+ All Categories
Home > Documents > Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking:...

Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking:...

Date post: 03-Oct-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
23
Wei Yang Hyperbolic cooling of graphene Zener-Klein transistors Drain Source Gate W. Yang, S. Berthou, X. Lu 2 , Q. Wilmart, A. Denis, M. Rosticher , T. Taniguchi 3 , K. Watanabe 3 , G. FΓ¨ve, J.M. Berroir , G. Zhang 2 , C. Voisin, E. Baudin, Bernard Placais 1) LPA – ENS, Meso-Group + Optics-group + Engineers, Paris, France, 2) Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, China, 3) Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan
Transcript
Page 1: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Wei Yang

Hyperbolic cooling of graphene Zener-Klein transistors

Drain

Source

Gate

W. Yang, S. Berthou, X. Lu2, Q. Wilmart, A. Denis, M. Rosticher, T. Taniguchi3, K. Watanabe3, G. Fève, J.M. Berroir, G. Zhang2, C. Voisin, E. Baudin, Bernard Placais

1) LPA – ENS, Meso-Group + Optics-group + Engineers, Paris, France, 2) Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, China, 3) Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, Japan

Page 2: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

2

Page 3: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

3

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 4: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Zener Tunneling at a high electrical field

4

large electrical field

Page 5: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Sharp Klein p-n junction

Klein tunneling

πœŽπ‘π‘› =4𝑒2

β„ŽΓ—

π‘˜πΉπ‘™π‘π‘›

4πœ‹

𝑛 π‘’βˆ’β„Žπ‘π‘›

=𝑒 π‘˜πΉπœ‹2 ℏ

𝐸𝑝𝑛

SLG BLG

5

Katsnelson, Novoselov, Geim, Nat. Phys.2, 620 (2006)

Smooth Klein p-n junction

πœŽπ‘π‘› = 𝛼4𝑒2

β„ŽΓ—

π‘˜πΉπ‘™π‘π‘›

4πœ‹ ; (𝛼~0.2)

Page 6: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Zener-Klein tunneling

Zener-Klein Tunneling, Pauli blocking:

πœŽπ‘πΎ = 𝛼4𝑒2

β„Ž

π‘˜πΉπ‘™π‘πΎ

4πœ‹= πΆπ‘œπ‘›π‘ π‘‘. ; 𝑛 π‘’βˆ’β„Ž

𝑍𝐾 =𝑒 π‘˜πΉ

πœ‹2 ℏ (𝐸 βˆ’ 𝐸𝑍𝐾)

π‘¬π’›π’Œ =πŸπ‘¬π‘­

π’†π’π’›π’Œ (dashed line)

S D

lZK

2EF

6

GoBN ZKT is a graphene/hBN transistor operating at a high electrical field

where interband Zener-Klein tunneling dominating the transport

high electrical field

Page 7: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

7

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 8: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Characteristic of the GoBN ZKT device

-6 -4 -2 0 2 4 6

0

5

10

R (

k

)

Vg (V)

T = 4.2K

Drain

Source

Gate

Bias is gating

BL-Graphene

Gate

8

CQ

Cgeo

30 000 cm2V-1s-1

m* ~ 0.03me

E

DOS

e

h

2 2

2

kE

m

CQ ~ 40 mF/m2

Page 9: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Comparison with GaN or Si transistors

GoBN Zener-Klein transistor Panasonic : X-GaN Power transistor

GoBN Lg=4Β΅m

π‘”π‘š = 250¡𝑆/π‘šπ‘š πΊπ‘Žπ‘–π‘› = 10

9

Page 10: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

I-V characteristics

Constant gate

Constant carrier density

Impurity scattering

Optical phonon scattering

Zener-Klein tunneling

10

Page 11: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Focus on current saturation at low field

11

𝜎 =𝑛𝑒¡

1 + 𝐸/πΈπ‘ π‘Žπ‘‘2

Saturation energy Ι›sat

EF at a low doping

100meV at a high doping

Page 12: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

G/BN Zener-Klein Transistor (GoBN-ZKT)

12

OUTLINE

What is a G/hBN Zener-Klein transistor?

Scattering: Current saturation in high mobility bilayer Graphene on BN

Relaxation and Cooling : Emission of Hyperbolic Phonon Polaritons

Page 13: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Relaxation in Graphene

1. e-e interactions β†’ electron multiplication and thermalisation

(𝜏~20 𝑓𝑠) + heat conduction : div βˆ’ΞΊπ›»π‘‡ = βˆ’πΈ. 𝐽 , ΞΊ =πœ‹2π‘˜π΅

3

3𝑒2𝜎 𝑇

2. e-AC-imp supercollisions β†’ prominent in diffusive G but suppressed in G/BN

3. e-OP interaction β†’ deformation potential coupling (𝜏 β‰₯ 2 𝑝𝑠 )

4. e-HPP interaction β†’ fast (𝜏 β‰ˆ 200 𝑓𝑠)!!

Impurity T T3

Ordinary electron-phonon collision 3-body electron-phonon-impurity supercollisions

A. Betz et al. / Phys. Rev. Lett. 109 (2012) 056805; A. Betz et al. / Nat. Phys. 9 (2013) 109

13

Page 14: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Noise in graphene transistor

Alexander A. Balandin, Nat. Nano. 8, 549 (2013).

thermal noise

Stotal = Ξ±H V2/ N f + SV

A. Betz et al. PRL.109,056805 (2012).

The bandwidth of Noise spectra in GHz range 14

Page 15: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Bath temperature 𝑇0 = 4.2 𝐾 Noise temperature π‘˜π΅π‘‡π‘ ≑ 𝑆𝐼 4𝐺𝑑𝑖𝑓𝑓

Hot electrons, heat equation, Wiedemann-Frantz

π‘˜π΅π‘‡π‘ ≑ π‘˜π΅π‘‡π‘’ =3

8 Γ— 𝐿𝑒𝑛𝑔𝑑𝑕 Γ— 𝑃

𝜎

Hot Fermi sea + holes

π‘˜π΅π‘‡π‘ = 𝑓 1 βˆ’ 𝑓 π‘‘πΈβˆž

βˆ’βˆžβ‰ˆ π‘˜π΅π‘‡π‘’ +

𝒏𝒉

𝐷𝑂𝑆

RF noise thermometry principles

E

f

π‘˜π΅π‘‡π‘’

15

Page 16: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

What do we learn from noise ?

Discontinuity in π‘˜π΅π‘‡π‘ 𝐸 at 𝐸 β‰ˆ πΈπ‘§π‘˜

Superlinear π‘˜π΅π‘‡π‘ 𝐸 for 𝐸 ≀ πΈπ‘§π‘˜

Quasi-plateaus π‘˜π΅π‘‡π‘ 𝐸 for 𝐸 β‰₯ πΈπ‘§π‘˜

16

Page 17: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Hot electron analysis of noise

Β« hot Β» electron dashed line : π‘˜π΅π‘‡π‘ 𝐸 ≀ πΈπ‘§π‘˜ β‰ˆπ‘­

𝟐𝐿 𝑃/𝜎

Β« cold Β» electron dashed line : π‘˜π΅π‘‡π‘ 𝐸 β‰₯ πΈπ‘§π‘˜ β‰ˆ π‘˜π΅π‘‡π‘’ πΈπ‘§π‘˜ +𝑭

πŸπŸ’ 𝐿 𝑃/𝜎

17

Page 18: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Hyperbolic Phonon Polaritons of h-BN ?

(Courtesy of F. Koppens, Kaprun School 2015) 18

Reststrahlen band

Type-II Β« in-plane Β»

~170-200meV

Type-I Β« out-of-plane Β»

~90-100meV

Page 19: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Graphene/HPP impedance matching

HPPs are propagative modes

Superplanck HPP cooling of Graphene

𝑃 =𝑛

4πœ‹2Ρ’πœ”βˆ†πœ”

eπ‘₯𝑝 Ρ’πœ” π‘˜π΅π‘‡ βˆ’ 1Γ— 𝑀

𝑀 =πŸ’ β„œπ’€πŸŽ 𝝎, 𝒒 β„œπˆ 𝝎, 𝒒

π’€πŸŽ + 𝝈 𝟐

Semi-infinite h-BN : π’€πŸŽ~πŸ’πŸŽΒ΅π‘Ί (M~0.01)

Confined HPPs :π’€πŸŽ 𝝎, 𝒒 ~ 𝑸 Γ— πŸ’πŸŽΒ΅π‘Ί ( 𝑀 ~0.1)

β‡’

19

Page 20: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

HPP relaxation time

e-h pumping : 𝑛 π‘’βˆ’β„Žπ‘πΎ =

𝑒 π‘˜πΉ

πœ‹2 ℏ(𝐸 βˆ’ 𝐸𝑍𝐾) =

π‘›π‘’βˆ’β„Ž

πœπ»π‘ƒπ‘ƒ β‡’ πœπ»π‘ƒπ‘ƒ =

πœ‹2 ℏ

𝑒 π‘˜πΉ π‘‘π‘›π‘’βˆ’β„Ž

𝑑𝐸

Noise temperature Β« Cold electron regime Β» π‘›π‘’βˆ’β„Ž ≀ 𝐷𝑂𝑆 Γ— π‘˜π΅βˆ†π‘‡π‘/2

πœπ»π‘ƒπ‘ƒ β‰€πœ‹2 ℏ

𝑒 π‘˜πΉ 𝐷𝑂𝑆

π‘‘π‘˜π΅π‘‡π‘π‘‘πΈ

= 0.46 𝑝𝑠 (𝑛 = 1. 1012)

π‘›π‘’βˆ’β„Ž ≀ 𝐷𝑂𝑆 Γ— π‘˜π΅βˆ†π‘‡π‘/2

E

f 1 0

ZK+HPP at charge neutrality

20

Page 21: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

HPP cooling in the ZK regime

ZK current : π½π‘§π‘˜ = 𝛼4𝑒2

β„Ž

π‘˜πΉπ‘™π‘§π‘˜

4πœ‹πΈ βˆ’ πΈπ‘§π‘˜ ZK pumping : 𝑛 π‘’βˆ’β„Ž

𝑍𝐾 =𝑒 π‘˜πΉ

πœ‹2 ℏ(𝐸 βˆ’ 𝐸𝑍𝐾)

HPP cooling : 𝑃𝐻𝑃𝑃 = ℏΩ 𝑛 π‘’βˆ’β„Žπ»π‘ƒπ‘ƒ = ℏΩ 𝑛 π‘’βˆ’β„Ž

𝑍𝐾 = ℏΩ𝑒 π‘˜πΉ

πœ‹2 ℏ𝐸 βˆ’ πΈπ‘§π‘˜

Joule Heating : βˆ†π‘ƒπ½π‘œπ‘’π‘™π‘’ = π½π‘ π‘Žπ‘‘ 𝐸 βˆ’ πΈπ‘§π‘˜ = πŸπœΊπ’”π’‚π’•π‘’ π‘˜πΉ

πœ‹2 ℏ𝐸 βˆ’ πΈπ‘§π‘˜

in GoBN,where ℏ𝛺𝐼𝐼 β‰ˆ 2ℏ𝛺𝐼 β‰ˆ 200 π‘šπ‘’π‘‰ β‡’ 𝑷𝑯𝑷𝑷 β‰ˆ 𝑷𝑱𝒐𝒖𝒍𝒆

21

E

f

2EF

HPP cooling doped regime

Page 22: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

HPP cooling of hot electrons

E

f 1 0

HPP thermal emission

Super-Planck HPP thermal emission (πœŽβ„Žπ‘œπ‘‘(πœ”, π‘ž) by Polini at al. )

𝑃𝐽 = 0.5πΊπ‘Š

π‘š2 , π‘˜π‘‡ = 0,4𝑒𝑉, 𝑛𝑒= 4 1012

π‘ƒπ»π‘ƒπ‘ƒπ‘‘β„Ž = 2.4 Γ— 𝑀

πΊπ‘Š

π‘š2 = 0,24 πΊπ‘Š

π‘š2 = 𝑃𝐽 2 = π‘ƒπ‘ŠπΉ 𝑏𝑦 π‘‘π‘Žπ‘˜π‘–π‘›π‘” π‘€π‘‘β„Ž β‰ˆ 0.1

22

Page 23: Drain Source GateΒ Β· 2016. 12. 10.Β Β· Zener-Klein tunneling Zener-Klein Tunneling, Pauli blocking: 𝐹𝜎 = 4 2 β„Ž Þ ΓŸπ‘πΎ 4πœ‹ = . ; βˆ’β„Ž= Þ𝐹 πœ‹2 ℏ ( βˆ’ ) 𝒛

Conclusions

G/BN ZKT-Transistors are performant

HPP-I is responsible for current saturation

HPP-II s give rise to hyper-Plank cooling in the ZKT regime

23

Thanks very much for your attention


Recommended