+ All Categories
Home > Documents > Dr. Muhammad Ali Shamim [email protected] 051...

Dr. Muhammad Ali Shamim [email protected] 051...

Date post: 10-May-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
68
Dr. Muhammad Ali Shamim [email protected] 051-9047652; Internal 652
Transcript
Page 1: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Dr. Muhammad Ali [email protected]; Internal 652

Page 2: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Channel Tranistions

Page 3: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

A channel transition is defined as change in channel cross section e.g. change in channel width and/or channel bottom slope.

May be accomplished over a long distance or it may be sudden

A transition is designed such that the losses at the transition are small.

Page 4: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Provide a smooth change in channel cross section.

Provide a smooth change (possibly linear) in water surface elevation.

Gradually accelerate flow at pipe inlets and decelerate them at point outlets.

Avoid unnecessary head loss through change in cross section.

Page 5: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Transitions are normally made of concrete or earth, the latter often having some sort of riprap protection.

Earthen transitions between open channels and pipe flow (culverts and siphon) are often acceptable when the flow velocity is less than 3.5 fps (1m/s).

Can have both lateral and vertical (bed) contraction and expansion

Page 6: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

The optimum angle of lateral convergence (at contractions) is given by 12.5o by Chow (1959), corresponding to a 4.5 : 1 ratio.

The optimum angle of lateral divergence (at expansions) is often taken as approximately 9.5o or at 6:1.

Page 7: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Consider a small hump in a rectangular channel with subcritical upstream flow

A slight depression is caused in the water surface over the hump.

The hump normally causes a drop in the specific energy.

Page 8: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 9: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

The minimum height that causes the critical depth is known as critical hump height.

A further increase in height results in an increase in depth upstream of hump with critical depth maintained over the hump.

This is known as damming action.

Page 10: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Flow through a contraction behaves in a similar manner to that of flow over a hump.

A small contraction causes a slight depression of water surface for subcritical flow.

The minimum contraction (maximum width) at which critical depth occurs is the critical contracted width.

Page 11: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

An increase in contraction results in an increase in depth upstream of contraction even though the depth is still critical.

Damming action occurs.

Page 12: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Consider a constant width rectangular channel having a bottom step.

It is to be determined whether the water surface rises or drops downstream of the transition for a specified flow depth and flow velocity upstream of transition.

Because of constant channel width, q is same on both sides of transition and the same specific energy curve is applicable to both u/s and d/s sides.

Page 13: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

If it is considered that the energy losses are negligible, then total head H1 should be equal to H2.

1 and 2 refer to u/s and d/s

From the figure,

11 HE = zHE Δ−= 22

Page 14: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

The flow corresponding to flow conditions at 1 is marked as 1.

For 2, a vertical line is drawn such that E = E2

Flow depth corresponding to points where the vertical line intersects the specific energy curve are the depths of flow.

Page 15: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

In this case, there are three such points marked as 2, 2’ and 2’’.

2” corresponds to negative depth which is not physically possible.

Of the two points, 2 and 2’, it has to be determined, which one is practically possible.

Page 16: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

One can easily move from 1-2 along the specific energy curve.

To go from 2 to 2’, two different paths can be followed.

For the path along the vertical line 2-2’, we will have to move off the specific energy curve and pass through the curves corresponding to higher unit discharges.

Page 17: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Higher discharges are possible only when channel width is reduced at the transition.

Since there is no such contraction for this case, so this path is not feasible.

For the second path, 2-C-2’, a decrease in E is necessary.

Page 18: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

E only decrease if the channel bottom rises until E= Ec and then drops again until E=E2.

There is no such rise or drop at the bottom of the channel under consideration.

So the second path 2-C-2’ is not possible either.

Page 19: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

So only one depth is possible which corresponds to point 2.

In a similar manner, one can also show that if the flow upstream of the transition is supercritical, then the downstream flow depth will be the one corresponding to 2 and not 2’.

Page 20: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

It can also be concluded that for a step rise in channel bottom, the flow depth

◦ Decreases downstream of the step, if the flow upstream of the transition is subcritical.

◦ Increases if the upstream flow is supercritical.

Can be derived mathematically.

Page 21: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Total head H at a channel section is given by

gVyzH2

2

++=

2

2

2gAQyzH ++=

Page 22: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

We have to determine the sign of variation of ‘y’ with respect to elevation of channel bottom ‘z’.

Assume d/s flow direction to be +ve for distance ‘x’ measured along the channel bottom.

Flow depth increases if dy/dx is positive and decreases if dy/dx is negative.

Page 23: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Differentiating the first equation with respect to ‘x’ we get

⎟⎠⎞

⎜⎝⎛++= 2

2 12 Adx

dg

Qdxdy

dxdz

dxdH

Page 24: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

And

dxdA

AAdxd

32

21 −=⎟

⎠⎞

⎜⎝⎛

dxdy

dydA

dxdA

=

Page 25: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

For a small change in flow depth, Δy, change in the flow area is ΔA~BΔy.

B is the top surface width so for we may write

thenBdydA =

dxdyB

dxdA

=

Page 26: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Froude’s number is defined by

Therefore

3

222

/ gABQ

BgAVFr ==

( )dxdyF

dxdz

dxdH

r21−+=

Page 27: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

If there are no losses then dH/dx=0 and

The above equation describes the variation of flow depth for any variation in bottom elevation.

( )dxdyF

dxdz

r 12 −=

Page 28: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

For a step rise, dz/dx>0,

For the RHS to be positive, there are two possibilities.

(Fr2 -1) and dy/dx are both positive or both

negative.

The first condition implies that Fr >1, flow is supercritical, then dy/dx>0, i.e flow depth increases at the step.

Page 29: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Second condition implies that Fr<1, flow is subcritical, dy/dx<0, i.e. flow depth decreases at the step.

Similarly, one can also say that for a drop in channel bottom, the flow depth decreases if the flow u/s is supercritical, and increases if the flow u/s is subcritical.

Page 30: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 31: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 32: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Depth of flow does not remain constant along a given length of channel.

If the changing conditions extend over a long distance, the flow is known as gradually varied flow (GVF) while if they change abruptly or extend over a short distance, then the flow is known as rapidly varied flow (RVF)

Page 33: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

RVF usually occurs at channel exit, at change in X- section, at bends and at obstruction such as dams, weirs or bridge piers.

Page 34: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 35: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 36: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 37: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 38: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Consider and element between section (1) and section (2) of an open channel

(z+y) is the potential energy head while

is the kinetic energy head

gvyzH2

2

++=

gv2

2

Page 39: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

v is the mean velocity in the section.

Since bed slope is very small, so α= 1

Differentiating with respect to x,

dxdv

gdxdy

dxdz

dxdh 2

21

++=

Page 40: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Previous eq was the general equation for GVF with

dxdhS −= Slope of the energy line (-ve

sign shows decreasing)

dxdzSo −= Slope of channel bed

Page 41: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Slope of hydraulic grade line or water surface)(

dxdy

dxdzSw +−=

Energy equation between sections (1) and (2) is given by

Lhg

vyZ

gv

yZ +++=++22

22

22

21

11

Page 42: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

xzzSo Δ

−= 21 And

xh

S L

Δ=

)2

()2

(2

11

22

2 gv

yg

vyxSxSo +−+=Δ−Δ

( ) xSSg

vyg

vy o Δ−++=+22

22

2

21

1

Page 43: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

sosg

vyg

vyx

+−+=Δ

)2

()2

(2

22

21

1

3/249.1 m

m

RnV

S =3/2

m

m

RnV

S =

Page 44: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 45: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Since V=q/y,

dxdy

ygq

yq

dxd

gdxvd

g 3

2

2

22 121)(

21

−=⎟⎟⎠

⎞⎜⎜⎝

⎛=

Page 46: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Substituting this and the S and So terms in the differentiated equation

2232

3

2

111

1

r

ooo

o

FSS

gyVSS

gyqSS

dxdyor

gyq

dxdySS

−−

=−

−=

−−

=

⎟⎟⎠

⎞⎜⎜⎝

⎛−+−=−

Page 47: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

If dy/dx is positive, the depth of flow will be increasing along the channel and vice versa.

Finite difference form of equation

meanr

o

FSS

xy

⎟⎟⎠

⎞⎜⎜⎝

⎛−−

=ΔΔ

21

Page 48: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

The analysis of the numerator and denominator of eq(1) result in formation of a series of water surface profiles.

Also, S, the slope of energy line is given by

3/42

22

hRAQnS =

Page 49: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

2

3/42

22

1 r

ho

FRAQnS

dxdy

−=

For a specified Q, both Fr and S are functions of depth y.

Both decrease as y increases.

Page 50: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

oSS <

Recalling the definitions of yn and yc, following inequalities can be illustrated

oSS > when nyy <

when nyy >

Page 51: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

cyy <1>F

1<F yy >

when

whenc

Gradually varied flow profile is classified based on channel slope and flow depth y in comparison with yn and yc.

Page 52: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Classifications of the channel slope based upon normal depth yn and critical depth yc are given below

Page 53: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

The space above the channel bed can be divided into three zones depending upon the inequalities defined above. These zones are

Page 54: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 55: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Flow profiles are classified based upon

Channel slope

Zone in which they occur

For example if the water surface lies in zone 1in a channel with mild slop, it will be designated as M1 profile

Page 56: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 57: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 58: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 59: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known
Page 60: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Water surface profiles can be sketched without any computations

Can be achieved by considering the signs of numerator and denominator in the general equation.

Page 61: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

Helps to know whether the depth increases or decreases with the distance

How the profile approaches the upstream and downstream limits

The important considerations are:

Page 62: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

y>yc; flow is subcritical; F<1; denominator is positive

y<yc; flow is supercritical; F>1; denominator is negative

y=yn; flow is uniform; S=S0; numerator is zero

Page 63: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

y>yn; S<S0; numerator is positive

y<yn; S>S0; numerator is negative

as y yn ; S S0 numerator approaches zero, dy/dx approaches zero asymptotically.

Page 64: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

as y approaches yc, flow approaches critical conditions; F approaches unity (1); denominator approaches zero; dy/dx approaches infinity; water surface profile approaches critical depth vertically.

not possible to have a vertical water surface profile.

Page 65: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

it is assumed that the water surface profile approaches CDL at very steep slope.

for a steep slope, one cannot assume that acceleration in vertical direction is negligible. So GVF theory doesn’t exist in such cases as pressure is no longer hydrostatic in those regions.

Page 66: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

as y approaches infinity; S approaches zero; F also approaches zero; dy/dx approaches S0; water surface profile becomes very large as flow depth becomes very large.

Page 67: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

for a wide rectangular channel, Hydraulic radius R~h, and

3

22

gyqF = then

( )3/10

223/100

3

ynqySgy

dxdy −

=

Page 68: Dr. Muhammad Ali Shamim ali.shamim@uettaxila.edu.pk 051 ...weccivilians.weebly.com/uploads/2/4/6/2/24623713/lecture_2.pdf · critical depth maintained over the hump. `This is known

water surface profile tends to become vertical as the flow tends to become zero.


Recommended