+ All Categories
Home > Documents > Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical...

Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical...

Date post: 19-Dec-2015
Category:
View: 214 times
Download: 0 times
Share this document with a friend
Popular Tags:
30
Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology
Transcript
Page 1: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Dynamic Energy Budgetsi.r.t. population effects of toxicants

Tjalling JagerDept. Theoretical Biology

Page 2: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Contents

What DEB is not … What is DEB? Advantages of using DEB

Example life-cycle datasetBindesbøl et al (2007)• copper in Dendrobaena octaedra• size, survival, cocoons over 20 weeks• here, only [Cu] > 80 mg/kg

Page 3: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

What DEB is not

DEB is not a population model DEB is not needed to estimate population effects

Page 4: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

DEB-less analysis

conc. hatching %

80 74

120 79

160 74

200 31

80120160200

0 50 100 1500

0.2

0.4

0.6

0.8

1

time (days)

frac

tio

n s

urv

ival

0 50 100 1500

5

10

15

20

25

30

35

40

cum

ula

tive

rep

rod

uct

ion

time (days)

1 2

hatching time: 92 days

Page 5: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

DEB-less analysis

conc. hatching %

80 74

120 79

160 74

200 31

80120160200

0 50 100 1500

0.2

0.4

0.6

0.8

1

time (days)

frac

tio

n s

urv

ival

0 50 100 1500

5

10

15

20

25

30

35

40

time (days)

cum

ula

tive

rep

rod

uct

ion

endT

rts dtetRtF

0

)()(1 endT

rts dtetRtF

0

)()(1

hatching time: 92 days

Page 6: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Intrinsic rate of increase

2-stage modelsplined, Euler-Lotka

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

pop

ulat

ion

grow

th r

ate

(d-1

)

endT

rts dtetRtF

0

)()(1

1 2

Page 7: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

What have we achieved?

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

popu

latio

n gr

owth

rat

e (d

-1)

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

popu

latio

n gr

owth

rat

e (d

-1)

longer exposure time,

untested concentrations,

time-varying conditions,

temperature,

food limitation,

other species,

other compounds …

Integrated effects on survival and reproduction over time … … for test concentrations and test conditions … Can we make educated inter- and extrapolations?

Page 8: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

What is DEB?

Quantitative theory; ‘first principles’• time, energy and mass balance

Life-cycle of the individual• links levels of organisation: molecule

ecosystems

Comparison of species• body-size scaling relationships; e.g., metabolic

rate

Fundamental to biology; many practical applications

• (bio)production, (eco)toxicity, climate change, …

Kooijman (2000)

Kooijman (in press)

Page 9: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Bookkeeping rules …

growth

reproduction

feeding

maintenance

maturation

Page 10: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Toxicants in DEB

externalconcentration

(in time)

toxico-kinetics

toxico-kinetics internal

concentrationin time

life-historytraits

one-compartment model, accounting for changes in body size

Page 11: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Toxicants in DEB

externalconcentration

(in time)

toxico-kinetics

toxico-kinetics internal

concentrationin time DEB

parametersin time

life-historytraits

ingestion ratemaintenance rate coeff.egg costsetc. …

Page 12: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Toxicants in DEB

externalconcentration

(in time)

toxico-kinetics

toxico-kinetics internal

concentrationin time DEB

parametersin time

DEBmodel

DEBmodel

life-historytraits

KM-DEB (Klok et al, 1996)DEBtox (Kooijman & Bedaux, 1996)DEB3 (Jager et al, subm.)

Page 13: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Toxicants in DEB

externalconcentration

(in time)

toxico-kinetics

toxico-kinetics internal

concentrationin time DEB

parametersin time

DEBmodel

DEBmodel

life-historytraits

growth, time to reproduction, reproduction ratemortality etc. …

Page 14: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

DEB analysis of dataSimultaneous fit size and repro data

MoA: decrease in ingestion rate

0 50 100 1501

2

3

4

5

6

7

8

9

time (days)

bod

y le

ngth

80120160200

0 50 100 1500

5

10

15

20

25

30

35

40

time (days)

cum

ulat

ive

off

sprin

g pe

r fe

mal

e

80120160200

Page 15: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

DEB analysis of data

Assume size-dependent feeding limitation (Jager et al, 2005)

0 50 100 1501

2

3

4

5

6

7

8

9

time (days)

bod

y le

ngth

0 50 100 150

0

5

10

15

20

25

30

35

40

time (days)

cum

ulat

ive

off

sprin

g pe

r fe

mal

e

80120160200

80120160200

Page 16: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Parameter estimates

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

to population model …

Page 17: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Population effects

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

pop

ulat

ion

grow

th r

ate

(d-1

)

2-stage modelsplined, Euler-Lotka

DEB, Euler-Lotka

no-effects

Page 18: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

What’s different?

effectsdata individuals

effectsdata individuals

populationconsequences

populationconsequences

modelparameters

modelparameters

extrapolatedparameters

extrapolatedparameters

DEB-less

DEB

Page 19: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

time-varying concentrations

Page 20: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

less food in environment

Page 21: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

pop

ulat

ion

grow

th r

ate

(d-1

)

Food limitation

food 100%

food 90%

Page 22: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

size-dependent feeding limitations

Page 23: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Food limitation juveniles

0 50 100 1501

2

3

4

5

6

7

8

9

time (days)

bod

y le

ngth

0 50 100 150

0

5

10

15

20

25

30

35

40

time (days)

cum

ulat

ive

off

sprin

g pe

r fe

mal

e

80120160200

80120160200

Page 24: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

60 80 100 120 140 160 180 200

0

0.005

0.01

0.015

0.02

0.025

concentration (mg/kg soil)

pop

ulat

ion

grow

th r

ate

(d-1

)

Food limitation juveniles

food 100%

food 90%

Page 25: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

other compounds (related)

Page 26: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

externalconcentration

(in time) toxico-kinetics

internalconcentration

in time

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

other compounds (mixtures)

Page 27: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Educated extrapolation

externalconcentration

(in time) toxico-kinetics

toxico-kinetics

internalconcentration

in time metabolicprocesses

in timeDEB

model

DEBmodel

life-historytraits

TK pars tox pars DEB pars

other (related) species

Page 28: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

What’s the use of DEB?

In-depth interpretation of effects on individual• all endpoints over time in one framework• indicates experimental ‘problems’• mechanism of action of compound

DEB is essential for inter- and extrapolation• e.g., extrapolation to field conditions• ‘repair’ experimental artefacts

Natural link with different population approaches• simple (e.g., Euler-Lotka and matrix models)• more complex (e.g., IBM’s)

Page 29: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

But …

Strong (but explicit) assumptions are made• on metabolic organisation• on mechanisms of toxicity

Elaborate DEB models require strong data• growth, repro and survival over (partial) life cycle• e.g., Daphnia repro protocol extended with size

Almost every analysis raises more questions• difficult to perform on routine basis

Interesting point raised by DEB3 …• hatching time and hatchling size can be affected by stress

Page 30: Dynamic Energy Budgets i.r.t. population effects of toxicants Tjalling Jager Dept. Theoretical Biology.

Advertisement

Vacancies• PhD student, Marie Curie training network (CREAM)

Courses• International DEB Tele Course 2011

Symposia• 2nd International DEB Symposium 2011 in Lisbon

More information: http://www.bio.vu.nl/thb


Recommended