+ All Categories
Home > Documents > Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1...

Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1...

Date post: 16-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
34
Drell-Yan Process and Nucleon Spin Jen-Chieh Peng University of Illinois at Urbana-Champaign SPIN 2008, University of Virginia, October 6-11, 2008 Outline Brief overview of TMDs and Drell-Yan Recent Drell-Yan results from Fermilab E866 (Boer-Mulders functions) Future prospects for Drell-Yan experiments 1
Transcript
Page 1: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Drell-Yan Process and Nucleon Spin

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

SPIN 2008, University of Virginia, October 6-11, 2008

Outline

• Brief overview of TMDs and Drell-Yan• Recent Drell-Yan results from Fermilab E866

(Boer-Mulders functions) • Future prospects for Drell-Yan experiments

1

Page 2: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

2

l l l

l

10-10

10-8

10-6

10-4

10-2

1

10 2

10 4

10 6

10 8

10 10

10 12

0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6

Complimentality between DIS and Drell-Yan

Both DIS and Drell-Yan cross sections are well described by NLO calculations

DIS Drell-Yan

0

2

4

6

8

10

12

14

16

1 10 102

103

104

105

x=0.65

x=0.40

x=0.25

x=0.18

x=0.13

x=0.08

x=0.05

x=0.032

x=0.02

x=0.013

x=0.008

x=0.005

x=0.0032

x=0.002

x=0.0013

x=0.0008

x=0.0005

x=0.00032

x=0.0002

x=0.00013

x=0.00008

x=0.00005

x=0.000032

(i=1)

(i=10)

(i=20)

Q2 /GeV2

F2+

c i(x)

NMC BCDMSSLAC

H1 94-97 e+p

H1 96-97 preliminary

NLO QCD Fit

ci(x)= 0.6 • (i(x)-0.4)

Page 3: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

3

Three parton distributions describing quark’s transverse momentum and/or transverse spin

1) Transversity

2) Sivers function

3) Boer-Mulders function

=h1T

Correlation between and q Ns S⊥ ⊥

f1T =

Correlation between and q qs k⊥ ⊥

Correlation between and N qS k⊥ ⊥

h1 =

Three transverse quantities:1) Nucleon transverse spin

2) Quark transverse spin

3) Qaurk transverse mo

Three diff

me

er

ntum

ent correlations

N

q

q

S

s

k

Page 4: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

×= 4

26 4

Qsxd πασ

),()(])1(1[ 211

,

22⊥∑−+ h

qq

qqq PzDxfey

22 (1) 2

1 12,

22 (1) 2

1 12,

2 21 1

,

cos(2 )

sin(2 )

(1 ) ( ) ( , )4

| |

s

(1 ) ( ) ( , )4

| | (1 ) ( ) (in( )) ,

q qhq h

q qN h

q qhL q L h

q qN h

q

lh

lh

l lh

qhST q h

q qh

Py e h x H z Pz M M

PS y e h x H z Pz M MPS y e h x H z PzM

φ

φ

φ φ

⊥ ⊥⊥⊥

⊥ ⊥⊥⊥

⊥⊥⊥

+ −

+ − +

∑2 2 (1) 2

1 1,

32 (2) 2

1 13 2,

2 21 1

,

1| | (1 ) ( ) ( , )2

| | (1 ) ( ) ( , )61| | (1 ) ( ) ( , )21| | (1 )

sin( )

sin(3 )

co ( )2

s

q qhT q T h

q qN

q qhT q T h

q qN h

q qe L q h

q q

he T

N

l lh S

l lh S

l lh S

PS y y e f x D z PzM

PS y e h x H z Pz M M

S y y e g x D z P

PS y y ezM

φ φ

φ

φ

λ

λ

φ

φ

⊥⊥⊥

⊥ ⊥⊥⊥

+ − +

+ −

+ −

+ −−

2 (1) 21 1

,

( ) ( , )q qq T h

q q

g x D z P ⊥∑

=f1

h1 =

h1L =

=h1T

f1T =

h1T =

=g1L

g1T =

Unpolarized

Polarized target

Polarziedbeam and

target

4SL and ST: Target Polarizations; λe: Beam Polarization

Sivers

Transversity

Boer-Mulders

Transversity and TMD PDFs are probed in Semi-Inclusive DIS

Page 5: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

5

Transversity and TMD PDFs are also probed in Drell-Yan

1 1

1

- Unpolarized Drell-Yan:

- Single transverse spin asymmetry in polarized Drell

Boer-Mulders

-Yan:

cos functions:

Sivers functions:

Transversity

(2 )

( ) ( )

distributio

DY

DYN T q q q

d h h

A f x f x

σ φ⊥ ⊥

1 1

- Double transverse spin asymmetry in polarized Drell-Yan:

Drell-Yan and SIDIS involve different combinations of TMDs Drell-Yan does not require

ns:

kno

( ) (

wledge of the fra

)DYTT q qA h x h x

••

gmentation functions T-odd TMDs are predicted to change sign from DIS to DY

(Boer-Mulders and Sivers functions) Remains to be tested experimenta ! lly

Page 6: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Boer-Mulders functions from unpolarized Drell-Yan

1

10

10 2

10 3

10 4

10 5

2 4 6 8 10 12 14 16

J/ψ

ψ′

ϒ

ϒ′ ϒ″

Mass (GeV/c2)

Cou

nts/

0.1

GeV

/c2

800 andGeV p d X p p Xµ µ µ µ+ − + −+ → + →

(E605/772/789/866)

~ 200,000 high-mass Drell-Yan events

6

Page 7: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Drell-Yan decay angular distributions

z

P1 2P h φ

lepton plane (cm)

θ

l’

l

Θ and Φ are the decay polar and azimuthal angles of the µ+ in the dilepton rest-frame

*1 2

*( )h h x l l q qxγ γ+ −+ → + → + + →+

Collins-Soper frameA general expression for Drell-Yan decay angular distributions:

2 21 3 1 cos sin 2 cos sin cos 24 2

ddσ νλ θ µ θ φ θ φ

σ π⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + + +⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥Ω⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

*"Naive" Drell-Yan (transversely polarized , no transverse mo 1, 0, 0mentum)

γλ µ ν= = =→

1, 0, 0λ µ ν≠ ≠ ≠In general :7

Page 8: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Drell-Yan decay angular distributions

z

P1 2P h φ

lepton plane (cm)

θ

l’

l

Θ and Φ are the decay polar and azimuthal angles of the µ+ in the dilepton rest-frame

Collins-Soper frameA general expression for Drell-Yan decay angular distributions:

2 21 3 1 cos sin 2 cos sin cos 24 2

ddσ νλ θ µ θ φ θ φ

σ π⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + + +⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥Ω⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

Reflect the spin-1/2 nature of quarks (analog of the Callan-Gross relation in DI

Ins

Lam-Tung relation:

ensitive to QCD - S

c)

orrection

2

s

1 λ ν−

=

8

Page 9: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Decay angular distributions in pion-induced Drell-Yan

Z. Phys.

37 (1988) 545

T0 and increases with pν ν≠

Dashed curves are from pQCD

calculations

NA10 π- +W

9

Page 10: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Decay angular distributions in pion-induced Drell-YanPhys. Rev. D 39 (1989) 92

1, 0, 0 and they vary with , , andTm p xµµ πλ µ ν≠ ≠ ≠

E615 Data 252 GeV π- + W

λ λ λ

µ µ µ

ν ν ν

2(GeV/c )mµµ xπ (GeV/c)Tp

10

Page 11: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Decay angular distributions in pion-induced Drell-YanIs the Lam-Tung relation violated?

140 GeV/c 194 GeV/c 286 GeV/c

Data from NA10 (Z. Phys. 37 (1988) 545)

11

Violation of the Lam-Tung relation suggests interesting new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Muller, Eskolar, Hoyer,Vantinnen, Vogt, etc.)

Page 12: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

=Boer-Mulders function h1

κ1=0.47, MC=2.3 GeV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.5 1 1.5 2 2.5 3

ν

QT [GeV]

221 12 2( , ) ( )T TkC HT

T HT C

M Mh x k c e f xk M

ααπ

−⊥ =+

12

1

1

1 represents a correlation between quark's and transverse spin in an unpolarized hadron (ana is a time-reversal odd, chiral-o

logous to Colldd TMD p

ins fuarton distributio

nction)n

T

h

h

h k⊥

1 1

1 1

can lead to an azimuthal dependence with h hf f

ν⊥ ⊥⎛ ⎞⎛ ⎞

∝ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

2 2

1 2 2 216( 4 )

T C

T C

Q MQ M

ν κ=+

Boer, PRD 60 (1999) 014012

ν>0 implies valence BM functions for pion and nucleon have same signs

Page 13: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Motivation for measuring decay angular distributions in p+p and p+d Drell-Yan

• No proton-induced Drell-Yan azimuthal decay angular distribution data

• Provide constraints on models explaining the pion-induced Drell-Yan data. (h1

is expected to be small for sea quarks. Some other models predict similar effects for p+N and π+N)

• Test of the Lam-Tung relation in proton-induced Drell-Yan

• Compare the decay angular distribution of p+pversus p+d (information on flavor dependence)

13

Page 14: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

14

With Boer-Mulders function h1:

ν(π-W µ+µ-X)~ [valence h1(π)] * [valence h1

(p)]

ν(pd µ+µ-X)~ [valence h1(p)] * [sea h1

(p)]

Azimuthal cos2Φ Distribution in p+d Drell-YanLingyan Zhu et al., PRL 99 (2007) 082301

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

π- + W at 194 GeV/cπ- + W at 252 GeV/cp + d at 800 GeV/c

-0.1

-0.05

0

0.05

0.1

5 7.5 10 12.5 15mµµ (GeV/c2)

ν

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8xF

ν

-0.1

-0.05

0

0.05

0.1

0.2 0.4 0.6 0.8x1

ν-0.1

-0.05

0

0.05

0.1

0.05 0.1 0.15 0.2x2

νν>0 suggests same sign for the valence and sea BM functions

Page 15: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

What does this mean?• These results suggest that the Boer-Mulders

functions h1 for sea quarks are significantly

smaller than for valence quarks and have the same sign as valence quarks.

• A combined analysis of p+p and p+d, together with the π+p and π+d Drell-Yan cos(2Ф) data can lead to extraction of valence and sea Boer-Mulders functions.

15

Page 16: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Extraction of Boer-Mulders functions from p+d Drell-Yan

(B. Zhang, Z. Lu, B-Q. Ma and I. Schmidt, arXiv:0803.1692)

Fit to the p+d Drell-Yan data

Satisfy the positivity bound

16

Page 17: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Extraction of Boer-Mulders functions from p+d Drell-Yan

(B. Zhang, Z. Lu, B-Q. Ma and I. Schmidt, arXiv:0803.1692)

, 2 2 21 1

Parametrization of the BM functions:( , ) (1 ) ( ) exp( / )q c q

q BMh x p H x x f x p p⊥⊥ ⊥= − −

c3.99 3.83 0.91 -0.96 0.16 0.45 0.79

uH2 / dofχdH uH dH

2BMp

(in agreement with model calculations (bag-model, quark-diquark, relativistic CQM, Lattic

and ha

e)

ve the same sign and

and the picture g

similar magnitude

aiven by M. Burkar

nd dt)

u d

u

H H

H H

• are smaller by factor of 4 and have opposite signd 17

Page 18: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

18

Quark-diquark Models for Boer-MuldersFunction h1

Recent quark-diquark model including axial-diquarks Gamberg, Goldstein & Schlegel, arXiv: 0708.0324.

B-M d-quark B-M u-quark Sivers d-quark Sivers u-quark

Same sign for the u and d quarks B-M functions

Page 19: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

19

A simple explanation for the signs of the up- and down-quark Boer-Mulders functions

1) Transversity

1

1

1

1

11

From fits to SIDIS data,we know that1) transversity

2) Sivers function

3) Boer-Mulders function One expects

( ) 0

( ) 0

(

( ) 0

( 0

) )

)

( 0 0

T T

h u

f u

h u

h d

f d

h d

<

<

>

>

<<

Correlation between and q Ns S⊥ ⊥

2) Sivers function

Correlation between and N qS k⊥ ⊥

3) Boer-Mulders function

Correlation between and q qs k⊥ ⊥

Page 20: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Sea-quark Boer-Mulders Functions

20

0 1 2 3-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 0 1 2 3

140 GeV

ν

(a)

G eV QT

194 GeV

GeV

(b) QT

286 GeV

(c)G eVQT

1) Use quark-spectator-antiquark model to calculate pion B-M functions. Pion-induced Drell-Yan data are well reproduced.

(Lu and Ma, hep-ph/0504184)

2) Use pion-cloud model convoluted with the pionB-M function to calculate sea-quark B-M for proton.

, 21 ( , )u

th x k⊥ , 21 ( , )d

th x k⊥(Lu, Ma, Schmidt, hep-ph/0701255)

Page 21: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Extraction of Boer-Mulders functions from p+d Drell-Yan

(B. Zhang, Z. Lu, B-Q. Ma and I. Schmidt, Private communication)

Set I: , have same signsSet II: , have opposite signs

u d

u d

H HH H

Predict larger values of ν for p+p than for p+d21

Page 22: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

New results on the Azimuthal cos2Φ Distribution in p+p Drell-Yan

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

p + d at 800 GeV/c

p + p at 800 GeV/c

Prediction of p+p

• p+p is similar to p+d but larger

22

Page 23: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

23

Page 24: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

New results on the Azimuthal cos2Φ Distribution in p+p Drell-Yan

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

p + d at 800 GeV/c

p + p at 800 GeV/c

2 2

2 2

:/

31 /2

T

T

PQCDP Q

P Qν =

+

• PQCD is important at large pT

• A global fit to all pion and proton data is needed 24

Page 25: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Future prospect for Drell-Yan experiments• Fermilab p+p, p+d, p+A

– Unpolarized beam and target• RHIC

– Polarized p+p collision• COMPASS

– π-p and π-d with polarized targets• FAIR

– Polarized antiproton-proton collision• J-PARC

– Possibly polarizied proton beam and target25

Page 26: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Fermilab E906 dimuon experiment (Geesaman, Reimer et al., expected to run ~2010-2011)

• BM functions can be measured at larger x

• Azimuthal angular distributions of J/Ψ 26

Page 27: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Polarized proton beam at J-PARC ?• Polarized proton beam at J-PARC with

– Polarized H¯ source– RF dipole at 3 GeV RCS– Two 30% partial snakes at 50 GeV Main Ring

Pol. H- Source

180/400 MeV Polarimeter

Rf Dipole

25-30% Helical Partial Siberian Snakes

pC CNI Polarimeter

Extracted BeamPolarimeter

30 GeV50 GeV

27

Page 28: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Outstanding questions to be addressed by future Drell-Yan experiments

• Does Sivers function change sign between DIS and Drell-Yan?

• Does Boer-Mulders function change sign between DIS and Drell-Yan?

• Are all Boer-Mulders functions alike (proton versus pion Boer-Mulders functions)

• Flavor dependence of TMD functions• Independent measurement of transversity

with Drell-Yan28

Page 29: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Summary

29

• The Drell-Yan process compliments the SIDIS as a powerful independent tool for measuring transversity and TMD PDFs.

• First results on azimuthal decay angular distributions on unpolarized p-p or p-d Drell-Yan are now available.

• Pronounced cos2Φ azimuthal dependence previously observed in pion-induced Drell-Yan is not observed in p-por p-d Drell-Yan

• These results suggest that the Boer-Mulders functions h1

for sea quarks are smaller than for valence quarks.• Future Drell-Yan experiments at Fermilab, J-PARC and

other facilities can provide new information (flavor dependence of valence and sea, opposite sign for SIDIS and D-Y) on Boer-Mulders and other TMDs.

Page 30: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

BACKUP SLIDES

30

Page 31: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Polarized Drell-Yan experiment at J-PARC• Experimental condition

– higher beam intensity is possible for unpolarizedliquid H2 target, or nuclear target

• 5×1012 ppp = 2.5×1012×2sec in 1pulse (5sec) possible?

– PYTHIA simulation• 75% polarization beam• 120 days, beam on target

5×1017 (with 50% duty factor)• ~5% reaction target• 10000 fb-1 luminosity• mass 4 – 5 GeV/c2

31

4 < Mµ+µ- < 5 GeVintegrated over qT

red liquid H2 targetblue nuclear target

analyzingmagnet

liquid H2

targetnucleartarget

64cm

127cm51cmpolarizedbeam

Page 32: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

New results on the Azimuthal cos2Φ Distribution in p+p Drell-Yan

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

π- + W at 194 GeV/cπ- + W at 252 GeV/cp + d at 800 GeV/c

p + p at 800 GeV/cp + p/d at 800 GeV/c

• p+p is similar to p+d

• A global fit to all pion and proton data is needed 32

Page 33: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Nuclear modification of spin-dependent PDF?

EMC effect for g1(x)

Bentz, Cloet et al., arXiv:0711.0392

Very difficult to measure !

Easier to measure the nuclear modification of Boer-Mulders functions (only unpolarizedtargets are required)?

(suggested by Gary Goldstein)33

Page 34: Drell-Yan Process and Nucleon Spin - University of …...F 2 +c i (x) SLAC NMC BCDMS H1 94-97 e+p H1 96-97 preliminary NLO QCD Fit c i (x)= 0.6 • (i(x)-0.4) 3 Three parton distributions

Decay angular distributions for p+d Drell-Yan at 800 GeV/c

2 21 3 1 cos sin 2 cos sin cos 24 2

ddσ νλ θ µ θ φ θ φ

σ π⎛ ⎞⎛ ⎞ ⎡ ⎤ ⎡ ⎤= + + +⎜ ⎟⎜ ⎟ ⎢ ⎥ ⎢ ⎥Ω⎝ ⎠⎝ ⎠ ⎣ ⎦ ⎣ ⎦

0

0.5

1

1.5

-0.2

-0.1

0

0.1

0.2µ

-0.2

-0.1

0

0.1

0.2ν

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4pT (GeV/c)

2ν-(

1-λ)

p+d at 800 GeV/c

34

<λ> 1.07±0.07<µ> 0.04±0.013<ν> 0.03±0.01

<2ν-1+λ> -0.13±0.07

No significant azimuthalasymmetry in p+d Drell-Yan!


Recommended