+ All Categories
Home > Documents > Dwdm Intro e4e5

Dwdm Intro e4e5

Date post: 14-Apr-2018
Category:
Upload: khanduja2
View: 226 times
Download: 0 times
Share this document with a friend

of 33

Transcript
  • 7/29/2019 Dwdm Intro e4e5

    1/33

    INTRODUCTION

    TO DWDM

  • 7/29/2019 Dwdm Intro e4e5

    2/33

    9/19/2013 2

    FIBRE EXHAUST

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    transmitter

    2.5-Gbit/s2.5 Gbit/s

    2.5 Gbit/s

    reciever

    LAY NEW FIBRE AND PUT NEW SYSTEMS

  • 7/29/2019 Dwdm Intro e4e5

    3/33

    9/19/2013 3

    FIBRE EXHAUST

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    transmitter

    2.5-Gbit/s

    2.5 Gbit/s

    2.5 Gbit/s

    reciever

    INSTAL HIGHER BITRATE TDM

    EXPENSIVE, NEW FIBRE NEEDED

    10-Gbit/s 10-Gbit/s10-Gbit/s

    transmitter regenerator reciever

  • 7/29/2019 Dwdm Intro e4e5

    4/33

    9/19/2013 4

    FIBRE EXHAUST

    DEPLOY DWDM

    2.5-Gbitt/s

    transmitter

    M

    U

    X

    D

    E

    M

    U

    X

    10-Gbit/s 10-Gbit/s10-Gbit/s

    transmitter regenerator reciever

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    2.5- Gbit/s

    transmitter

    2.5-Gbit/s

    2.5 Gbit/s

    2.5 Gbit/s

    reciever

    2.5- Gbit/sreciever

    2

    1

    3

    4

    2

    1

    3

    4

    2.5- Gbit/sreciever

    2.5- Gbit/sreciever

    2.5- Gbit/sreciever

    2.5-Gbitt/stransmitter

    2.5-Gbitt/s

    transmitter

    2.5-Gbitt/s

    transmitter

  • 7/29/2019 Dwdm Intro e4e5

    5/33

    5

    DWDM History

    Early WDM (late 80s)

    Two widely separated wavelengths (1310, 1550nm)

    Second generation WDM (early 90s)

    Two to eight channels in 1550 nm window

    400+ GHz spacing

    DWDM systems (mid 90s)

    16 to 40 channels in 1550 nm window

    100 to 200 GHz spacing

    Next generation DWDM systems

    64 to 160 channels in 1550 nm window

    50 and 25 GHz spacing

  • 7/29/2019 Dwdm Intro e4e5

    6/33

    9/19/2013 6

    Overview

    Now in use:

    C-band1525~1565nm

    In research :

    L-band 1570~1620nm

    S-band 1400nm

    In Future, the

    communication window1280~1625nm

  • 7/29/2019 Dwdm Intro e4e5

    7/33

    9/19/2013 7

    ACHIEVING HIGHER BANDWIDTH

    THREE POSSIBLE SOLUTIONS

    Install new fibre

    Invest in new TDMTechnologies to

    Achieve higher

    Bandwidth.

    Deploy DWDM

    Expensive

    ExpensiveRequire new

    Type fibre

    Economical

  • 7/29/2019 Dwdm Intro e4e5

    8/33

    9/19/2013 8

    JUST LIKE WIDENING OF ROAD USING AVAILABE LAND TO MEET INCREASED TRAFFIC

  • 7/29/2019 Dwdm Intro e4e5

    9/33

    9/19/2013 9

    DWDM BASICS

    SINGLE FIBRE

    SDH OPTICAL SIGNALS

    NEW REQUIREMENTS:

  • 7/29/2019 Dwdm Intro e4e5

    10/33

    9/19/2013 10

    BLOCK SCHEMATIC

    Tx RxMUX DEMUX

    OFAWD

    M

    W

    D

    M

    2.

    .

    .

    .

    1

    16

    TRANSPONDERS

    OPTICAL

    SIGNALS.

    STM-1

    STM-4

    STM-16

    ATM

    IP

  • 7/29/2019 Dwdm Intro e4e5

    11/33

    9/19/2013 11

    Wayside Optical Add/Drop Multiplexer

    TM TMWDM

    MUX

    WDM

    DEMU

    X2

    15

    16

    1

    1-4 5-8

    O

    A

    O

    A

  • 7/29/2019 Dwdm Intro e4e5

    12/33

    9/19/2013 12

    Optical Add/Drop

    Multiplexing

    1 12 2 2 2

    Configurable

    OADM :1 or2

    1 12 2 2 2

    1 1

    fixed OADM:

    2

    OADM : Optical Add/Drop Multiplexer

    Terminal Equipt Terminal EquiptIn-Line Amplifier

  • 7/29/2019 Dwdm Intro e4e5

    13/33

    9/19/2013 13

    DIFFERENCES FROM OLD SYSTEM

    REGs

    FIBRES REQUIREMENT

    LASERS TYPES OF COMPONENTS

    CAPACITY

    FIBRE TRANSMISSION BEHAVIOUR

  • 7/29/2019 Dwdm Intro e4e5

    14/33

    9/19/2013 14

    ADVANTAGES OF DWDM

  • 7/29/2019 Dwdm Intro e4e5

    15/33

    9/19/2013 15

    Transparency Can carry multiple protocols on same fiber

    Monitoring can be aware of multiple protocols

    Wavelength spacing 50GHz, 100GHz, 200GHz

    Defines how many and which wavelengths can be used

    Wavelength capacity Example: 1.25Gb/s, 2.5Gb/s, 10Gb/s

    Characteristics of a WDM Network

    Wavelength Characteristics

  • 7/29/2019 Dwdm Intro e4e5

    16/33

    9/19/2013 16

    Why Optical (DWDM) Networking?

    Fibre Exhaust : Unlimited bandwidth on a fibre pair

    Bit Rate Transparency

    Format/Protocol Transparency : IP, ATM etc. Efficient use and rearrangement of embedded optical

    capacity as per demand.

    Minimal Capital Expenditure : Capacity Expansions

    Demand

  • 7/29/2019 Dwdm Intro e4e5

    17/33

    9/19/2013 17

    Economics of WDM

    Saving of regeneration costs:

    one optical amplifier for many channels regeneration

    cost per channel drastically reduced Saving of fibres/fibre shortage

    Cost effective compared to laying new fibres

    Introduction of a new network layer:

    additional planning possibilities by passing of traffic

    on nodes reduces node costs

  • 7/29/2019 Dwdm Intro e4e5

    18/33

    9/19/2013 18

    OPTICAL NETWORK ELEMENTS

    TP

    TP OA

    ODEM

    UX

    OMUX

    OADM OXC

  • 7/29/2019 Dwdm Intro e4e5

    19/33

    9/19/2013 19

    TRANSPONDER / TRANSLATOR /

    WAVELENGTH CONVERTOR

    O/E E/OElectricalREGENERATION

    OPTIONAL

    REGENERATOR

  • 7/29/2019 Dwdm Intro e4e5

    20/33

    9/19/2013 20

    Transponders

    Converts broadband optical signals to a specific wavelength viaoptical to electrical to optical conversion (O-E-O)

    Used when Optical LTE (Line Termination Equipment) does nothave tight tolerance ITU optics

    Performs 2R or 3R regeneration function

    Receive Transponders perform reverse function

    Low Cost

    IR/SR Optics

    Wavelengths

    Converted

    1

    From OpticalOLTE To DWDM MuxOEO

    OEO

    OEO

    2

    n

  • 7/29/2019 Dwdm Intro e4e5

    21/33

    9/19/2013 21

    Optical Amplifier

    Advantages:

    Design simplicity &high reliability.

    Fewer components and economical.

    Very low noise level.

    Ability to amplify multiple wavelength signals in the operating

    band.

    No interchannel interference .

    Careful design can remove the dispersion

    problems also.

    E bi D d Fib

  • 7/29/2019 Dwdm Intro e4e5

    22/33

    EDF Amplifier Charactertics

    1. Highly Efficient

    2. High gain

    3. Low Noise figure.

    4. Low Cost

    Erbium Doped Fiber

    Amplifier (EDFA)

  • 7/29/2019 Dwdm Intro e4e5

    23/33

    9/19/2013 23

    Erbium Doped Fiber Amplifier

    Simple device consisting of four parts:

    Erbium-doped fiber An optical pump

    A coupler

    An isolator to cut off backpropagating noise

    Isolator Coupler IsolatorCoupler

    Erbium-Doped

    Fiber (1050m)

    Pump

    Laser

    Pump

    Laser

  • 7/29/2019 Dwdm Intro e4e5

    24/33

    9/19/2013 24

    NMS FOR DWDM SYSTEMS

    NMS IN CONVENTIONAL SDH SYSTEMS:

    DCC: TIME SLOTS

    DWDMNO TIME SLOTS

    WAVELENGTH SLOTS

    ONE WAVELENGTH IS DEDICATED FOR N.M.S.

    OPTICAL SUPERVISORY CHANNEL

    OSC needs to be accessed at all points in the network

  • 7/29/2019 Dwdm Intro e4e5

    25/33

    9/19/2013 25

    Optical Supervisory Channel - OSC

    OSC mainly carries orderwire and network

    management information.

    signals at 1510 nm or 1625 nm

    2.048 Mb/s

  • 7/29/2019 Dwdm Intro e4e5

    26/33

    9/19/2013 26

    Optical Supervisory Channel

    (OSC)

    Line Terminal Equipment In-line Amplifier

    Tx 1

    Tx 2

    Tx 3

    Tx 4

    Tx 5

    Tx 6

    Tx 7

    Tx 8

    D

    ATAIN

    1

    2

    3

    4

    5

    6

    7

    8

    Rx

    Rx

    Rx

    Rx

    Rx

    Rx

    Rx

    Rx

    1

    2

    3

    4

    5

    6

    7

    8

    Line Terminal Equipment

    + supervisory

    Tx sup

    System Control

    Processor

    Rx Tx

    OSC

    Network Management Network Management

    System Control

    Processor

    Rx sup

  • 7/29/2019 Dwdm Intro e4e5

    27/33

    9/19/2013 27

    OPTICAL BANDS

    EXTENSIVE USE OF WAVELENGTHS

    DIFFERENT VENDORS:INTEROPERABILITY ISSUES

    NEED FOR STANDARD WAVELENGTH VALUES

    ITU Classification of bands

    Standard values : ITU Grid

    Center frequency: 193.10THz (1552.52 nm)

    Standard spacings of 200, 100, 50 GHz for different applications

  • 7/29/2019 Dwdm Intro e4e5

    28/33

    9/19/2013 28

    ITU-T BAND ALLOCATION

    Optical

    Supervisory

    channel

    1500 1520 1530 1542 1547 1560 1620

    RED

    BAND

    C BAND L BAND

    BLUE

    BAND

    CBAND PRODUCTS ARE COMMERCIALLY AVAILABLE.ERBIUM DOPED FIBRE AMPLIFIERS SUITABLE FOR

    C BAND.

    GAIN IN RED BAND FLATTEST FOR EDFA. SOME MANUFACTURERS PROVIDE 16 CHANNELS IN

    RED BAND ONLY. OTHERS USE BOTH RED

    & BLUE BANDS.

    ITU T G 692 Frequency Grid

  • 7/29/2019 Dwdm Intro e4e5

    29/33

    9/19/2013 29

    Nominal

    Central

    (THz)

    Central

    (nm)

    Nominal

    Central

    (THz)

    Central

    (nm)

    Nominal

    Central

    (THz)

    Central

    (nm)

    196.1 1528.77 194.7 1539.77 193.3 1550.92

    196.0 1529.55 194.6 1540.56 193.2 1551.72

    195.9 1530.33 194.5 1541.35 193.1 1552.52

    195.8 1531.12 194.4 1542.14 193.0 1553.33

    195.7 1531.90 194.3 1542.92 192.9 1554.13

    195.6 1532.68 194.2 1543.73 192.8 1554.94

    195.5 1533.47 194.1 1544.53 192.7 1555.75

    195.4 1534.25 194.0 1545.32 192.6 1556.55

    195.3 1535.04 193.9 1546.12 192.5 1557.36

    195.2 1535.82 193.8 1546.92 192.4 1558.17

    195.1 1536.61 193.7 1547.72 192.3 1558.98

    195.0 1537.40 193.6 1548.51 192.2 1559.79

    194.9 1538.19 193.5 1549.32 192.1 1560.61

    194.8 1539.77 193.4 1550.12

    ITUT G.692 Frequency Grid

  • 7/29/2019 Dwdm Intro e4e5

    30/33

    9/19/2013 30

    LIMITATIONS

    THE MAXIMUM DISTANCE IS 640 km, MADE OF 8 SPANS OF 80km The assumptions are:

    * Fibre attenuation, including splice loss is 0.28 db/km

    * Span loss of 22 db. (0.28 *80km =22.40 )

    * Total dispersion is less than 12800 ps/nm.

    * For G.652 fiber/ cable is DISPERSION 17/20 ps/nm-km

    * For 640 Km dispersion= 12800ps/nm

  • 7/29/2019 Dwdm Intro e4e5

    31/33

    9/19/2013 31

    Metropolitan Area Network

    Unlimited Bandwidth, bit rate and format

    transparencyEfficient Bandwidth use and Management

    New Applications with DWDM

  • 7/29/2019 Dwdm Intro e4e5

    32/33

    9/19/2013 32

    Wavelength LeasingNetwork Customers are beginning to demand

    high capacity Network Transport that affords

    high reliability and security, as well as

    segmentations from the providers Network

    A spare Wavelength (Leased ) is used to

    provide clear-channel transport to a customer

    The Customers Bandwidth requirements arecleanly separated from the providers core

    Network Needs.

    New Applications with DWDM

  • 7/29/2019 Dwdm Intro e4e5

    33/33

    9/19/2013 33

    Thank You


Recommended