+ All Categories

Dr.sudhanshu

Date post: 06-May-2015
Category:
Upload: sudhanshu-mishra
View: 1,295 times
Download: 0 times
Share this document with a friend
Description:
HI THIS IS A PPT PRESENTATION ON VENOUS THROMBOEMBOLISM BASED ON HARRISONS 18TH EDITION. HOPE IT WILL HELP MY FELLOW COLLEAUGES.
68
“If medicine is to fulfill her great task, then she must enter the political and social life. Do we not always find the diseases of the populace traceable to defects in society? In my listing, "CROWD DISEASES" or "ARTIFICIAL DISEASES" caused by poverty included typhus, scurvy, TB, leprosy, cholera, relapsing fever, and mental illness. If disease is an expression of individual life under unfavorable circumstances, then epidemics must be indicative of mass disturbances.” “Since disease so often results from poverty, the physicians are the natural attorneys of the poor, and the social problems should largely be solved by them. THE MEDICAL REFORM OF WHICH I often spoke WAS A REFORM OF SCIENCE AND SOCIETY. I urged that people treat criminal justice, education, unemployment, and occupational safety as if they are medical problems rather than political ones. Your era is beginning to do this.” “I have only one other suggestion for medical school teaching. Don't leave all mention of the social causes of disease to the social workers and statisticians. Lung cancer and emphysema are caused when ignorant children are lured into a deadly addiction. Endocarditis is caused by the cycle of poverty and lawlessness from which young people seek relief through IV drugs. Alcoholic cirrhosis is caused by frustrations that drive people to drink. Prematurity is caused by educational and economic barriers that prevent the poor from obtaining prenatal care. Urinary tract infections result when secretaries are forbidden to take unscheduled bathroom breaks, or when people are so accustomed to soda pop that they will not drink adequate water. Reasonable people can differ about solutions, but the underlying pathology is as much society's problem as it is the individual's.” RUDOLF VIRCHOW 13.10 1821 – 05.09.1902 1
Transcript
Page 1: Dr.sudhanshu

“If medicine is to fulfill her great task, then she must enter the political and social life. Do we not always find the diseases of the populace traceable to defects in society? In my listing, "CROWD DISEASES" or "ARTIFICIAL DISEASES" caused by poverty included typhus, scurvy, TB, leprosy, cholera, relapsing fever, and mental illness. If disease is an expression of individual life under unfavorable circumstances, then epidemics must be indicative of mass disturbances.”

“Since disease so often results from poverty, the physicians are the natural attorneys of the poor, and the social problems should largely be solved by them. THE MEDICAL REFORM OF WHICH I often spoke WAS A REFORM OF SCIENCE AND SOCIETY. I urged that people treat criminal justice, education, unemployment, and occupational safety as if they are medical problems rather than political ones. Your era is beginning to do this.”

“I have only one other suggestion for medical school teaching. Don't leave all mention of the social causes of disease to the social workers and statisticians. Lung cancer and emphysema are caused when ignorant children are lured into a deadly addiction. Endocarditis is caused by the cycle of poverty and lawlessness from which young people seek relief through IV drugs. Alcoholic cirrhosis is caused by frustrations that drive people to drink. Prematurity is caused by educational and economic barriers that prevent the poor from obtaining prenatal care. Urinary tract infections result when secretaries are forbidden to take unscheduled bathroom breaks, or when people are so accustomed to soda pop that they will not drink adequate water. Reasonable people can differ about solutions, but the underlying pathology is as much society's problem as it is the individual's.”

RUDOLF VIRCHOW 13.10 1821 – 05.09.19021

Page 2: Dr.sudhanshu

2

Dr.Sudhanshu Mishra

Co-Ordinator;Dr.R.A.Manghani

HOD Medicine I&B

VENOUS THROMBOEMBOLISM

Page 3: Dr.sudhanshu

Venous Thromboembolic Disease

Venous thrombosis - ~ 5 million pts yearly Most caused by inadequate prophylaxis in hospitalized

pts 10 % suffer pulmonary embolism ~ 500,000 ~ 1% of all hospitalized pts have PE Contributes to 6 % of all hospital deaths ~ 125,000 deaths annually from PE

3rd most common cardiovascular cause of death (MI, CVA)

Most deaths occur early – PREVENTION IS KEY!! Diagnosis of PE made in < 30% when

contributes to death; < 10% if incidental

Page 4: Dr.sudhanshu

Virchow’s Triad

FactorsContributing

toVenous Thrombosis

FactorsContributing

toVenous Thrombosis

Altered Blood Flow(Stasis)

Blood Coagulability

Vessel WallDamage

Page 5: Dr.sudhanshu

Risk Factors for DVT Stasis

Surgery, trauma, immobility, paresis

Increasing age Pregnancy and postpartum Heart or respiratory failure Obesity

Vessel Injury Previous DVT Smoking Varicose veins Central venous

catheterization

Hypercoagulability Increasing age Malignancy Cancer therapy Estrogen therapy

(OCP or HRT) Acute medical illness Inflammatory bowel disease Nephrotic syndrome Myeloproliferative disorders Paroxysmal nocturnal

hemoglobinuria Inherited or acquired

thrombophilia

Page 6: Dr.sudhanshu

Hereditary conditions associates with DVT and PE

Most of the hereditary factors for clotting disorders is due to certain SNPs with relatively high frequencies in the general population.

– Types• Factor V Leiden (G1691A)• Prothrombin G20210A

– Features• These prothrombotic SNPs are found in almost half of

all cases of idiopathic thromboembolism• high gene frequency• low disease expression

Page 7: Dr.sudhanshu

7

Page 8: Dr.sudhanshu

8

Page 9: Dr.sudhanshu

APPROACH TO DVT History Physical examination Probability scoring Blood test Imaging study

9

Page 10: Dr.sudhanshu

Symptoms For patients with DVT most common

history is a cramp in the lower calf that persists for several days and becomes more uncomfortable as time progresses.

For patients who have PE most common history is unexplained breathlessness.

10

Page 11: Dr.sudhanshu

Clinical Signs of DVT Unilateral edema Leg tenderness Redness, hotness Bluish discoloration Absent or decrease pulse

11

Page 12: Dr.sudhanshu
Page 13: Dr.sudhanshu

Surgical Emergencies Phlegmasia cerul

ea dolens

Leg is cyanotic from massive ileofemoral venous obstruction. The leg is usually markedly edematous, painful, and cyanotic. Petechiae are often present.

Phlegmasia alba dolens

Painful white inflammation was originally used to describe massive ileofemoral venous thrombosis and associated arterial spasm. The affected extremity is often pale with poor or even absent distal pulses

Page 14: Dr.sudhanshu

Phlegmasia cerulea dolens

Page 15: Dr.sudhanshu

Pulmonary Embolism Unexplained shortness of breath Chest pain or palpitations Anxiety and/or sweating Coughing up blood Fatigue and/or fainting

Page 16: Dr.sudhanshu

Differential Diagnosis DVT

Ruptured Baker's cyst

   Cellulitis

 Postphlebitic syndrome/venous insufficiency

PE

   Pneumonia, asthma, chronic obstructive pulmonary disease

Congestive heart failure

   Pleurisy: "viral syndrome," costochondritis, musculoskeletal discomfort

Rib fracture, pneumothorax

Acute coronary syndrome

Anxiety

Pericarditis

   

Page 17: Dr.sudhanshu

Physical examination• Homans' test :Dorsiflexion of foot elicits

pain in posterior calf. Warning: it must be noted that it is of little diagnostic value and is theoretically dangerous because of the possibility of dislodgement of loose clot.

• Pratt's sign: Squeezing of posterior calf elicits pain.

Page 18: Dr.sudhanshu

18

Signs or symptoms observed in patients with thromboembolism

Study

Stein et al., % (n= 117)

Anderson et al., % (n= 131)

Pulmonary embolism

Dyspnea 73 77

Tachypnea 70 70

Chest pain 66 55

Cough 37 —

Tachycardia 30 43

Cyanosis 1 18

Hemoptysis 13 13

Wheezing 9 —

Hypotension — 10

Page 19: Dr.sudhanshu

19

Signs or symptoms observed in patients with thromboembolism

Study

Stein et al., % (n= 117)

Anderson et al., % (n= 131)

Pulmonary

Embolism

Syncope — 10

Elevated jugular venous pulse

— 8

Temperature >38.5°C

7 —

S-3 gallop 3 5

Pleural friction rub

3 2

Page 20: Dr.sudhanshu

20

Signs or symptoms observed in patients with thromboembolism

Study

Stein et al., % (n= 117)

Anderson et al., % (n= 131)

Deep vein thrombosis

Swelling 28 88*

Pain 26 56

Tenderness — 55

Warmth — 42

Redness — 34

Homan’s sign 4 13

Palpable cord — 6

Page 21: Dr.sudhanshu

(Wells Score) Clinical Parameter Score Score

Active cancer (treatment ongoing, or within 6 mo or palliative)

+1

Paralysis or recent plaster immobilization of the lower extremities

+1

Recently bedridden for >3 d or major surgery <4 wk

+1

Localized tenderness along the distribution of the deep venous system

+1

Calf swelling >3 cm compared with the asymptomatic leg

+1

Pitting edema (greater in the symptomatic leg)

+1

Previous DVT documented +1

Collateral superficial veins (nonvaricose) +1

Alternative diagnosis (as likely or greater than that of DVT)

-2

Page 22: Dr.sudhanshu

Total of Above Score

High probability >3

Moderate probability 1 or 2

Low probability <0

Wells Score

Page 23: Dr.sudhanshu

BLOOD TESTS D-Dimer ELISA :-

D-dimer antibodies account for their high sensitivity for venous thrombo embolism.

D-dimer level may be elevated in any medical condition where clots form. D-dimer level is elevated in trauma, recent surgery, hemorrhage, cancer, and sepsis.

The D-dimer assays have low specificity for DVT; therefore,

they should only be used to rule out DVT, not to confirm the diagnosis of DVT

23

Page 24: Dr.sudhanshu

D-dimer results should be used as follows:

A negative D-dimer assay result rules out DVT in patients with low-to-moderate risk and a Wells DVT score less than 2.

All patients with a positive D-dimer assay result and all patients with a moderate-to-high risk of DVT (Wells DVT score >2) require a diagnostic study.

24

Page 25: Dr.sudhanshu

Elevated Cardiac Biomarkers Serum troponin and plasma heart-type fatty acid–

binding protein levels increase because of RV microinfarction.

Myocardial stretch results in elevation of brain natriuretic peptide or NT-pro-brain natriuretic peptide.

Elevated cardiac biomarkers predict an increase in major complications and mortality from PE

25

Page 26: Dr.sudhanshu

26

ECG Changes

S1 Q3 T3 Pattern

Page 27: Dr.sudhanshu

27

T-wave inversion

Page 28: Dr.sudhanshu

28

Rt. Ventricular Strain

Page 29: Dr.sudhanshu

CXR Findings A normal or nearly normal chest x-ray often occurs in

PE. Well-established abnormalities include focal oligemia

(Westermark's sign), a peripheral wedged-shaped density above the diaphragm (Hampton's hump), and an enlarged right descending pulmonary artery (Palla's sign).

29

Page 30: Dr.sudhanshu

30

Chest Radiograph

Page 31: Dr.sudhanshu

Echocardiography

Transthoracic echocardiography rarely images thrombus directly.

The best-known indirect sign of PE on transthoracic echocardiography is McConnell's sign: hypokinesis of the RV free wall with normal motion of the RV apex.

Transesophageal echocardiography can identify saddle, right main, or left main PE.

31

Page 32: Dr.sudhanshu

Noninvasive Imaging Modalities Venous UltrasonographyCriteria for Establishing the Diagnosis of Acute DVTLack of vein compressibility (principal criterion)Vein does not "wink" when gently compressed in cross-sectionFailure to appose walls of vein due to passive distention Direct Visualization of Thrombus  Homogeneous and Low echogenicityAbnormal Doppler Flow Dynamics Normal response: calf compression augments Doppler flow signal and confirms vein patency proximal and distal to DopplerAbnormal response: flow blunted rather than augmented with calf compression

 

32

Page 33: Dr.sudhanshu

Chest CT Computed tomography of the chest with intravenous

contrast is the principal imaging test for the diagnosis of PE.

Multidetector-row spiral CT acquires all chest images with 1 mm of resolution during a short breath hold. This generation of CT scanners can image small peripheral emboli.

33

Page 34: Dr.sudhanshu

34

Spiral CT

Page 35: Dr.sudhanshu

35

Before

After

Page 36: Dr.sudhanshu

Lung Scanning Lung scanning has become a second-line diagnostic test

for PE, used mostly for patients who cannot tolerate intravenous contrast.

Small particulate aggregates of albumin labeled with a gamma-emitting radionuclide are injected intravenously and are trapped in the pulmonary capillary bed.

The perfusion scan defect indicates absent or decreased blood flow, possibly due to PE. Ventilation scans, obtained with a radiolabeled inhaled gas such as xenon or krypton, improve the specificity of the perfusion scan.

36

Page 37: Dr.sudhanshu

37

High-probability ventilation-perfusion

scan

Page 38: Dr.sudhanshu

38

High-probability ventilation-perfusion scan

Page 39: Dr.sudhanshu

Magnetic Resonance (MR) Contrast-Enhanced

When ultrasound is equivocal, MR venography with gadolinium contrast is an excellent imaging modality to diagnose DVT. MR imaging should be considered for suspected VTE patients with renal insufficiency or contrast dye allergy.

MR pulmonary angiography may detect large proximal PE but is not reliable for smaller segmental and subsegmental PE.

39

Page 40: Dr.sudhanshu

40

MRA with contrast

Page 41: Dr.sudhanshu

41

MRA Real Time

Page 42: Dr.sudhanshu

Invasive Diagnostic Modalities

Pulmonary AngiographyChest CT with contrast has virtually replaced invasive pulmonary angiography as a diagnostic test. Invasive catheter-based diagnostic testing is reserved for patients with technically unsatisfactory chest CTs and those in whom an interventional procedure such as catheter-directed thrombolysis or embolectomy is planned. A definitive diagnosis of PE depends on visualization of an intraluminal filling defect in more than one projection. Secondary signs of PE include abrupt occlusion ("cut-off") of vessels, segmental oligemia or avascularity, a prolonged arterial phase with slow filling, and tortuous, tapering peripheral vessels. Contrast PhlebographyVenous ultrasonography has virtually replaced contrast phlebography as the diagnostic test for suspected DVT

42

Page 43: Dr.sudhanshu

43

Pulmonary angiogram

Page 44: Dr.sudhanshu

44

Pulmonary Angiogram

Page 45: Dr.sudhanshu

Management of DVT

Non-pharmacological These include lifestyle changes likeAvoid smoking Eating a healthy balanced diet Getting regular exercise and Maintaining a healthy weight or losing weight if patient obeseLeg Raising:This reduces the pressure in the calf veins

45

Page 46: Dr.sudhanshu

Travelling Drink enough amount of water Avoid taking sleeping pills as it can cause immobility Perform simple leg exercises, such as regularly flexing

ankles Take occasional short walks when possible Wear elastic compression stockings

46

Page 47: Dr.sudhanshu

ANTICOAGULANTS Anticoagulation is the foundation for successful

treatment of DVT and PE Immediately effective anticoagulation is initiated with a

parenteral drug: unfractionated heparin (UFH), low-molecular-weight heparin (LMWH), or fondaparinux.

Parenteral agents are continued as a transition or "bridge" to stable, long-term anticoagulation with Warfarin.Since it requires 5–7 days to achieve a therapeutic effect. During that period, one should overlap the parenteral and oral agents.

However, anticoagulants do not directly dissolve thrombus that already exists.

47

Page 48: Dr.sudhanshu

Unfractionated Heparin MOA is by binding to and accelerating the activity of

antithrombin, thus preventing additional thrombus formation and permitting endogenous fibrinolytic mechanisms to lyse clot that already has formed.

UFH is dosed to achieve a target activated partial thromboplastin time (aPTT) that is 2–3 times the upper limit of the laboratory normal.

For UFH, a typical intravenous bolus is 5000–10,000 units followed by a continuous infusion of 1000–1500 U/h

48

Page 49: Dr.sudhanshu

ADVANTAGE The major advantage of

UFH is its short half-life. This is especially useful if the patient may undergo an invasive procedure such as embolectomy

DISADVANTAGE Major disadvantage of UFH

is that achieving the target aPTT is empirical and may require repeated blood sampling and heparin dose adjustment every 4–6 hours.

Furthermore, patients are at risk of developing heparin-induced thrombocytopenia

49

Page 50: Dr.sudhanshu

Low-Molecular-Weight Heparins These fragments of UFH exhibit less binding to plasma

proteins and endothelial cells and consequently have greater bioavailability, a more predictable dose response, and a longer half-life than does UFH.

No monitoring or dose adjustment is needed unless the patient is markedly obese or has chronic kidney disease.

2 commonly used LMWH preparations are enoxaparin and dalteparin.

Enoxaparin is approved as a bridge to warfarin for VTE. Dalteparin is also approved as monotherapy without

warfarin for symptomatic VTE patients with cancer in a dose of 200 U/kg once daily for 30 days, followed by 150 U/kg once daily for months 2–6.

50

Page 51: Dr.sudhanshu

Fondaparinux Fondaparinux, an anti-Xa pentasaccharide, is administered

as a once-daily subcutaneous injection in a prefilled syringe to treat DVT and PE as a "bridge" to warfarin.

No laboratory monitoring is required. Patients weighing <50 kg receive 5 mg, patients weighing

50–100 kg receive 7.5 mg, and patients weighing >100 kg receive 10 mg.

Fondaparinux is synthesized in a laboratory and, unlike LMWH or UFH, is not derived from animal products

It does not cause heparin-induced thrombocytopenia. The dose must be adjusted downward for patients with

renal dysfunction because the kidneys metabolize the drug.

51

Page 52: Dr.sudhanshu

Warfarin This vitamin K antagonist prevents carboxylation

activation of coagulation factors II, VII, IX, and X. The full effect of warfarin requires at least 5 days even if

the prothrombin time, used for monitoring, becomes elevated more rapidly.

If warfarin is initiated as monotherapy during an acute thrombotic illness, a paradoxical exacerbation of hypercoagulability can increase the likelihood of thrombosis rather than prevent it.

Overlapping UFH, LMWH, or fondaparinux with warfarin for at least 5 days can counteract the early procoagulant effect of unopposed warfarin.

52

Page 53: Dr.sudhanshu

Warfarin Dosing In an average-size adult, warfarin usually is initiated in a dose of 5

mg. Doses of 7.5 or 10 mg can be used in obese or large-framed young patients who are otherwise healthy.

Patients who are malnourished or who have received prolonged courses of antibiotics are probably deficient in vitamin K and should receive smaller initial doses of warfarin, such as 2.5 mg.

The Prothrombin time is standardized by calculating the International normalized ratio (INR), which assesses the anticoagulant effect of warfarin (Chap. 58). The target INR is usually 2.5, with a range of 2.0–3.0.

The warfarin dose is titrated to achieve the target INR. Proper dosing is difficult because hundreds of drug-drug and drug-

food interactions affect warfarin metabolism. Variables such as increasing age and comorbidities such as

systemic illness reduce the required warfarin dose

53

Page 54: Dr.sudhanshu

Novel Anticoagulants Novel oral anticoagulants are administered in a fixed

dose, establish effective anticoagulation within hours of administration, require no laboratory coagulation monitoring, and have few of the drug-drug or drug-food interactions that make warfarin so difficult to dose.

Rivaroxaban, a factor Xa inhibitor, and Dabigatran, a direct thrombin inhibitor, are approved in Canada and Europe for prevention of VTE after total hip and total knee replacement.

Because of these drugs' rapid onset of action and relatively short half-life compared with warfarin, "bridging" with a parenteral anticoagulant is not required.

54

Page 55: Dr.sudhanshu

Complications of Anticoagulants The most serious adverse effect of anticoagulation is hemorrhage. For life-

threatening or intracranial hemorrhage due to heparin or LMWH, protamine sulfate can be administered.

Major bleeding from warfarin is best managed with prothrombin complex concentrate. With non-life threatening bleeding in a patient who can tolerate large volume, fresh-frozen plasma can be used. For minor bleeding or to manage an excessively high INR in the absence of bleeding, oral vitamin K may be administered.

Heparin-induced thrombocytopenia (HIT) and osteopenia are far less common with LMWH than with UFH. Thrombosis due to HIT should be managed with a direct thrombin inhibitor: Argatroban for patients with renal insufficiency and Lepirudin for patients with hepatic failure. In the setting of percutaneous coronary intervention, one should administer bivalirudin.

During pregnancy, warfarin should be avoided if possible because of warfarin embryopathy, which is most common with exposure during the sixth through twelfth week of gestation. However, women can take warfarin postpartum and breast-feed safely. Warfarin can also be administered safely during the second trimester.

55

Page 56: Dr.sudhanshu

56

Complications of anticoagulation

Complication Management

Heparin Bleeding Stop heparin infusion. For severe bleeding, the anticoagulant effect of heparin can be reversed with intravenous protamine sulfate 1 mg/100 units of heparin bolus or 0.5 mg for the number of units given by constant infusion over the past hour; provide supportive care including transfusion and clot evacuation from closed body cavities as needed.

Page 57: Dr.sudhanshu

57

Complications of anticoagulationComplication Management

Heparin Heparin-induced osteoporosis (therapy >1 mo)

LMWHs may have lower propensity to cause osteoporosis as compared with unfractionated heparin; consider LMWH if prolonged heparin therapy is necessary.

Page 58: Dr.sudhanshu

58

Complications of anticoagulationComplication Management

Heparin Heparin-induced thrombocytopenia and thrombosis

Carefully monitor platelet count during therapy. Stop-heparin for platelet counts <75,000. Replace heparin with direct inhibitors of thrombin-like desirudin if necessary. These agents do not cause heparin-induced thrombocytopenia. Avoid platelet transfusion because of the risk for thrombosis.

Page 59: Dr.sudhanshu

59

Complications of anticoagulation

Complication Management

Warfarin Bleeding Stop therapy. Administer vitamin K and fresh-frozen plasma for severe bleeding; provide supportive care including transfusion and clot evacuation from closed body cavities as needed

Skin necrosis (rare) Supportive care.

Teratogenicity Do not use in pregnancy or in patients planning to become pregnant.

Page 60: Dr.sudhanshu

60

Important drug interactions with warfarin

Drugs that decrease warfarin requirement

Drugs that increase warfarin requirement

Phenylbutazone Barbiturates

Metronidazole Carbamazepine

Trimethoprim-sulfamethoxazole Rifampin

Amiodarone Penicillin

Second- and third-generation cephalosporins

Griseofulvin

Clofibrate Cholestyramine

Erythromycin

Anabolic steroids

Thyroxine

Page 61: Dr.sudhanshu

61

Various inferior vena caval filters

Page 62: Dr.sudhanshu

Inferior Vena Caval Filters The two principal indications for insertion of an IVC

filter are (1) Active bleeding that precludes anticoagulation (2) Recurrent venous thrombosis despite intensive

anticoagulation It is not useful in PE as the filter itself may fail by

permitting the passage of small- to medium-size clots. Large thrombi may embolize to the pulmonary arteries via collateral veins that develop.

Paradoxically, by providing a nidus for clot formation, filters double the DVT rate over the ensuing 2 years after placement.

62

Page 63: Dr.sudhanshu

Fibrinolysis Successful fibrinolytic therapy rapidly reverses right heart failure and

may result in a lower rate of death and recurrent PE by (1) dissolving much of the anatomically obstructing pulmonary arterial

thrombus (2) preventing the continued release of serotonin and other

neurohumoral factors that exacerbate pulmonary hypertension (3) lysing much of the source of the thrombus in the pelvic or deep leg

veins, thereby decreasing the likelihood of recurrent PE. The preferred fibrinolytic regimen is 100 mg of recombinant tissue

plasminogen activator (tPA) administered as a continuous peripheral intravenous infusion over 2 hours. Patients appear to respond to fibrinolysis for up to 14 days after the PE has occurred.

Contraindications to fibrinolysis include intracranial disease, recent surgery, and trauma. The overall major bleeding rate is about 10%, including a 1–3% risk of intracranial hemorrhage.

The only FDA-approved indication for PE fibrinolysis is massive PE

63

Page 64: Dr.sudhanshu

Surgical Options Pulmonary Embolectomy : The risk of intracranial hemorrhage with fibrinolysis has prompted a

renaissance of surgical embolectomy. More prompt referral before the onset of irreversible cardiogenic shock and multisystem organ failure and improved surgical technique have resulted in a high survival rate. A possible alternative to open surgical embolectomy is catheter embolectomy. P

Pulmonary Thromboendarterectomy : Chronic thromboembolic pulmonary hypertension occurs in 2–4% of acute PE

patients. Therefore, PE patients who have initial pulmonary hypertension (usually diagnosed with Doppler echocardiography) should be followed up at about 6 weeks with a repeat echocardiogram to determine whether pulmonary arterial pressure has normalized. Patients impaired by dyspnea due to chronic thromboembolic pulmonary hypertension should be considered for pulmonary thromboendarterectomy, which, if successful, can markedly reduce, and at times even cure, pulmonary hypertension. The operation requires median sternotomy, cardiopulmonary bypass, deep hypothermia, and periods of hypothermic circulatory arrest. The mortality rate at experienced centers is approximately 5%.

64

Page 65: Dr.sudhanshu

Post Phelibitic Syndrome It occurs in 15% of patients with deep vein thrombosis

(DVT). It presents with leg oedema, pain, nocturnal cramping, venous claudication, skin pigmentation, dermatitis and ulceration on the medial aspect of lower leg.

Daily use of below-knee 30- to 40-mmHg vascular compression stockings will halve the rate of developing postphlebitic syndrome. These stockings should be prescribed as soon as DVT is diagnosed and should be fitted carefully to maximize their benefit. When patients are in bed, the stockings need not be worn.

65

Page 66: Dr.sudhanshu

HITTS• Clinicopathologic Syndrome:

• Unexplained 50% decrease in platelets (even if absolute total > 150)

• Positive test for Heparin antibodies• Activation assay (more relevant but more difficult)• Antigen assay

• Types:• Type I

• begins early (few hours) after starting heparin• typically benign with plts usually staying > 100K. No Rx needed.

• Type II• begins several days into treatment (unless previously sensitized)• High risk for thrombotic complications. Requires Rx.

Page 67: Dr.sudhanshu

Methods of DVT Prophylaxis Mobilization Graduated compression stockings Intermittent pneumatic compression Aspirin Unfractionated heparin 5000 s.c TDS Low-molecular weight heparins

Enoxaparin(0.4cc), Dalteparin(5000 U daily) Vitamin K antagonists

Warfarin, acenocoumarol, phenindione, & dicoumarol

Fondaparinux (Factor Xa inhibitor)

Page 68: Dr.sudhanshu

THANK YOU

68