+ All Categories
Home > Documents > Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6...

Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6...

Date post: 27-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
26
Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2) CGILS-S11 results Stephan de Roode Delft University of Technology (TUD), Delft, Netherlands Mixed-layer model analysis: Melchior van Wessem (student, TUD) DALES development: Thijs Heus (MPI-Hamburg, Germany) Chiel van Heerwaarden (Un. Wageningen, Netherlands) Steef Boing (Delft University of Technology) McICA code: Robert Pincus (NOAA) Bjorn Stevens (MPI-Hamburg) Many thanks to the CGILS-LES group for helpful suggestions!
Transcript
Page 1: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2)

CGILS-S11 results

Stephan de Roode

Delft University of Technology (TUD), Delft, Netherlands

Mixed-layer model analysis: Melchior van Wessem (student, TUD)

DALES development: Thijs Heus (MPI-Hamburg, Germany) Chiel van Heerwaarden (Un. Wageningen, Netherlands) Steef Boing (Delft University of Technology)

McICA code: Robert Pincus (NOAA) Bjorn Stevens (MPI-Hamburg)

Many thanks to the CGILS-LES group for helpful suggestions!

Page 2: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2)

Open source code (GIT)

KNMI, University of Wageningen, Delft Technical University of Technology (Thijs Heus:

MPI-Hamburg)

Benefits to users: Additions of new physics routines

McICA Radiation: Pincus and Stevens 2009, implemented by Thijs Heus

CGILS-radiation scheme close to be fully operational in DALES v3.2

Coupled Surface Energy Balance model: van Heerwaarden, Wageningen University

However, it requires a lot of dedication to keep up with the modifications

increase in the number of switches

Page 3: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS –

Simulation details

Simulation time 10 days adaptive time step, dtmax = 10 secs radiation time step = 60 secs

Domain size 4.8 x 4.8 x 4 km3, 96 x 96 x 128 grid points (Δz = 25 m in lower part)

Total CPU hours on 32 processors 2700 hours

Page 4: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Inversion height

∂zinv∂t

= we + wsubs z = zinv( )

Page 5: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Cloud liquid water path (LWP)

Page 6: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Cloud cover

Page 7: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

more evaporation

Turbulent

Surface

Fluxes

Page 8: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Top

Of

Atmosphere

Net

Radiative

Fluxes

Page 9: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Hourly-averaged vertical mean profiles during the last 5 hours

Page 10: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Hourly-averaged turbulent fluxes during the last 5 hours

Page 11: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions

0

0.2

0.4

0.6

0.8

1

1.2

-0.08 -0.06 -0.04 -0.02 0 0.02

z/z i

<w'θl'> (mK/s)

−weΔθL

ΔF / ρcp( )

∂ θL

∂t= 0Steady state

Requires constant flux

−∂ w'θL '

∂z= 0

Example: longwave radiative cooling at cloud top

Page 12: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions

∂ qT∂t

= 0Steady state

Requires constant flux

−∂ w'qT '

∂z= 0

Example: no precipitation

0

0.2

0.4

0.6

0.8

1

1.2

-1 10-5 0 1 10-5 2 10-5 3 10-5

z/z i

<w'qt'> (m/s)

−weΔqT

Page 13: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions:

<w’θv’>

0

0.2

0.4

0.6

0.8

1

1.2

-1 10-5 0 1 10-5 2 10-5 3 10-5

z/z i

<w'qt'> (m/s)

−weΔqT

0

0.2

0.4

0.6

0.8

1

1.2

-0.08 -0.06 -0.04 -0.02 0 0.02

z/z i

<w'θl'> (mK/s)

−weΔθL

ΔF / ρcp( )

0

0.2

0.4

0.6

0.8

1

1.2

-0.01 0 0.01 0.02 0.03

z/z i

<w'θv'> (mK/s)

no decoupling

w'θL ' +180 w'qT '€

0.5 w'θL ' +1100 w'qT '

Page 14: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions

Example: longwave radiative cooling

large-scale horizontal advection

0

0.2

0.4

0.6

0.8

1

1.2

-0.08 -0.06 -0.04 -0.02 0 0.02

z/z i

<w'θl'> (mK/s)

−weΔθL

ΔF / ρcp( )

turbulent flux divergence balances advective cooling

−∂ w'θL '

∂z= U ∂θL

∂z⎛

⎝ ⎜

⎠ ⎟ large−scale

Page 15: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

0

0.2

0.4

0.6

0.8

1

1.2

-0.02 -0.01 0 0.01 0.02 0.03

z/z i

<w'θv'> (mK/s)

Steady state solutions:

<w’θv’>

0

0.2

0.4

0.6

0.8

1

1.2

-1 10-5 0 1 10-5 2 10-5 3 10-5

z/z i

<w'qt'> (m/s)

−weΔqT

w'θL ' +180 w'qT '

0.5 w'θL ' +1100 w'qT '0

0.2

0.4

0.6

0.8

1

1.2

-0.08 -0.06 -0.04 -0.02 0 0.02

z/z i

<w'θl'> (mK/s)

−weΔθL

ΔF / ρcp( )

Page 16: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions & decoupling

No decoupling(#) if at cloud base height zbase

w'θV ' > 0

−∂ w'θL '

∂z= −

w'θL ' zbase − w'θL ' 0zbase

<

Bd

Ad

w'qT ' zbase + w'θL ' 0

zbase

So

Flux divergence: €

w'θL ' zbase > −Bd

Ad

w'qT 'zbase

(#) This is a weak criterion. In fact, the flux can be slightly negative without the BL getting decoupled

Page 17: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions & decoupling

−∂ w'θL '

∂z=

Bd

Ad

w'qT ' zbase + w'θL ' 0

zbase= U ∂θL

∂x⎛

⎝ ⎜

⎠ ⎟ largescale

Steady state if

Page 18: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions & decoupling

−∂ w'θL '

∂z=

Bd

Ad

w'qT ' zbase + w'θL ' 0

zbase= U ∂θL

∂x⎛

⎝ ⎜

⎠ ⎟ largescale

Steady state if

0

500

1000

1500

-0.3 -0.2 -0.1 0

heig

ht w

here

<w

'θv'>

=0

Large-scale advection (K/h)

CGILS

Page 19: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Steady state solutions & decoupling

Decoupling due to large-scale advection alone not very likely

However, two other processes cause steeper <w’θv’> gradients

In the subcloud layer:

evaporation of drizzle

longwave radiative cooling

Page 20: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS: Inversion jumps (after 10 days)

-10

-8

-6

-4

-2

0

2

0 5 10 15 20

Δq t [

g/kg

]

Δ θl [K]

buoyancy reversalcriterion

DYCOMS II

EUROCS

*S11 CTL P2K

*

ASTEX

Page 21: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Mixed-layer model

∂ ψML

BL mean

∂t= −

−we ψFA −ψML( )entrainment flux

− cDUML ψ0 −ψML( )surface flux

+ ΔSψsource/sink

zi

290 292 294 296 298 300 3020

0.2

0.4

0.6

0.8

1

1.2

liq. wat. pot. temp. θL (K)

z/z in

v

θL,0

θL,ML

θL,FA

2 4 6 8 10 120

0.2

0.4

0.6

0.8

1

1.2

total water content qT (g/kg)

z/z in

v

qT,0

qT,ML

qT,FA

Page 22: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Mixed-layer model

∂ ψML

BL mean

∂t= −

−we ψFA −ψML( )entrainment flux

− cDUML ψ0 −ψML( )surface flux

+ ΔSψsource/sink

zi

∂zinv∂t

= we + w subs = we −Dzi

Page 23: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Mixed-layer model

∂ ψML

BL mean

∂t= −

−we ψFA −ψML( )entrainment flux

− cDUML ψ0 −ψML( )surface flux

+ ΔSψsource/sink

zi

∂zinv∂t

= we + w subs = we −Dzi

Closure(#):

we = A ΔFradθL ,FA −θL,ML

(#) This closure is inspired by Moeng (2000). Other closures need humidity jumps, cloud base height etc.

Page 24: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

θL ,FA z( ) = θL ,0 +Γθ zqT ,FA = qT ,0 + ΔqT

Mixed-layer model

∂ ψML

BL mean

∂t= −

−we ψFA −ψML( )entrainment flux

− cDUML ψ0 −ψML( )surface flux

+ ΔSψsource/sink

zi

∂zinv∂t

= we + w subs = we −Dzi

Closure:

we = A ΔFradθL ,FA −θL,ML

Upper BC:

Page 25: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

Mixed-layer model solutions

∂zinv∂t

= we + w subs = we −Dzi

Closure:

Approximation:

(surface jump much smaller than inversion jump)

Equilibrium height for the boundary layer

we = A ΔFradθL ,FA −θL,ML

θL ,0 −θL,ML << Γθ zi

zi =AΔFradDΓθ

Page 26: Dutch Atmospheric Large-Eddy Simulation Model (DALES v3.2 ... · L,FA 2 4 6 8 10 12 0 0.2 0.4 0.6 0.8 1 1.2 total water content q T (g/kg) z/z v q T,0 q T,ML q T,FA. Mixed-layer model

CGILS

Conclusions

S11 goes to an equilibrium state Longwave radiative cooling, entrainment warming and large-scale advection Evaporation, entrainment drying, and large-scale advection

Radiation in a future climate Hardly any change in radiation at top of the atmosphere if SST + 2K

Outlook Do shallow cumulus and stratus runs Check influence advection scheme


Recommended