute to .D

r h

V dzrdrd1

2

0 0

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 64

drrhdzrdrdr

V

r h

V 11

2

0 02

12

2 2

1

2

rh

rh V

r

V

V

V

S

dVd sD ˆ

)1(2 2 rhrhD Vr

Dr. Blanton - ENTC 3331 - Gauss’s Theorem 65

)1(2 2 rhrhD Vr

r

rD V

r

)1(

2

2


Recommended